Clustering and EM

CDS, NYU

April 25, 2022

Logistics

Final exam

- Period: May 15 4:00-5:50pm EST
- Format: in person, closed book
- Coverage: mainly about material from week 6 onwards but can overlap with basic concepts before midterm

K-means Clustering

Unsupervised learning

Goal Discover interesting structure in the data.

Unsupervised learning

Goal Discover interesting structure in the data. Formulation Density estimation: $p(x ; \theta)$ (often with latent variables).

Unsupervised learning

Goal Discover interesting structure in the data.
Formulation Density estimation: $p(x ; \theta)$ (often with latent variables).
Examples - Discover clusters: cluster data into groups.

- Discover factors: project high-dimensional data to a small number of "meaningful" dimensions, i.e. dimensionality reduction.
- Discover graph structures: learn joint distribution of correlated variables, i.e. graphical models.

Example: Old Faithful Geyser

- Looks like two clusters.
- How to find these clusters algorithmically?

k-Means: By Example

- Standardize the data.
- Choose two cluster centers.

k-means: by example

- Assign each point to closest center.

k-means: by example

- Compute new cluster centers.

k-means: by example

- Assign points to closest center.

k-means: by example

- Compute cluster centers.

k-means: by example

- Iterate until convergence.

Suboptimal Local Minimum

- The clustering for $k=3$ below is a local minimum, but suboptimal:

Would be better to have one cluster here

... and two clusters here

Formalize k-Means

- Dataset $\mathcal{D}=\left\{x_{1}, \ldots, x_{n}\right\} \subset X$ where $X=R^{d}$.

Formalize k-Means

- Dataset $\mathcal{D}=\left\{x_{1}, \ldots, x_{n}\right\} \subset X$ where $X=R^{d}$.
- Goal: Partition data \mathcal{D} into k disjoint sets C_{1}, \ldots, C_{k}.

Formalize k-Means

- Dataset $\mathcal{D}=\left\{x_{1}, \ldots, x_{n}\right\} \subset X$ where $X=R^{d}$.
- Goal: Partition data \mathcal{D} into k disjoint sets C_{1}, \ldots, C_{k}.
- Let $c_{i} \in\{1, \ldots, k\}$ be the cluster assignment of x_{i}.

Formalize k-Means

- Dataset $\mathcal{D}=\left\{x_{1}, \ldots, x_{n}\right\} \subset X$ where $X=R^{d}$.
- Goal: Partition data \mathcal{D} into k disjoint sets C_{1}, \ldots, C_{k}.
- Let $c_{i} \in\{1, \ldots, k\}$ be the cluster assignment of x_{i}.
- The centroid of C_{i} is defined to be

$$
\begin{equation*}
\mu_{i}=\underset{\mu \in X}{\arg \min } \sum_{x \in C_{i}}\|x-\mu\|^{2} . \quad \text { mean of } C_{i} \tag{1}
\end{equation*}
$$

Formalize k-Means

- Dataset $\mathcal{D}=\left\{x_{1}, \ldots, x_{n}\right\} \subset X$ where $X=R^{d}$.
- Goal: Partition data \mathcal{D} into k disjoint sets C_{1}, \ldots, C_{k}.
- Let $c_{i} \in\{1, \ldots, k\}$ be the cluster assignment of x_{i}.
- The centroid of C_{i} is defined to be

$$
\begin{equation*}
\mu_{i}=\underset{\mu \in X}{\arg \min } \sum_{x \in C_{i}}\|x-\mu\|^{2} . \quad \text { mean of } C_{i} \tag{1}
\end{equation*}
$$

- The k-means objective is to minimize the distance between each example and its cluster centroid:

$$
\begin{equation*}
J(c, \mu)=\sum_{i=1}^{n}\left\|x_{i}-\mu_{c_{i}}\right\|^{2} \tag{2}
\end{equation*}
$$

k-Means: Algorithm

(1) Initialize: Randomly choose initial centroids $\mu_{1}, \ldots, \mu_{k} \in \mathrm{R}^{d}$.

k-Means: Algorithm

(1) Initialize: Randomly choose initial centroids $\mu_{1}, \ldots, \mu_{k} \in \mathrm{R}^{d}$.
(2) Repeat until convergence (i.e. c_{i} doesn't change anymore):

k-Means: Algorithm

(1) Initialize: Randomly choose initial centroids $\mu_{1}, \ldots, \mu_{k} \in \mathrm{R}^{d}$.
(2) Repeat until convergence (i.e. c_{i} doesn't change anymore):
(1) For all i, set

$$
\begin{equation*}
c_{i} \leftarrow \underset{j}{\arg \min }\left\|x_{i}-\mu_{j}\right\|^{2} . \tag{3}
\end{equation*}
$$

k-Means: Algorithm

(1) Initialize: Randomly choose initial centroids $\mu_{1}, \ldots, \mu_{k} \in \mathrm{R}^{d}$.
(2) Repeat until convergence (i.e. c_{i} doesn't change anymore):
(1) For all i, set

$$
\begin{equation*}
c_{i} \leftarrow \underset{j}{\arg \min }\left\|x_{i}-\mu_{j}\right\|^{2} . \tag{3}
\end{equation*}
$$

(2) For all j, set

$$
\begin{equation*}
\mu_{j} \leftarrow \frac{1}{\left|C_{j}\right|} \sum_{x \in C_{j}} x \tag{4}
\end{equation*}
$$

k-Means: Algorithm

(1) Initialize: Randomly choose initial centroids $\mu_{1}, \ldots, \mu_{k} \in \mathrm{R}^{d}$.
(2) Repeat until convergence (i.e. c_{i} doesn't change anymore):
(1) For all i, set

$$
\begin{equation*}
c_{i} \leftarrow \underset{j}{\arg \min }\left\|x_{i}-\mu_{j}\right\|^{2} . \tag{3}
\end{equation*}
$$

(2) For all j, set

$$
\begin{equation*}
\mu_{j} \leftarrow \frac{1}{\left|C_{j}\right|} \sum_{x \in C_{j}} x . \tag{4}
\end{equation*}
$$

- Recall the objective: $J(c, \mu)=\sum_{i=1}^{n}\left\|x_{i}-\mu_{c_{i}}\right\|^{2}$.

k-Means: Algorithm

(1) Initialize: Randomly choose initial centroids $\mu_{1}, \ldots, \mu_{k} \in \mathrm{R}^{d}$.
(2) Repeat until convergence (i.e. c_{i} doesn't change anymore):
(1) For all i, set

$$
\begin{equation*}
c_{i} \leftarrow \underset{j}{\arg \min }\left\|x_{i}-\mu_{j}\right\|^{2} . \quad \text { Minimize } J \text { w.r.t. } c \text { while fixing } \mu \tag{3}
\end{equation*}
$$

(2) For all j, set

$$
\begin{equation*}
\mu_{j} \leftarrow \frac{1}{\left|C_{j}\right|} \sum_{x \in C_{j}} x \tag{4}
\end{equation*}
$$

- Recall the objective: $J(c, \mu)=\sum_{i=1}^{n}\left\|x_{i}-\mu_{c_{i}}\right\|^{2}$.

k-Means: Algorithm

(1) Initialize: Randomly choose initial centroids $\mu_{1}, \ldots, \mu_{k} \in \mathrm{R}^{d}$.
(2) Repeat until convergence (i.e. c_{i} doesn't change anymore):
(1) For all i, set

$$
\begin{equation*}
c_{i} \leftarrow \underset{j}{\arg \min }\left\|x_{i}-\mu_{j}\right\|^{2} . \quad \text { Minimize } J \text { w.r.t. } c \text { while fixing } \mu \tag{3}
\end{equation*}
$$

(2) For all j, set

$$
\begin{equation*}
\mu_{j} \leftarrow \frac{1}{\left|C_{j}\right|} \sum_{x \in C_{j}} x . \quad \quad \text { Minimze } J \text { w.r.t. } \mu \text { while fixing } c \text {. } \tag{4}
\end{equation*}
$$

- Recall the objective: $J(c, \mu)=\sum_{i=1}^{n}\left\|x_{i}-\mu_{c_{i}}\right\|^{2}$.

