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Logistics

Final exam
@ Period: May 15 4:00-5:50pm EST

e Format: in person, closed book

e Coverage: mainly about material from week 6 onwards but can overlap with basic
concepts before midterm
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K-means Clustering J

(CDS, NYU) DS-GA 1003 April 25, 2022 3/62



Unsupervised learning

Goal Discover interesting structure in the data.
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Unsupervised learning

Goal Discover interesting structure in the data.

Formulation Density estimation: p(x;0) (often with /atent variables).
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Unsupervised learning

Goal Discover interesting structure in the data.
Formulation Density estimation: p(x;0) (often with /atent variables).

Examples @ Discover clusters: cluster data into groups.

@ Discover factors: project high-dimensional data to a small number of
“meaningful” dimensions, i.e. dimensionality reduction.

o Discover graph structures: learn joint distribution of correlated variables, i.e.
graphical models.
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Example: Old Faithful Geyser

Old Faithful Geyser Eruptions
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@ Looks like two clusters.

@ How to find these clusters algorithmically?
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k-Means: By Example

o Standardize the data.

@ Choose two cluster centers.

-2 0 2

From Bishop's Pattern recognition and machine learning, Figure 9.1(a).
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k-means: by example

@ Assign each point to closest center.

From Bishop's Pattern recognition and machine learning, Figure 9.1(b).
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k-means: by example

e Compute new cluster centers.

From Bishop's Pattern recognition and machine learning, Figure 9.1(c).
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k-means: by example

@ Assign points to closest center.

From Bishop's Pattern recognition and machine learning, Figure 9.1(d).
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k-means: by example

e Compute cluster centers.

From Bishop's Pattern recognition and machine learning, Figure 9.1(e).
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k-means: by example

@ lterate until convergence.

From Bishop's Pattern recognition and machine learning, Figure 9.1(i).
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Suboptimal Local Minimum

@ The clustering for k =3 below is a local minimum, but suboptimal:

o .. ‘
. .
* e s *
. L] - - ® -
- . ..t LT
e e 1 R
- : oo * M e .
R0 °
- . T
* es *
s ® LI -
Would be better to have P
one cluster here o el
... and two clusters here
From Sontag's DS-GA 1003, 2014, Lecture 8.
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Formalize k-Means

e Dataset D ={xq,..., Xy} C X where X =RY.
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Formalize k-Means

e Dataset D ={xq,..., Xy} C X where X =RY.

@ Goal: Partition data D into k disjoint sets Cq, ..., Ck.
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Formalize k-Means

e Dataset D ={xq,..., Xy} C X where X =RY.
@ Goal: Partition data D into k disjoint sets Cq, ..., Ck.

o Let ¢; €{1,..., k} be the cluster assignment of x;.
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Formalize k-Means

e Dataset D ={xq,..., Xy} C X where X =RY.

@ Goal: Partition data D into k disjoint sets Cq, ..., Ck.
o Let ¢; €{1,..., k} be the cluster assignment of x;.

@ The centroid of C; is defined to be

w; = argmin Z [Ix—ul?. mean of ; (1)
Hex xeC;
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Formalize k-Means

e Dataset D ={xq,..., Xy} C X where X =RY.
@ Goal: Partition data D into k disjoint sets Cq, ..., Ck.

Let ¢c; €{1,..., k} be the cluster assignment of x;.

@ The centroid of C; is defined to be

w; = argmin Z [Ix—ul?. mean of ; (1)
Hex xeC;

@ The k-means objective is to minimize the distance between each example and its cluster
centroid:

Jew =Y lxi—uql? (2)
i=1
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k-Means: Algorithm

@ |Initialize: Randomly choose initial centroids 1, ..., 1k € RY.
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k-Means: Algorithm

@ |Initialize: Randomly choose initial centroids 1, ..., 1k € RY.