Avoid bad local minima

k-means converges to a local minimum.

- J is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:

- Re-run with random initial centroids.

Avoid bad local minima

k-means converges to a local minimum.

- J is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:

- Re-run with random initial centroids.
- k-means++: choose initial centroids that spread over all data points.

Avoid bad local minima

k-means converges to a local minimum.

- J is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:

- Re-run with random initial centroids.
- k-means++: choose initial centroids that spread over all data points.
- Randomly choose the first centroid from the data points \mathcal{D}.

Avoid bad local minima

k-means converges to a local minimum.

- J is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:

- Re-run with random initial centroids.
- k-means++: choose initial centroids that spread over all data points.
- Randomly choose the first centroid from the data points \mathcal{D}.
- Sequentially choose subsequent centroids from points that are farther away from current centroids:

Avoid bad local minima

k-means converges to a local minimum.

- J is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:

- Re-run with random initial centroids.
- k-means++: choose initial centroids that spread over all data points.
- Randomly choose the first centroid from the data points \mathcal{D}.
- Sequentially choose subsequent centroids from points that are farther away from current centroids:
- Compute distance between each x_{i} and the closest already chosen centroids.

Avoid bad local minima

k-means converges to a local minimum.

- J is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:

- Re-run with random initial centroids.
- k-means++: choose initial centroids that spread over all data points.
- Randomly choose the first centroid from the data points \mathcal{D}.
- Sequentially choose subsequent centroids from points that are farther away from current centroids:
- Compute distance between each x_{i} and the closest already chosen centroids.
- Randomly choose next centroid with probability proportional to the computed distance squared.

Summary

We've seen

- Clustering—an unsupervised learning problem that aims to discover group assignments.
- k-means:
- Algorithm: alternating between assigning points to clusters and computing cluster centroids.
- Objective: minmizing some loss function by cooridinate descent.
- Converge to a local minimum.

Summary

We've seen

- Clustering-an unsupervised learning problem that aims to discover group assignments.
- k-means:
- Algorithm: alternating between assigning points to clusters and computing cluster centroids.
- Objective: minmizing some loss function by cooridinate descent.
- Converge to a local minimum.

Next, probabilistic model of clustering.

- A generative model of x.
- Maximum likelihood estimation.

Gaussian Mixture Models

Probabilistic Model for Clustering

- Problem setup:
- There are k clusters (or mixture components).
- We have a probability distribution for each cluster.

Probabilistic Model for Clustering

- Problem setup:
- There are k clusters (or mixture components).
- We have a probability distribution for each cluster.
- Generative story of a mixture distribution:
(1) Choose a random cluster $z \in\{1,2, \ldots, k\}$.
(2) Choose a point from the distribution for cluster z.

Probabilistic Model for Clustering

- Problem setup:
- There are k clusters (or mixture components).
- We have a probability distribution for each cluster.
- Generative story of a mixture distribution:
(1) Choose a random cluster $z \in\{1,2, \ldots, k\}$.
(2) Choose a point from the distribution for cluster z.

Example:

(1) Choose $z \in\{1,2,3\}$ with $p(1)=p(2)=p(3)=\frac{1}{3}$.
(2) Choose $x \mid z \sim \mathcal{N}\left(X \mid \mu_{z}, \Sigma_{z}\right)$.

Gaussian mixture model (GMM)

Generative story of GMM with k mixture components:
(1) Choose cluster $z \sim \operatorname{Categorical}\left(\pi_{1}, \ldots, \pi_{k}\right)$.
(2) Choose $x \mid z \sim \mathcal{N}\left(\mu_{z}, \Sigma_{z}\right)$.

Gaussian mixture model (GMM)

Generative story of GMM with k mixture components:
(1) Choose cluster $z \sim \operatorname{Categorical}\left(\pi_{1}, \ldots, \pi_{k}\right)$.
(2) Choose $x \mid z \sim \mathcal{N}\left(\mu_{z}, \Sigma_{z}\right)$.

Probability density of x :

- Sum over (marginalize) the latent variable z.

$$
\begin{align*}
p(x) & =\sum_{z} p(x, z) \tag{5}\\
& =\sum_{z} p(x \mid z) p(z) \tag{6}\\
& =\sum_{k} \pi_{k} \mathcal{N}\left(\mu_{k}, \Sigma_{k}\right) \tag{7}
\end{align*}
$$

Identifiability Issues for GMM

- Suppose we have found parameters

$$
\begin{aligned}
\text { Cluster probabilities: } & \pi=\left(\pi_{1}, \ldots, \pi_{k}\right) \\
\text { Cluster means: } & \mu=\left(\mu_{1}, \ldots, \mu_{k}\right) \\
\text { Cluster covariance matrices: } & \Sigma=\left(\Sigma_{1}, \ldots \Sigma_{k}\right)
\end{aligned}
$$

that are at a local minimum.

Identifiability Issues for GMM

- Suppose we have found parameters

$$
\begin{aligned}
\text { Cluster probabilities: } & \pi=\left(\pi_{1}, \ldots, \pi_{k}\right) \\
\text { Cluster means: } & \mu=\left(\mu_{1}, \ldots, \mu_{k}\right) \\
\text { Cluster covariance matrices: } & \Sigma=\left(\Sigma_{1}, \ldots \Sigma_{k}\right)
\end{aligned}
$$

that are at a local minimum.

- What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.

Identifiability Issues for GMM

- Suppose we have found parameters

$$
\begin{aligned}
\text { Cluster probabilities: } & \pi=\left(\pi_{1}, \ldots, \pi_{k}\right) \\
\text { Cluster means: } & \mu=\left(\mu_{1}, \ldots, \mu_{k}\right) \\
\text { Cluster covariance matrices: } & \Sigma=\left(\Sigma_{1}, \ldots \Sigma_{k}\right)
\end{aligned}
$$

that are at a local minimum.

- What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.
- We'll get the same likelihood. How many such equivalent settings are there?

Identifiability Issues for GMM

- Suppose we have found parameters

$$
\begin{aligned}
\text { Cluster probabilities: } & \pi=\left(\pi_{1}, \ldots, \pi_{k}\right) \\
\text { Cluster means: } & \mu=\left(\mu_{1}, \ldots, \mu_{k}\right) \\
\text { Cluster covariance matrices: } & \Sigma=\left(\Sigma_{1}, \ldots \Sigma_{k}\right)
\end{aligned}
$$

that are at a local minimum.

- What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.
- We'll get the same likelihood. How many such equivalent settings are there?
- Assuming all clusters are distinct, there are k ! equivalent solutions.

Identifiability Issues for GMM

- Suppose we have found parameters

$$
\begin{aligned}
\text { Cluster probabilities: } & \pi=\left(\pi_{1}, \ldots, \pi_{k}\right) \\
\text { Cluster means: } & \mu=\left(\mu_{1}, \ldots, \mu_{k}\right) \\
\text { Cluster covariance matrices: } & \Sigma=\left(\Sigma_{1}, \ldots \Sigma_{k}\right)
\end{aligned}
$$

that are at a local minimum.

- What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.
- We'll get the same likelihood. How many such equivalent settings are there?
- Assuming all clusters are distinct, there are k ! equivalent solutions.
- Not a problem per se, but something to be aware of.

Learning GMMs

How to learn the parameters $\pi_{k}, \mu_{k}, \Sigma_{k}$?

Learning GMMs

How to learn the parameters $\pi_{k}, \mu_{k}, \Sigma_{k}$?

- MLE (also called maximize marginal likelihood).
- Log likelihood of data:

$$
\begin{align*}
L(\theta) & =\sum_{i=1}^{n} \log p\left(x_{i} ; \theta\right) \tag{8}\\
& =\sum_{i=1}^{n} \log \sum_{z} p(x, z ; \theta) \tag{9}
\end{align*}
$$

Learning GMMs

How to learn the parameters $\pi_{k}, \mu_{k}, \Sigma_{k}$?

- MLE (also called maximize marginal likelihood).
- Log likelihood of data:

$$
\begin{align*}
L(\theta) & =\sum_{i=1}^{n} \log p\left(x_{i} ; \theta\right) \tag{8}\\
& =\sum_{i=1}^{n} \log \sum_{z} p(x, z ; \theta) \tag{9}
\end{align*}
$$

- Cannot push \log into the sum... z and x are coupled.
- No closed-form solution for GMM—try to compute the gradient yourself!

Gradient Descent / SGD for GMM

- What about running gradient descent or SGD on

$$
J(\pi, \mu, \Sigma)=-\sum_{i=1}^{n} \log \left\{\sum_{z=1}^{k} \pi_{z} \mathcal{N}\left(x_{i} \mid \mu_{z}, \Sigma_{z}\right)\right\} ?
$$

[^0]
Gradient Descent / SGD for GMM

- What about running gradient descent or SGD on

$$
J(\pi, \mu, \Sigma)=-\sum_{i=1}^{n} \log \left\{\sum_{z=1}^{k} \pi_{z} \mathcal{N}\left(x_{i} \mid \mu_{z}, \Sigma_{z}\right)\right\} ?
$$

- Can be done, in principle - but need to be clever about it.

[^1]
Gradient Descent / SGD for GMM

- What about running gradient descent or SGD on

$$
J(\pi, \mu, \Sigma)=-\sum_{i=1}^{n} \log \left\{\sum_{z=1}^{k} \pi_{z} \mathcal{N}\left(x_{i} \mid \mu_{z}, \Sigma_{z}\right)\right\} ?
$$

- Can be done, in principle - but need to be clever about it.
- For example, each covariance matrix $\Sigma_{1}, \ldots, \Sigma_{k}$ has to be positive semidefinite.

[^2]
Gradient Descent / SGD for GMM

- What about running gradient descent or SGD on

$$
J(\pi, \mu, \Sigma)=-\sum_{i=1}^{n} \log \left\{\sum_{z=1}^{k} \pi_{z} \mathcal{N}\left(x_{i} \mid \mu_{z}, \Sigma_{z}\right)\right\} ?
$$

- Can be done, in principle - but need to be clever about it.
- For example, each covariance matrix $\Sigma_{1}, \ldots, \Sigma_{k}$ has to be positive semidefinite.
- How to maintain that constraint?

[^3]
Gradient Descent / SGD for GMM

- What about running gradient descent or SGD on

$$
J(\pi, \mu, \Sigma)=-\sum_{i=1}^{n} \log \left\{\sum_{z=1}^{k} \pi_{z} \mathcal{N}\left(x_{i} \mid \mu_{z}, \Sigma_{z}\right)\right\} ?
$$

- Can be done, in principle - but need to be clever about it.
- For example, each covariance matrix $\Sigma_{1}, \ldots, \Sigma_{k}$ has to be positive semidefinite.
- How to maintain that constraint?
- Rewrite $\Sigma_{i}=M_{i} M_{i}^{T}$, where M_{i} is an unconstrained matrix.

[^4]
Gradient Descent / SGD for GMM

- What about running gradient descent or SGD on

$$
J(\pi, \mu, \Sigma)=-\sum_{i=1}^{n} \log \left\{\sum_{z=1}^{k} \pi_{z} \mathcal{N}\left(x_{i} \mid \mu_{z}, \Sigma_{z}\right)\right\} ?
$$

- Can be done, in principle - but need to be clever about it.
- For example, each covariance matrix $\Sigma_{1}, \ldots, \Sigma_{k}$ has to be positive semidefinite.
- How to maintain that constraint?
- Rewrite $\Sigma_{i}=M_{i} M_{i}^{T}$, where M_{i} is an unconstrained matrix.
- Then Σ_{i} is positive semidefinite.

[^5]
Gradient Descent / SGD for GMM

- What about running gradient descent or SGD on

$$
J(\pi, \mu, \Sigma)=-\sum_{i=1}^{n} \log \left\{\sum_{z=1}^{k} \pi_{z} \mathcal{N}\left(x_{i} \mid \mu_{z}, \Sigma_{z}\right)\right\} ?
$$

- Can be done, in principle - but need to be clever about it.
- For example, each covariance matrix $\Sigma_{1}, \ldots, \Sigma_{k}$ has to be positive semidefinite.
- How to maintain that constraint?
- Rewrite $\Sigma_{i}=M_{i} M_{i}^{T}$, where M_{i} is an unconstrained matrix.
- Then Σ_{i} is positive semidefinite.
- Even then, pure gradient-based methods have trouble. ${ }^{1}$
${ }^{1}$ See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further references.

Learning GMMs: observable case

Suppose we observe cluster assignments z. Then MLE is easy:

$$
\begin{align*}
n_{z} & =\sum_{i=1}^{n} 1\left(z_{i}=z\right) & & \text { \# examples in each cluster } \tag{10}\\
\hat{\pi}(z) & =\frac{n_{z}}{n} & & \text { fraction of examples in each cluster } \tag{11}\\
\hat{\mu}_{z} & =\frac{1}{n_{z}} \sum_{i: z_{i}=z} x_{i} & & \text { empirical cluster mean } \tag{12}\\
\hat{\Sigma}_{z} & =\frac{1}{n_{z}} \sum_{i: z_{i}=z}\left(x_{i}-\hat{\mu}_{z}\right)\left(x_{i}-\hat{\mu}_{z}\right)^{T} . & & \text { empirical cluster covariance } \tag{13}
\end{align*}
$$

Learning GMMs: inference

The inference problem: observe x, want to know z.