@ Repeat until convergence (i.e. ¢; doesn’t change anymore):
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k-Means: Algorithm

@ |Initialize: Randomly choose initial centroids 1, ..., 1k € RY.
@ Repeat until convergence (i.e. ¢; doesn’t change anymore):
@ For all /, set

¢ argmin [[x; — | (3)
J
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k-Means: Algorithm

@ |Initialize: Randomly choose initial centroids 1, ..., 1k € RY.
@ Repeat until convergence (i.e. ¢; doesn’t change anymore):
@ For all /, set

¢ argmin [[x; — |
J

@ For all j, set

1
JXECJ'
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k-Means: Algorithm

@ |Initialize: Randomly choose initial centroids 1, ..., 1k € RY.
@ Repeat until convergence (i.e. ¢; doesn’t change anymore):
@ For all /, set

¢ argmin [[x; — | (3)
J

@ For all j, set

ujﬁclﬂzx. (4)

xe€(;

o Recall the objective: J(c,pu) =Y " [|xi — el
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k-Means: Algorithm

@ |Initialize: Randomly choose initial centroids 1, ..., 1k € RY.
@ Repeat until convergence (i.e. ¢; doesn’t change anymore):
@ For all /, set

cj ¢ argmin [lx; — 2. Minimize J w.r.t. ¢ while fixing p (3)
J

@ For all j, set

ujﬁclﬂzx. (4)

xe€(;

o Recall the objective: J(c,pu) =Y " [|xi — el
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k-Means: Algorithm

@ |Initialize: Randomly choose initial centroids 1, ..., 1k € RY.
@ Repeat until convergence (i.e. ¢; doesn’t change anymore):
@ For all /, set

cj ¢ argmin [lx; — 2. Minimize J w.r.t. ¢ while fixing p (3)
J

@ For all j, set

1 :
Wi — Z X. Minimze J w.r.t. @ while fixing c. (4)
Gl el

o Recall the objective: J(c,pu) =Y I [|xi — el
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Avoid bad local minima

k-means converges to a local minimum.

@ J is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:

@ Re-run with random initial centroids.
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Avoid bad local minima

k-means converges to a local minimum.

@ J is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:

@ Re-run with random initial centroids.

@ k-means++: choose initial centroids that spread over all data points.

(CDS, NYU) DS-GA 1003 April 25, 2022 15 /62



Avoid bad local minima

k-means converges to a local minimum.

@ J is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:

@ Re-run with random initial centroids.

@ k-means++: choose initial centroids that spread over all data points.
o Randomly choose the first centroid from the data points D.
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Avoid bad local minima

k-means converges to a local minimum.

@ J is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:

@ Re-run with random initial centroids.

@ k-means++: choose initial centroids that spread over all data points.
o Randomly choose the first centroid from the data points D.

o Sequentially choose subsequent centroids from points that are farther away from
current centroids:
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Avoid bad local minima

k-means converges to a local minimum.

@ J is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:

@ Re-run with random initial centroids.

@ k-means++: choose initial centroids that spread over all data points.
o Randomly choose the first centroid from the data points D.

o Sequentially choose subsequent centroids from points that are farther away from
current centroids:

o Compute distance between each x; and the closest already chosen centroids.
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Avoid bad local minima

k-means converges to a local minimum.

@ J is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:

@ Re-run with random initial centroids.

@ k-means++: choose initial centroids that spread over all data points.
o Randomly choose the first centroid from the data points D.

o Sequentially choose subsequent centroids from points that are farther away from
current centroids:
o Compute distance between each x; and the closest already chosen centroids.

@ Randomly choose next centroid with probability proportional to the computed distance squared.
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Summary

We've seen
@ Clustering—an unsupervised learning problem that aims to discover group assignments.
@ k-means:

o Algorithm: alternating between assigning points to clusters and computing cluster
centroids.

o Objective: minmizing some loss function by cooridinate descent.

o Converge to a local minimum.
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Summary

We've seen
@ Clustering—an unsupervised learning problem that aims to discover group assignments.
@ k-means:

o Algorithm: alternating between assigning points to clusters and computing cluster
centroids.

o Objective: minmizing some loss function by cooridinate descent.

o Converge to a local minimum.

Next, probabilistic model of clustering.

@ A generative model of x.

@ Maximum likelihood estimation.

(CDS, NYU) DS-GA 1003 April 25, 2022 16 / 62



Gaussian Mixture Models J
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Probabilistic Model for Clustering

o Problem setup:

o There are k clusters (or mixture
components).

o We have a probability distribution for each
cluster.
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Probabilistic Model for Clustering

o Problem setup:
o There are k clusters (or mixture
components).

o We have a probability distribution for each
cluster.