Learning GMMs: inference

The inference problem: observe x, want to know z.

$$
\begin{equation*}
p\left(z=j \mid x_{i}\right)=p(x, z=j) / p(x) \tag{14}
\end{equation*}
$$

Learning GMMs: inference

The inference problem: observe x, want to know z.

$$
\begin{align*}
p\left(z=j \mid x_{i}\right) & =p(x, z=j) / p(x) \tag{14}\\
& =\frac{p(x \mid z=j) p(z=j)}{\sum_{k} p(x \mid z=k) p(z=k)} \tag{15}
\end{align*}
$$

Learning GMMs: inference

The inference problem: observe x, want to know z.

$$
\begin{align*}
p\left(z=j \mid x_{i}\right) & =p(x, z=j) / p(x) \tag{14}\\
& =\frac{p(x \mid z=j) p(z=j)}{\sum_{k} p(x \mid z=k) p(z=k)} \tag{15}\\
& =\frac{\pi_{j} \mathcal{N}\left(x_{i} \mid \mu_{j}, \Sigma_{j}\right)}{\sum_{k} \pi_{k} \mathcal{N}\left(x_{i} \mid \mu_{k}, \Sigma_{k}\right)} \tag{16}
\end{align*}
$$

Learning GMMs: inference

The inference problem: observe x, want to know z.

$$
\begin{align*}
p\left(z=j \mid x_{i}\right) & =p(x, z=j) / p(x) \tag{14}\\
& =\frac{p(x \mid z=j) p(z=j)}{\sum_{k} p(x \mid z=k) p(z=k)} \tag{15}\\
& =\frac{\pi_{j} \mathcal{N}\left(x_{i} \mid \mu_{j}, \Sigma_{j}\right)}{\sum_{k} \pi_{k} \mathcal{N}\left(x_{i} \mid \mu_{k}, \Sigma_{k}\right)} \tag{16}
\end{align*}
$$

- $p(z \mid x)$ is a soft assignment.
- If we know the parameters μ, Σ, π, this would be easy to compute.

EM for GMM

Let's compute the cluster assignments and the parameters iteratively.

EM for GMM

Let's compute the cluster assignments and the parameters iteratively.
The expectation-minimization (EM) algorithm:
(1) Initialize parameters μ, Σ, π randomly.
(2) Run until convergence:

EM for GMM

Let's compute the cluster assignments and the parameters iteratively.
The expectation-minimization (EM) algorithm:
(1) Initialize parameters μ, Σ, π randomly.
(2) Run until convergence:
(1) E-step: fill in latent variables by inference.

- compute soft assignments $p\left(z \mid x_{i}\right)$ for all i.

EM for GMM

Let's compute the cluster assignments and the parameters iteratively.
The expectation-minimization (EM) algorithm:
(1) Initialize parameters μ, Σ, π randomly.
(2) Run until convergence:
(1) E-step: fill in latent variables by inference.

- compute soft assignments $p\left(z \mid x_{i}\right)$ for all i.
(2) M-step: standard MLE for μ, Σ, π given "observed" variables.
- Equivalent to MLE in the observable case on data weighted by $p\left(z \mid x_{i}\right)$.

M-step for GMM

- Let $p(z \mid x)$ be the soft assignments:

$$
\gamma_{i}^{j}=\frac{\pi_{j}^{\text {old }} \mathcal{N}\left(x_{i} \mid \mu_{j}^{\text {old }}, \Sigma_{j}^{\text {old }}\right)}{\sum_{c=1}^{k} \pi_{c}^{\text {old }} \mathcal{N}\left(x_{i} \mid \mu_{c}^{\text {old }}, \Sigma_{c}^{\text {old }}\right)} .
$$

- Exercise: show that

$$
\begin{aligned}
n_{z} & =\sum_{i=1}^{n} \gamma_{i}^{z} \\
\mu_{z}^{\text {new }} & =\frac{1}{n_{z}} \sum_{i=1}^{n} \gamma_{i}^{z} x_{i} \\
\Sigma_{z}^{\text {new }} & =\frac{1}{n_{z}} \sum_{i=1}^{n} \gamma_{i}^{z}\left(x_{i}-\mu_{z}^{\text {new }}\right)\left(x_{i}-\mu_{z}^{\text {new }}\right)^{T} \\
\pi_{z}^{\text {new }} & =\frac{n_{z}}{n} .
\end{aligned}
$$

EM for GMM

- Initialization

EM for GMM

- First soft assignment:

EM for GMM

- First soft assignment:

EM for GMM

- After 5 rounds of EM:

EM for GMM

- After 20 rounds of EM:

EM for GMM: Summary

- EM is a general algorithm for learning latent variable models.
- Key idea: if data was fully observed, then MLE is easy.
- E-step: fill in latent variables by computing $p(z \mid x, \theta)$.
- M-step: standard MLE given fully observed data.
- Simpler and more efficient than gradient methods.
- Can prove that EM monotonically improves the likelihood and converges to a local minimum.
- k-means is a special case of EM for GMM with hard assignments, also called hard-EM.

Latent Variable Models

General Latent Variable Model

- Two sets of random variables: z and x.
- z consists of unobserved hidden variables.
- x consists of observed variables.

General Latent Variable Model

- Two sets of random variables: z and x.
- z consists of unobserved hidden variables.
- x consists of observed variables.
- Joint probability model parameterized by $\theta \in \Theta$:

$$
p(x, z \mid \theta)
$$

General Latent Variable Model

- Two sets of random variables: z and x.
- z consists of unobserved hidden variables.
- x consists of observed variables.
- Joint probability model parameterized by $\theta \in \Theta$:

$$
p(x, z \mid \theta)
$$

Definition

A latent variable model is a probability model for which certain variables are never observed.

General Latent Variable Model

- Two sets of random variables: z and x.
- z consists of unobserved hidden variables.
- x consists of observed variables.
- Joint probability model parameterized by $\theta \in \Theta$:

$$
p(x, z \mid \theta)
$$

Definition

A latent variable model is a probability model for which certain variables are never observed.
e.g. The Gaussian mixture model is a latent variable model.

Complete and Incomplete Data

- Suppose we observe some data $\left(x_{1}, \ldots, x_{n}\right)$.

Complete and Incomplete Data

- Suppose we observe some data $\left(x_{1}, \ldots, x_{n}\right)$.
- To simplify notation, take x to represent the entire dataset

$$
x=\left(x_{1}, \ldots, x_{n}\right),
$$

and z to represent the corresponding unobserved variables

$$
z=\left(z_{1}, \ldots, z_{n}\right)
$$

- An observation of x is called an incomplete data set.
- An observation (x, z) is called a complete data set.