@ Generative story of a mixture distribution:

@ Choose a random cluster z €{1,2,..., k}.
@ Choose a point from the distribution for
cluster z.
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Probabilistic Model for Clustering

Example:
@ Choose z €{1,2,3} with
p(1)=p(2) =p(3) =3.
@ Choose x| z~N (X | 1z Z,).

@ Problem setup:
o There are k clusters (or mixture
components).

o We have a probability distribution for each .- Mixture of Three Gaussians

cluster. R
@ Generative story of a mixture distribution: " s

Pastt
@ Choose a random cluster z €{1,2, ..., k}. -

@ Choose a point from the distribution for ’ '. . |
cluster z. . ' . N(Mfz.a)

N (st ) | |
4 2 0 2 4 6
X
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Gaussian mixture model (GMM)

Generative story of GMM with k mixture components:
@ Choose cluster z ~ Categorical(mty, ..., ).
@ Choose x| z~N(uz Z,).

(CDS, NYU) DS-GA 1003 April 25, 2022 19 /62



Gaussian mixture model (GMM)

Generative story of GMM with k mixture components:
@ Choose cluster z ~ Categorical(my,. .., ).
@ Choose x| z~N(uz Z,).

Probability density of x:

@ Sum over (marginalize) the latent variable z.

px)=) plxz2) (5)
=Y plx|2z)p(2) (6)
= N (ke Zi) (7)

k
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|dentifiability Issues for GMM

@ Suppose we have found parameters

Cluster probabilities:  7w=(7my,...,7)
Cluster means : w=(11,..., L)
Cluster covariance matrices: YT =(Z1,...Z4)

that are at a local minimum.
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|dentifiability Issues for GMM

@ Suppose we have found parameters

Cluster probabilities:  7w=(7my,...,7)
Cluster means : w=(11,..., L)
Cluster covariance matrices: YT =(Z1,...Z4)

that are at a local minimum.

@ What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.
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@ Suppose we have found parameters

Cluster probabilities:  7w=(7my,...,7)
Cluster means : w=(11,..., L)
Cluster covariance matrices: YT =(Z1,...Z4)

that are at a local minimum.
@ What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.

o We'll get the same likelihood. How many such equivalent settings are there?
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|dentifiability Issues for GMM

@ Suppose we have found parameters

Cluster probabilities:  7w=(7my,...,7)
Cluster means : w=(11,..., L)
Cluster covariance matrices: YT =(Z1,...Z4)

that are at a local minimum.
@ What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.
o We'll get the same likelihood. How many such equivalent settings are there?

@ Assuming all clusters are distinct, there are k! equivalent solutions.
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|dentifiability Issues for GMM

@ Suppose we have found parameters

Cluster probabilities:  7w=(7my,...,7)
Cluster means : w=(11,..., L)
Cluster covariance matrices: YT =(Z1,...Z4)

that are at a local minimum.
@ What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.
o We'll get the same likelihood. How many such equivalent settings are there?
@ Assuming all clusters are distinct, there are k! equivalent solutions.

@ Not a problem per se, but something to be aware of.
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Learning GMMs

How to learn the parameters 71, py, Zx?
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Learning GMMs

How to learn the parameters 71, py, Zx?

e MLE (also called maximize marginal likelihood).

@ Log likelihood of data:

L(6) =) logp(xi;0) (8)
i=1

:Z|ogZp(x,z;6) 9)
i=1 z
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Learning GMMs

How to learn the parameters 71, py, Zx?

e MLE (also called maximize marginal likelihood).

@ Log likelihood of data:

L(6) =) logp(xi;0) (8)
i=1

:Z|ogZp(x,z;6) 9)
i=1 z

@ Cannot push log into the sum... z and x are coupled.

@ No closed-form solution for GMM—try to compute the gradient yourself!
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Gradient Descent / SGD for GMM

@ What about running gradient descent or SGD on

n k
Jmw 1) = Zlog{anN(x,-mz,zz)}?
i=1 z=1

1See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further
references.
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https://arxiv.org/abs/1506.07677

Gradient Descent / SGD for GMM

@ What about running gradient descent or SGD on

n k
Jmw 1) = Zlog{anN(x,-mz,zz)}?
i=1 z=1

@ Can be done, in principle — but need to be clever about it.

1See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further
references.
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Gradient Descent / SGD for GMM

@ What about running gradient descent or SGD on

n k
Jmw 1) = Zlog{anN(x,-mz,zz)}?
i=1 z=1

@ Can be done, in principle — but need to be clever about it.
@ For example, each covariance matrix X1,..., X, has to be positive semidefinite.

@ How to maintain that constraint?

1See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further
references.
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Gradient Descent / SGD for GMM

@ What about running gradient descent or SGD on

n k
Jmw 1) = Zlog{anN(x,-mz,zz)}?
i=1 z=1

@ Can be done, in principle — but need to be clever about it.
@ For example, each covariance matrix X1,..., X, has to be positive semidefinite.

@ How to maintain that constraint?
o Rewrite X; = I\/I,-/\/I,-T, where M; is an unconstrained matrix.

1See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further
references.
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@ What about running gradient descent or SGD on

n k
Jmw 1) = Zlog{anN(x,-wz,zz)}?
i=1 z=1

@ Can be done, in principle — but need to be clever about it.
@ For example, each covariance matrix X1,..., X, has to be positive semidefinite.

@ How to maintain that constraint?
o Rewrite ; = I\/I,-I\/I,-T, where M; is an unconstrained matrix.
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Gradient Descent / SGD for GMM

@ What about running gradient descent or SGD on

n k
Jmw 1) = Zlog{anN(x,-wz,zz)}?
i=1 z=1

@ Can be done, in principle — but need to be clever about it.
@ For example, each covariance matrix X1,..., X, has to be positive semidefinite.

@ How to maintain that constraint?
o Rewrite ; = I\/I,-I\/I,-T, where M; is an unconstrained matrix.

o Then X; is positive semidefinite.

o Even then, pure gradient-based methods have trouble.!

1See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further
references.
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https://arxiv.org/abs/1506.07677

Learning GMMs: observable case

Suppose we observe cluster assignments z. Then MLE is easy:

n
ny = Z 1(zi=2z) # examples in each cluster (10)
i=1
n
#(z) = = fraction of examples in each cluster (11)
n
N 1 -
i, = . Z Xi empirical cluster mean (12)
iizi=z
e 1
= — Z (xi—iz) (x; — ﬁz)T. empirical cluster covariance (13)
nZ .
iizi=z
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Learning GMMs: inference

The inference problem: observe x, want to know z.

(16)
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Learning GMMs: inference

The inference problem: observe x, want to know z.

plz=jlx)=plx,z=j)/p(x) (14)

(16)
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Learning GMMs: inference

The inference problem: observe x, want to know z.

plz=jlx)=plx,z=)/p(x) (14)
_ plxlz=j)p(z=))

~ Y pxlz=kK)p(z=k) (15)

(16)
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Learning GMMs: inference

The inference problem: observe x, want to know z.

plz =j 1) =plx.z=j)/p(x) (14)
_ pxlz=j)plz=])

- Y kpxlz=k)p(z=k) (15)

T,N(x; | 1y, L)) 1)

- 2 TN | ik, Zk)
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Learning GMMs: inference

The inference problem: observe x, want to know z.

p(zzj|xi):p(X,Z:j)/p(X) (14)
_ pxlz=j)plz=])

- Y kpxlz=k)p(z=k) (15)

THN(x; | 1, Zj) 1)

- 2 TN | ik, Zk)

@ p(z|x) is a soft assignment.

@ If we know the parameters p, X, 7, this would be easy to compute.
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EM for GMM

Let's compute the cluster assignments and the parameters iteratively.
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EM for GMM

Let's compute the cluster assignments and the parameters iteratively.

The expectation-minimization (EM) algorithm:
@ Initialize parameters u, X, 7t randomly.

@ Run until convergence:
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EM for GMM

Let's compute the cluster assignments and the parameters iteratively.

The expectation-minimization (EM) algorithm:
@ Initialize parameters u, X, 7t randomly.

@ Run until convergence:
© E-step: fill in latent variables by inference.
o compute soft assignments p(z | x;) for all i.
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EM for GMM

Let's compute the cluster assignments and the parameters iteratively.

The expectation-minimization (EM) algorithm:
@ Initialize parameters u, X, 7t randomly.