Our Objectives

- Learning problem: Given incomplete dataset x, find MLE

$$
\hat{\theta}=\underset{\theta}{\arg \max } p(x \mid \theta) .
$$

Our Objectives

- Learning problem: Given incomplete dataset x, find MLE

$$
\hat{\theta}=\underset{\theta}{\arg \max } p(x \mid \theta) .
$$

- Inference problem: Given x, find conditional distribution over z :

$$
p(z \mid x, \theta) .
$$

Our Objectives

- Learning problem: Given incomplete dataset x, find MLE

$$
\hat{\theta}=\underset{\theta}{\arg \max } p(x \mid \theta) .
$$

- Inference problem: Given x, find conditional distribution over z :

$$
p(z \mid x, \theta) .
$$

- For Gaussian mixture model, learning is hard, inference is easy.
- For more complicated models, inference can also be hard. (See DSGA-1005)

Log-Likelihood and Terminology

- Note that

$$
\underset{\theta}{\arg \max } p(x \mid \theta)=\underset{\theta}{\arg \max }[\log p(x \mid \theta)] .
$$

Log-Likelihood and Terminology

- Note that

$$
\underset{\theta}{\arg \max } p(x \mid \theta)=\underset{\theta}{\arg \max }[\log p(x \mid \theta)] .
$$

- Often easier to work with this "log-likelihood".

Log-Likelihood and Terminology

- Note that

$$
\underset{\theta}{\arg \max } p(x \mid \theta)=\underset{\theta}{\arg \max }[\log p(x \mid \theta)] .
$$

- Often easier to work with this "log-likelihood".
- We often call $p(x)$ the marginal likelihood,
- because it is $p(x, z)$ with z "marginalized out":

$$
p(x)=\sum_{z} p(x, z)
$$

Log-Likelihood and Terminology

- Note that

$$
\underset{\theta}{\arg \max } p(x \mid \theta)=\underset{\theta}{\arg \max }[\log p(x \mid \theta)] .
$$

- Often easier to work with this "log-likelihood".
- We often call $p(x)$ the marginal likelihood,
- because it is $p(x, z)$ with z "marginalized out":

$$
p(x)=\sum_{z} p(x, z)
$$

- We often call $p(x, z)$ the joint. (for "joint distribution")

Log-Likelihood and Terminology

- Note that

$$
\underset{\theta}{\arg \max } p(x \mid \theta)=\underset{\theta}{\arg \max }[\log p(x \mid \theta)] .
$$

- Often easier to work with this "log-likelihood".
- We often call $p(x)$ the marginal likelihood,
- because it is $p(x, z)$ with z "marginalized out":

$$
p(x)=\sum_{z} p(x, z)
$$

- We often call $p(x, z)$ the joint. (for "joint distribution")
- Similarly, $\log p(x)$ is the marginal log-likelihood.

EM Algorithm

Intuition

Problem: marginal \log-likelihood $\log p(x ; \theta)$ is hard to optimize (observing only x)
Observation: complete data \log-likelihood $\log p(x, z ; \theta)$ is easy to optimize (observing both x and z)

Idea: guess a distribution of the latent variables $q(z)$ (soft assignments)
Maximize the expected complete data log-likelihood:

$$
\max _{\theta} \sum_{z \in z} q(z) \log p(x, z ; \theta)
$$

EM assumption: the expected complete data log-likelihood is easy to optimize Why should this work?

Math Prerequisites

Jensen's Inequality

Theorem (Jensen's Inequality)

If $f: \mathrm{R} \rightarrow \mathrm{R}$ is a convex function, and x is a random variable, then

$$
\mathbb{E} f(x) \geqslant f(\mathbb{E} x)
$$

Jensen's Inequality

Theorem (Jensen's Inequality)

If $f: \mathrm{R} \rightarrow \mathrm{R}$ is a convex function, and x is a random variable, then

$$
\mathbb{E} f(x) \geqslant f(\mathbb{E} x)
$$

Moreover, if f is strictly convex, then equality implies that $x=\mathbb{E} x$ with probability 1 (i.e. x is a constant).

Jensen's Inequality

Theorem (Jensen's Inequality)

If $f: \mathrm{R} \rightarrow \mathrm{R}$ is a convex function, and x is a random variable, then

$$
\mathbb{E} f(x) \geqslant f(\mathbb{E} x)
$$

Moreover, if f is strictly convex, then equality implies that $x=\mathbb{E} x$ with probability 1 (i.e. x is a constant).

- e.g. $f(x)=x^{2}$ is convex. So $\mathbb{E} x^{2} \geqslant(\mathbb{E} x)^{2}$. Thus

$$
\operatorname{Var}(x)=\mathbb{E} x^{2}-(\mathbb{E} x)^{2} \geqslant 0
$$

Kullback-Leibler Divergence

- Let $p(x)$ and $q(x)$ be probability mass functions (PMFs) on X.
- How can we measure how "different" p and q are?

Kullback-Leibler Divergence

- Let $p(x)$ and $q(x)$ be probability mass functions (PMFs) on X.
- How can we measure how "different" p and q are?
- The Kullback-Leibler or "KL" Divergence is defined by

$$
\operatorname{KL}(p \| q)=\sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}
$$

(Assumes $q(x)=0$ implies $p(x)=0$.)

Kullback-Leibler Divergence

- Let $p(x)$ and $q(x)$ be probability mass functions (PMFs) on X.
- How can we measure how "different" p and q are?
- The Kullback-Leibler or "KL" Divergence is defined by

$$
\operatorname{KL}(p \| q)=\sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}
$$

(Assumes $q(x)=0$ implies $p(x)=0$.)

- Can also write this as

$$
\operatorname{KL}(p \| q)=\mathbb{E}_{x \sim p} \log \frac{p(x)}{q(x)}
$$

Gibbs Inequality $(\operatorname{KL}(p \| q) \geqslant 0$ and $\operatorname{KL}(p \| p)=0)$

Theorem (Gibbs Inequality)

Let $p(x)$ and $q(x)$ be PMFs on X. Then

$$
K L(p \| q) \geqslant 0
$$

with equality iff $p(x)=q(x)$ for all $x \in \mathcal{X}$.

Gibbs Inequality $(\operatorname{KL}(p \| q) \geqslant 0$ and $\operatorname{KL}(p \| p)=0)$

Theorem (Gibbs Inequality)

Let $p(x)$ and $q(x)$ be PMFs on \mathcal{X}. Then

$$
K L(p \| q) \geqslant 0
$$

with equality iff $p(x)=q(x)$ for all $x \in \mathcal{X}$.

- KL divergence measures the "distance" between distributions.

Gibbs Inequality $(\operatorname{KL}(p \| q) \geqslant 0$ and $\operatorname{KL}(p \| p)=0)$

Theorem (Gibbs Inequality)

Let $p(x)$ and $q(x)$ be PMFs on X. Then

$$
K L(p \| q) \geqslant 0
$$

with equality iff $p(x)=q(x)$ for all $x \in \mathcal{X}$.

- KL divergence measures the "distance" between distributions.
- Note:
- KL divergence not a metric.
- KL divergence is not symmetric.