@ Run until convergence:
© E-step: fill in latent variables by inference.
o compute soft assignments p(z | x;) for all i.
® M-step: standard MLE for p, Z, 7t given “observed” variables.
o Equivalent to MLE in the observable case on data weighted by p(z | x;).
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M-step for GMM

@ Let p(z|x) be the soft assignments:

o Exercise: show that

nz
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Mz

new
ZZ

new
z
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EM for GMM

o Initialization

2
0
o .o~
-2 1
-2 0 (a) 2

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

o First soft assignment:

2
0
o .0‘
-2 12
-2 0 (b) 2

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

o First soft assignment:

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

@ After 5 rounds of EM:

-2 0 (e) 2

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

@ After 20 rounds of EM:

2 .®
L=20 .!o:’é:.
o.\’
0 .0 ' ad
o;.& o O o
.@)o~
B
-2 0 ) 2

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM: Summary

EM is a general algorithm for learning latent variable models.

Key idea: if data was fully observed, then MLE is easy.
o E-step: fill in latent variables by computing p(z | x, 0).

o M-step: standard MLE given fully observed data.

Simpler and more efficient than gradient methods.

Can prove that EM monotonically improves the likelihood and converges to a local
minimum.

@ k-means is a special case of EM for GMM with hard assignments, also called hard-EM.
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Latent Variable Models J
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General Latent Variable Model

@ Two sets of random variables: z and x.
@ z consists of unobserved hidden variables.

@ x consists of observed variables.
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General Latent Variable Model

@ Two sets of random variables: z and x.

@ z consists of unobserved hidden variables.

@ x consists of observed variables.

@ Joint probability model parameterized by 0 € ©:

p(x,z|0)
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General Latent Variable Model

@ Two sets of random variables: z and x.

@ z consists of unobserved hidden variables.
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General Latent Variable Model

@ Two sets of random variables: z and x.

@ z consists of unobserved hidden variables.

@ x consists of observed variables.

@ Joint probability model parameterized by 0 € ©:

p(x,z|0)

Definition

A latent variable model is a probability model for which certain variables are never observed.

e.g. The Gaussian mixture model is a latent variable model.
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Complete and Incomplete Data

@ Suppose we observe some data (xg,...,x,).
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Complete and Incomplete Data

@ Suppose we observe some data (xg,...,x,).
@ To simplify notation, take x to represent the entire dataset
X=(Xt,....%n),
and z to represent the corresponding unobserved variables
z=(z1,....2zn).
@ An observation of x is called an incomplete data set.

@ An observation (x, z) is called a complete data set.

(CDS, NYU) DS-GA 1003 April 25, 2022 35/62



Our Objectives

@ Learning problem: Given incomplete dataset x, find MLE

6 = argmaxp(x | 0).
0

(CDS, NYU) DS-GA 1003 April 25, 2022 36 /62



Our Objectives

@ Learning problem: Given incomplete dataset x, find MLE

6 = argmaxp(x | 0).
0

@ Inference problem: Given x, find conditional distribution over z:

p(z|x,0).

(CDS, NYU) DS-GA 1003 April 25, 2022 36 /62



Our Objectives

Learning problem: Given incomplete dataset x, find MLE

6 = argmaxp(x | 0).
0

@ Inference problem: Given x, find conditional distribution over z:
p(z|x,0).
o For Gaussian mixture model, learning is hard, inference is easy.

@ For more complicated models, inference can also be hard. (See DSGA-1005)
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Log-Likelihood and Terminology

@ Note that
argmaxp(x|0) = argmax|logp(x | 0)].
0 0
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Log-Likelihood and Terminology

@ Note that
argmaxp(x|0) = argmax|logp(x | 0)].
0 0

e Often easier to work with this “log-likelihood".

o We often call p(x) the marginal likelihood,
o because it is p(x, z) with z “marginalized out":

p(x)=) plx.2)

(CDS, NYU) DS-GA 1003 April 25, 2022 37/62



Log-Likelihood and Terminology
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Log-Likelihood and Terminology

@ Note that
argmaxp(x|0) = argmax|logp(x | 0)].
0 0

e Often easier to work with this “log-likelihood".

o We often call p(x) the marginal likelihood,
o because it is p(x, z) with z “marginalized out":

p(x)=) plx.2)

e We often call p(x,z) the joint. (for “joint distribution”)

o Similarly, log p(x) is the marginal log-likelihood.
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EM Algorithm J
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[ntuition

Problem: marginal log-likelihood log p(x;0) is hard to optimize (observing only x)

Observation: complete data log-likelihood log p(x,z;0) is easy to optimize (observing both x
and z)

|dea: guess a distribution of the latent variables g(z) (soft assignments)

Maximize the expected complete data log-likelihood:

maqu Jlog p(x,z;0)
zeZ

EM assumption: the expected complete data log-likelihood is easy to optimize

Why should this work?
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Math Prerequisites J
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Jensen’s Inequality

Theorem (Jensen's Inequality)

If f : R— R is a convex function, and x is a random variable, then

Ef(x) > f(Ex).
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Jensen’s Inequality

Theorem (Jensen's Inequality)

If f : R— R is a convex function, and x is a random variable, then
Ef(x) > f(Ex).

Moreover, if f is strictly convex, then equality implies that x = Ex with probability 1 (i.e. x is
a constant).
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Jensen’s Inequality

Theorem (Jensen's Inequality)

If f : R— R is a convex function, and x is a random variable, then
Ef(x) > f(Ex).

Moreover, if f is strictly convex, then equality implies that x = Ex with probability 1 (i.e. x is
a constant).

e eg. f(x)=x?is convex. So Ex? > (Ex)z. Thus
Var (x) = Ex? — (Ex)? > 0.
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Kullback-Leibler Divergence

@ Let p(x) and g(x) be probability mass functions (PMFs) on X.

@ How can we measure how “different” p and q are?
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Kullback-Leibler Divergence

@ Let p(x) and g(x) be probability mass functions (PMFs) on X.

@ How can we measure how “different” p and q are?

@ The Kullback-Leibler or “KL" Divergence is defined by

_ plx)
KL(p|lq) = X%CP(X)logq(X)-

(Assumes g(x) =0 implies p(x) =0.)
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Kullback-Leibler Divergence

@ Let p(x) and g(x) be probability mass functions (PMFs) on X.

@ How can we measure how “different” p and q are?

@ The Kullback-Leibler or “KL" Divergence is defined by
p(x)
KL = x)log ——.
(pllq) Xgexp( ) & 4(x)

(Assumes g(x) =0 implies p(x) =0.)

@ Can also write this as

KL(pllg) = Ex-p '0gM-

q(x)
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Gibbs Inequality (KL(pl||g) = 0 and KL(p||p) =0)

Theorem (Gibbs Inequality)
Let p(x) and q(x) be PMFs on X. Then

KL(pllq) =0,
with equality iff p(x) = q(x) for all x € X.
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Theorem (Gibbs Inequality)
Let p(x) and q(x) be PMFs on X. Then

KL(pllq) =0,
with equality iff p(x) = q(x) for all x € X.

o KL divergence measures the “distance” between distributions
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Gibbs Inequality (KL(pl||g) = 0 and KL(p||p) =0)

Theorem (Gibbs Inequality)
Let p(x) and q(x) be PMFs on X. Then

KL(pllq) =0,
with equality iff p(x) = q(x) for all x € X.

o KL divergence measures the “distance” between distributions
@ Note:
o KL divergence not a metric.

o KL divergence is not symmetric.
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Gibbs Inequality: Proof

KL(pllq) = E, {log(qmﬂ
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Gibbs Inequality: Proof

KL(pllq) = E, {log(qmﬂ

> —log [EP (p(i))} (Jensen'’s)
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Gibbs Inequality: Proof

KL(pllq) = E, {log@mﬂ
(q( )
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Gibbs Inequality: Proof

KL(pllq) = E, {log@ggﬂ
(q( )
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Gibbs Inequality: Proof

KL(pl/q)

—log

—log

—log

s [ (o)
(q )

[IEP

{xlp(x)>0

> q(X)]

LxeX

£
jo]

—logl =0.