Gibbs Inequality: Proof

$$
\operatorname{KL}(p \| q)=\mathbb{E}_{p}\left[-\log \left(\frac{q(x)}{p(x)}\right)\right]
$$

Gibbs Inequality: Proof

$$
\begin{align*}
\operatorname{KL}(p \| q) & =\mathbb{E}_{p}\left[-\log \left(\frac{q(x)}{p(x)}\right)\right] \\
& \geqslant-\log \left[\mathbb{E}_{p}\left(\frac{q(x)}{p(x)}\right)\right] \tag{Jensen's}
\end{align*}
$$

Gibbs Inequality: Proof

$$
\begin{aligned}
\operatorname{KL}(p \| q) & =\mathbb{E}_{p}\left[-\log \left(\frac{q(x)}{p(x)}\right)\right] \\
& \geqslant-\log \left[\mathbb{E}_{p}\left(\frac{q(x)}{p(x)}\right)\right] \quad \text { (Jensen's) } \\
& =-\log \left[\sum_{\{x \mid p(x)>0\}} p(x) \frac{q(x)}{p(x)}\right]
\end{aligned}
$$

Gibbs Inequality: Proof

$$
\begin{aligned}
\operatorname{KL}(p \| q) & =\mathbb{E}_{p}\left[-\log \left(\frac{q(x)}{p(x)}\right)\right] \\
& \geqslant-\log \left[\mathbb{E}_{p}\left(\frac{q(x)}{p(x)}\right)\right] \quad \text { (Jensen's) } \\
& =-\log \left[\sum_{\{x \mid p(x)>0\}} p(x) \frac{q(x)}{p(x)}\right] \\
& =-\log \left[\sum_{x \in X} q(x)\right]
\end{aligned}
$$

Gibbs Inequality: Proof

$$
\begin{aligned}
\operatorname{KL}(p \| q) & =\mathbb{E}_{p}\left[-\log \left(\frac{q(x)}{p(x)}\right)\right] \\
& \geqslant-\log \left[\mathbb{E}_{p}\left(\frac{q(x)}{p(x)}\right)\right] \quad \text { (Jensen's) } \\
& =-\log \left[\sum_{\{x \mid p(x)>0\}} p(x) \frac{q(x)}{p(x)}\right] \\
& =-\log \left[\sum_{x \in X} q(x)\right] \\
& =-\log 1=0 .
\end{aligned}
$$

Gibbs Inequality: Proof

$$
\begin{aligned}
\operatorname{KL}(p \| q) & =\mathbb{E}_{p}\left[-\log \left(\frac{q(x)}{p(x)}\right)\right] \\
& \geqslant-\log \left[\mathbb{E}_{p}\left(\frac{q(x)}{p(x)}\right)\right] \\
& =-\log \left[\sum_{\{x \mid p(x)>0\}} p(x) \frac{q(x)}{p(x)}\right] \\
& =-\log \left[\sum_{x \in X} q(x)\right] \\
& =-\log 1=0 .
\end{aligned}
$$

- Since $-\log$ is strictly convex, we have strict equality iff $q(x) / p(x)$ is a constant, which implies $q=p$.

The ELBO: Family of Lower Bounds on $\log p(x \mid \theta)$

The Maximum Likelihood Estimator

Lower bound of the marginal log-likelihood

$$
\log p(x ; \theta)=\log \sum_{z \in Z} p(x, z ; \theta)
$$

Lower bound of the marginal log-likelihood

$$
\begin{aligned}
\log p(x ; \theta) & =\log \sum_{z \in z} p(x, z ; \theta) \\
& =\log \sum_{z \in z} q(z) \frac{p(x, z ; \theta)}{q(z)}
\end{aligned}
$$

Lower bound of the marginal log-likelihood

$$
\begin{aligned}
\log p(x ; \theta) & =\log \sum_{z \in z} p(x, z ; \theta) \\
& =\log \sum_{z \in z} q(z) \frac{p(x, z ; \theta)}{q(z)} \\
& \geqslant \sum_{z \in z} q(z) \log \frac{p(x, z ; \theta)}{q(z)}
\end{aligned}
$$

Lower bound of the marginal log-likelihood

$$
\begin{aligned}
\log p(x ; \theta) & =\log \sum_{z \in z} p(x, z ; \theta) \\
& =\log \sum_{z \in z} q(z) \frac{p(x, z ; \theta)}{q(z)} \\
& \geqslant \sum_{z \in z} q(z) \log \frac{p(x, z ; \theta)}{q(z)} \\
& \stackrel{\text { def }}{=} \mathcal{L}(q, \theta)
\end{aligned}
$$

- Evidence: $\log p(x ; \theta)$
- Evidence lower bound (ELBO): $\mathcal{L}(q, \theta)$
- q : chosen to be a family of tractable distributions
- Idea: maximize the $E L B O$ instead of $\log p(x ; \theta)$

MLE, EM, and the ELBO

- The MLE is defined as a maximum over θ :

$$
\hat{\theta}_{\text {MLE }}=\underset{\theta}{\arg \max }[\log p(x \mid \theta)] .
$$

- For any PMF $q(z)$, we have a lower bound on the marginal log-likelihood

$$
\log p(x \mid \theta) \geqslant \mathcal{L}(q, \theta) .
$$

- In EM algorithm, we maximize the lower bound (ELBO) over θ and q :

$$
\hat{\theta}_{\mathrm{EM}} \approx \underset{\theta}{\arg \max }\left[\max _{q} \mathcal{L}(q, \theta)\right]
$$

MLE, EM, and the ELBO

- The MLE is defined as a maximum over θ :

$$
\hat{\theta}_{\text {MLE }}=\underset{\theta}{\arg \max }[\log p(x \mid \theta)] .
$$

- For any PMF $q(z)$, we have a lower bound on the marginal log-likelihood

$$
\log p(x \mid \theta) \geqslant \mathcal{L}(q, \theta) .
$$

- In EM algorithm, we maximize the lower bound (ELBO) over θ and q :

$$
\hat{\theta}_{\mathrm{EM}} \approx \underset{\theta}{\arg \max }\left[\max _{q} \mathcal{L}(q, \theta)\right]
$$

- In EM algorithm, q ranges over all distributions on z.

EM: Coordinate Ascent on Lower Bound

- Choose sequence of q 's and θ 's by "coordinate ascent" on $\mathcal{L}(q, \theta)$.

EM: Coordinate Ascent on Lower Bound

- Choose sequence of q 's and θ 's by "coordinate ascent" on $\mathcal{L}(q, \theta)$.
- EM Algorithm (high level):
(1) Choose initial $\theta^{\text {old }}$
(2) Let $q^{*}=\arg \max _{q} \mathcal{L}\left(q, \theta^{\text {old }}\right)$

EM: Coordinate Ascent on Lower Bound

- Choose sequence of q 's and θ 's by "coordinate ascent" on $\mathcal{L}(q, \theta)$.
- EM Algorithm (high level):
(1) Choose initial $\theta^{\text {old }}$
(2) Let $q^{*}=\arg \max _{q} \mathcal{L}\left(q, \theta^{\text {old }}\right)$
(3) Let $\theta^{\text {new }}=\arg \max _{\theta} \mathcal{L}\left(q^{*}, \theta\right)$.

EM: Coordinate Ascent on Lower Bound

- Choose sequence of q 's and θ 's by "coordinate ascent" on $\mathcal{L}(q, \theta)$.
- EM Algorithm (high level):
(1) Choose initial $\theta^{\text {old }}$.
(2) Let $q^{*}=\arg \max _{q} \mathcal{L}\left(q, \theta^{\text {old }}\right)$
(3) Let $\theta^{\text {new }}=\arg \max _{\theta} \mathcal{L}\left(q^{*}, \theta\right)$.
(9) Go to step 2 , until converged.
- Will show: $p\left(x \mid \theta^{\text {new }}\right) \geqslant p\left(x \mid \theta^{\text {old }}\right)$
- Get sequence of θ 's with monotonically increasing likelihood.

EM: Coordinate Ascent on Lower Bound

(1) Start at $\theta^{\text {old }}$.

EM: Coordinate Ascent on Lower Bound

(1) Start at $\theta^{\text {old }}$.
(2) Find q giving best lower bound at $\theta^{\text {old }} \Longrightarrow \mathcal{L}(q, \theta)$.

EM: Coordinate Ascent on Lower Bound

(1) Start at $\theta^{\text {old }}$.
(2) Find q giving best lower bound at $\theta^{\text {old }} \Longrightarrow \mathcal{L}(q, \theta)$.
(3) $\theta^{\text {new }}=\arg \max _{\theta} \mathcal{L}(q, \theta)$.

Is ELBO a "good" lowerbound?

$$
\begin{aligned}
\mathcal{L}(q, \theta) & =\sum_{z \in \mathcal{Z}} q(z) \log \frac{p(x, z \mid \theta)}{q(z)} \\
& =\sum_{z \in \mathcal{Z}} q(z) \log \frac{p(z \mid x, \theta) p(x \mid \theta)}{q(z)} \\
& =-\sum_{z \in \mathcal{Z}} q(z) \log \frac{q(z)}{p(z \mid x, \theta)}+\sum_{z \in \mathcal{Z}} q(z) \log p(x \mid \theta) \\
& =-\operatorname{KL}(q(z) \| p(z \mid x, \theta))+\underbrace{\log p(x \mid \theta)}_{\text {evidence }}
\end{aligned}
$$

- KL divergence: measures "distance" between two distributions (not symmetric!)
- $\operatorname{KL}(q \| p) \geqslant 0$ with equality iff $q(z)=p(z \mid x)$.
- $\mathrm{ELBO}=$ evidence $-\mathrm{KL} \leqslant$ evidence

Maximizing over q for fixed θ.

- Find q maximizing

$$
\mathcal{L}(q, \theta)=-\operatorname{KL}[q(z), p(z \mid x, \theta)]+\log p(x \mid \theta)
$$

Maximizing over q for fixed θ.

- Find q maximizing

$$
\mathcal{L}(q, \theta)=-\operatorname{KL}[q(z), p(z \mid x, \theta)]+\underbrace{\log p(x \mid \theta)}_{\text {no } q \text { here }}
$$

Maximizing over q for fixed θ.

- Find q maximizing

$$
\mathcal{L}(q, \theta)=-\operatorname{KL}[q(z), p(z \mid x, \theta)]+\underbrace{\log p(x \mid \theta)}_{\text {no } q \text { here }}
$$

- Recall $\operatorname{KL}(p \| q) \geqslant 0$, and $\operatorname{KL}(p \| p)=0$.

Maximizing over q for fixed θ.

- Find q maximizing

$$
\mathcal{L}(q, \theta)=-\operatorname{KL}[q(z), p(z \mid x, \theta)]+\underbrace{\log p(x \mid \theta)}_{\text {no } q \text { here }}
$$

- Recall $\operatorname{KL}(p \| q) \geqslant 0$, and $\operatorname{KL}(p \| p)=0$.
- Best q is $q^{*}(z)=p(z \mid x, \theta)$ and

Maximizing over q for fixed θ.

- Find q maximizing

$$
\mathcal{L}(q, \theta)=-\operatorname{KL}[q(z), p(z \mid x, \theta)]+\underbrace{\log p(x \mid \theta)}_{\text {no } q \text { here }}
$$

- Recall $\operatorname{KL}(p \| q) \geqslant 0$, and $\operatorname{KL}(p \| p)=0$.
- Best q is $q^{*}(z)=p(z \mid x, \theta)$ and

$$
\mathcal{L}\left(q^{*}, \theta\right)=-\underbrace{\operatorname{KL}[p(z \mid x, \theta), p(z \mid x, \theta)]}_{=0}+\log p(x \mid \theta)
$$

Maximizing over q for fixed θ.

- Find q maximizing

$$
\mathcal{L}(q, \theta)=-\operatorname{KL}[q(z), p(z \mid x, \theta)]+\underbrace{\log p(x \mid \theta)}_{\text {no } q \text { here }}
$$

- Recall $\operatorname{KL}(p \| q) \geqslant 0$, and $\operatorname{KL}(p \| p)=0$.
- Best q is $q^{*}(z)=p(z \mid x, \theta)$ and

$$
\mathcal{L}\left(q^{*}, \theta\right)=-\underbrace{\operatorname{KL}[p(z \mid x, \theta), p(z \mid x, \theta)]}_{=0}+\log p(x \mid \theta)
$$

- Summary:

$$
\log p(x \mid \theta)=\sup _{q} \mathcal{L}(q, \theta) \quad \forall \theta
$$

- For any θ, sup is attained at $q(z)=p(z \mid x, \theta)$.

Marginal Log-Likelihood IS the Supremum over Lower Bounds

Summary

Latent variable models: clustering, latent structure, missing lables etc.
Parameter estimation: maximum marginal log-likelihood
Challenge: directly maximize the evidence $\log p(x ; \theta)$ is hard
Solution: maximize the evidence lower bound:

$$
\mathrm{ELBO}=\mathcal{L}(q, \theta)=-\mathrm{KL}(q(z) \| p(z \mid x ; \theta))+\log p(x ; \theta)
$$

Why does it work?

$$
\begin{aligned}
q^{*}(z) & =p(z \mid x ; \theta) \quad \forall \theta \in \Theta \\
\mathcal{L}\left(q^{*}, \theta^{*}\right) & =\max _{\theta} \log p(x ; \theta)
\end{aligned}
$$

EM algorithm

Coordinate ascent on $\mathcal{L}(q, \theta)$
(1) Random initialization: $\theta^{\text {old }} \leftarrow \theta_{0}$
(2) Repeat until convergence
(1) $q(z) \leftarrow \arg \max _{q} \mathcal{L}\left(q, \theta^{\text {old }}\right)$

$$
\text { Expectation (the E-step): } \quad \begin{aligned}
q^{*}(z) & =p\left(z \mid x ; \theta^{\text {old }}\right) \\
J(\theta) & =\mathcal{L}\left(q^{*}, \theta\right)
\end{aligned}
$$

(1) $\theta^{\text {new }} \leftarrow \arg \max _{\theta} \mathcal{L}\left(q^{*}, \theta\right)$

Maximization (the M-step): $\quad \theta^{\text {new }} \leftarrow \underset{\theta}{\arg \max } J(\theta)$

EM Algorithm

(1) Expectation Step

- Let $q^{*}(z)=p\left(z \mid x, \theta^{\text {old }}\right)$. [q^{*} gives best lower bound at $\theta^{\text {old }}$]

EM Algorithm

(1) Expectation Step

- Let $q^{*}(z)=p\left(z \mid x, \theta^{\text {old }}\right)$. [q^{*} gives best lower bound at $\theta^{\text {old }}$]
- Let

$$
J(\theta):=\mathcal{L}\left(q^{*}, \theta\right)=\underbrace{\sum_{z} q^{*}(z) \log \left(\frac{p(x, z \mid \theta)}{q^{*}(z)}\right)}_{\text {expectation w.r.t. } z \sim q^{*}(z)}
$$

EM Algorithm

(1) Expectation Step

- Let $q^{*}(z)=p\left(z \mid x, \theta^{\text {old }}\right)$. [q^{*} gives best lower bound at $\theta^{\text {old }}$]
- Let

$$
J(\theta):=\mathcal{L}\left(q^{*}, \theta\right)=\underbrace{\sum_{z} q^{*}(z) \log \left(\frac{p(x, z \mid \theta)}{q^{*}(z)}\right)}_{\text {expectation w.r.t. } z \sim q^{*}(z)}
$$

(2) Maximization Step

$$
\theta^{\text {new }}=\underset{\theta}{\arg \max } J(\theta) .
$$

EM Algorithm

(1) Expectation Step

- Let $q^{*}(z)=p\left(z \mid x, \theta^{\text {old }}\right)$. [q^{*} gives best lower bound at $\theta^{\text {old }}$]
- Let

$$
J(\theta):=\mathcal{L}\left(q^{*}, \theta\right)=\underbrace{\sum_{z} q^{*}(z) \log \left(\frac{p(x, z \mid \theta)}{q^{*}(z)}\right)}_{\text {expectation w.r.t. } z \sim q^{*}(z)}
$$

(2) Maximization Step

$$
\theta^{\text {new }}=\underset{\theta}{\arg \max } J(\theta) .
$$

[Equivalent to maximizing expected complete log-likelihood.]

EM Algorithm

(1) Expectation Step

- Let $q^{*}(z)=p\left(z \mid x, \theta^{\text {old }}\right)$. [q^{*} gives best lower bound at $\theta^{\text {old }}$]
- Let

$$
J(\theta):=\mathcal{L}\left(q^{*}, \theta\right)=\underbrace{\sum_{z} q^{*}(z) \log \left(\frac{p(x, z \mid \theta)}{q^{*}(z)}\right)}_{\text {expectation w.r.t. } z \sim q^{*}(z)}
$$

(2) Maximization Step

$$
\theta^{\text {new }}=\underset{\theta}{\arg \max } J(\theta) .
$$

[Equivalent to maximizing expected complete log-likelihood.]
EM puts no constraint on q in the E-step and assumes the M -step is easy. In general, both steps can be hard.

Monotonically increasing likelihood

Exercise: prove that EM increases the marginal likelihood monotonically $^{\theta^{\text {ood }}}$

$$
\log p\left(x ; \theta^{\text {new }}\right) \geqslant \log p\left(x ; \theta^{\text {old }}\right)
$$

Does EM converge to a global maximum?

Variations on EM

EM Gives Us Two New Problems

- The "E" Step: Computing

$$
J(\theta):=\mathcal{L}\left(q^{*}, \theta\right)=\sum_{z} q^{*}(z) \log \left(\frac{p(x, z \mid \theta)}{q^{*}(z)}\right)
$$

EM Gives Us Two New Problems

- The "E" Step: Computing

$$
J(\theta):=\mathcal{L}\left(q^{*}, \theta\right)=\sum_{z} q^{*}(z) \log \left(\frac{p(x, z \mid \theta)}{q^{*}(z)}\right)
$$

- The " M " Step: Computing

$$
\theta^{\text {new }}=\underset{\theta}{\arg \max } J(\theta) .
$$

EM Gives Us Two New Problems

- The "E" Step: Computing

$$
J(\theta):=\mathcal{L}\left(q^{*}, \theta\right)=\sum_{z} q^{*}(z) \log \left(\frac{p(x, z \mid \theta)}{q^{*}(z)}\right)
$$

- The " M " Step: Computing

$$
\theta^{\text {new }}=\underset{\theta}{\arg \max } J(\theta) .
$$

EM Gives Us Two New Problems

- The "E" Step: Computing

$$
J(\theta):=\mathcal{L}\left(q^{*}, \theta\right)=\sum_{z} q^{*}(z) \log \left(\frac{p(x, z \mid \theta)}{q^{*}(z)}\right)
$$

- The "M" Step: Computing

$$
\theta^{\text {new }}=\underset{\theta}{\arg \max } J(\theta) .
$$

- Either of these can be too hard to do in practice.

Generalized EM (GEM)

- Addresses the problem of a difficult "M" step.

Generalized EM (GEM)

- Addresses the problem of a difficult "M" step.
- Rather than finding

$$
\theta^{\text {new }}=\underset{\theta}{\arg \max } J(\theta),
$$

find any $\theta^{\text {new }}$ for which

$$
J\left(\theta^{\text {new }}\right)>J\left(\theta^{\text {old }}\right) .
$$

Generalized EM (GEM)

- Addresses the problem of a difficult "M" step.
- Rather than finding

$$
\theta^{\text {new }}=\underset{\theta}{\arg \max } J(\theta),
$$

find any $\theta^{\text {new }}$ for which

$$
J\left(\theta^{\text {new }}\right)>J\left(\theta^{\text {old }}\right)
$$

- Can use a standard nonlinear optimization strategy
- e.g. take a gradient step on J.

Generalized EM (GEM)

- Addresses the problem of a difficult "M" step.
- Rather than finding

$$
\theta^{\text {new }}=\underset{\theta}{\arg \max } J(\theta),
$$

find any $\theta^{\text {new }}$ for which

$$
J\left(\theta^{\text {new }}\right)>J\left(\theta^{\text {old }}\right)
$$

- Can use a standard nonlinear optimization strategy
- e.g. take a gradient step on J.
- We still get monotonically increasing likelihood.

EM and More General Variational Methods

- Suppose " E " step is difficult:
- Hard to take expectation w.r.t. $q^{*}(z)=p\left(z \mid x, \theta^{\text {old }}\right)$.

EM and More General Variational Methods

- Suppose " E " step is difficult:
- Hard to take expectation w.r.t. $q^{*}(z)=p\left(z \mid x, \theta^{\text {old }}\right)$.
- Solution: Restrict to distributions \mathcal{Q} that are easy to work with.

EM and More General Variational Methods

- Suppose " E " step is difficult:
- Hard to take expectation w.r.t. $q^{*}(z)=p\left(z \mid x, \theta^{\text {old }}\right)$.
- Solution: Restrict to distributions Q that are easy to work with.
- Lower bound now looser:

$$
q^{*}=\underset{q \in \mathcal{Q}}{\arg \min } \operatorname{KL}\left[q(z), p\left(z \mid x, \theta^{\text {old }}\right)\right]
$$

Today's Summary

- Motivation: Unsupervised learning
- K-means: A simple algorithm for discovering clusters
- Making k-means probabilistic: Gaussian mixture models
- More generally: Latent variable models
- Learning of latent variable models: EM
- Underlying principle: Maximizing ELBO

[^0]: ${ }^{1}$ See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further references.

[^1]: ${ }^{1}$ See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further references.

[^2]: ${ }^{1}$ See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further references.

[^3]: ${ }^{1}$ See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further references.

[^4]: ${ }^{1}$ See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further references.

[^5]: ${ }^{1}$ See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further references.