@ Since —log is strictly convex, we have strict equality iff g(x)/p(x) is a constant, which

implies g=p .
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The ELBO: Family of Lower Bounds on logp(x | 0) J
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The Maximum Likelihood Estimator

é‘k: arggax [:IOS ?(XISE‘ @/
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Lower bound of the marginal log-likelihood

logp(x;8) = log ) pl(x,z0)
z€Z

(CDS, NYU) DS-GA 1003 April 25, 2022 47 / 62



Lower bound of the marginal log-likelihood

logp(x;8) = log ) pl(x,z0)
z€Z
_ Iong Xze
z€Z

(CDS, NYU) DS-GA 1003 April 25, 2022 47 / 62



Lower bound of the marginal log-likelihood

logp(x;8) = log ) pl(x,z0)
z€Z
_ Iong Xze
z€Z
> Zq Iog Xze)
z€Z )
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Lower bound of the marginal log-likelihood

logp(x;0) = IogprzG
z€Z
XZG
= Iong
z€Z
Xze)
> Y qlz)log PN 22 B
z€Z
def
= £(q.9)

Evidence: logp(x;0)
Evidence lower bound (ELBO): £(q,0)
q: chosen to be a family of tractable distributions

e 6 6 o

Idea: maximize the ELBO instead of log p(x;0)
DS-GA 1003 April 25,2022 47 /62



MLE, EM, and the ELBO
@ The MLE is defined as a maximum over 0:
BmLe = argénax logp(x|0)].

@ For any PMF g(z), we have a lower bound on the marginal log-likelihood
logp(x|0) = L(q,0).

e In EM algorithm, we maximize the lower bound (ELBO) over 6 and g:

Bem & arg max [maxL(q,G)]
0 q
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MLE, EM, and the ELBO
@ The MLE is defined as a maximum over 0:
BmLe = argénax logp(x|0)].

@ For any PMF g(z), we have a lower bound on the marginal log-likelihood
logp(x|0) = L(q,0).

e In EM algorithm, we maximize the lower bound (ELBO) over 6 and g:
Bem & arg max [maxL(q,e)]
0 q
@ In EM algorithm, g ranges over all distributions on z.
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EM: Coordinate Ascent on Lower Bound

@ Choose sequence of g's and 0's by “coordinate ascent” on £(q,0).
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EM: Coordinate Ascent on Lower Bound

@ Choose sequence of g's and 0's by “coordinate ascent” on £(q,0).

o EM Algorithm (high level):
@ Choose initial 99,
Q Let g* =arg maqu(q,BO'd)
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EM: Coordinate Ascent on Lower Bound

@ Choose sequence of g's and 0's by “coordinate ascent” on £(q,0).

o EM Algorithm (high level):
@ Choose initial 8°d.
Q Let g* =arg maqu(q,BO'd)
© Let 0™ =argmaxg L(g*,0).
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EM: Coordinate Ascent on Lower Bound

@ Choose sequence of g's and 0's by “coordinate ascent” on £(q,0).

o EM Algorithm (high level):
© Choose initial 6°'9.
Q Let g* =arg maqu(q,GO'd)
© Let 0™ =argmaxg L(g*,0).
@ Go to step 2, until converged.

o Will show: p(x|6mW) > p(x | 6°!d)

e Get sequence of 0’s with monotonically increasing likelihood.
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EM: Coordinate Ascent on Lower Bound

Inp(X]0)

gold gnew

@ Start at 6°d.

From Bishop's Pattern recognition and machine learning, Figure 9.14.
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EM: Coordinate Ascent on Lower Bound

Inp(X[6)

gold gnew

@ Start at 6°d.
@ Find g giving best lower bound at 8° — £(q,0).

From Bishop's Pattern recognition and machine learning, Figure 9.14.
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EM: Coordinate Ascent on Lower Bound

Inp(X[6)

gold gnew

@ Start at 6°d.
@ Find g giving best lower bound at 8° — £(q,0).
© 0" =argmaxgL(q,0).

From Bishop's Pattern recognition and machine learning, Figure 9.14.
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Is ELBO a "good" lowerbound?

£10.0)= 3 q(z)log 22 E 0]

B plz | x,0)p(x | ©)
=) q(z)log q(z)

:—Zq( )Iog +Zq Jlogp(x|0)

z€2 zZEZ
= KL (q(z)Hp(z | x,0)) +logp(x | 6)
———

evidence
e KL divergence: measures “distance” between two distributions (not symmetric!)

e KL(qgl||p) > 0 with equality iff g(z) = p(z | x).

e ELBO = evidence - KL < evidence
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Maximizing over q for fixed 0.

e Find g maximizing

£(q.0) = —KLlq(z),p(z]x,0)]+logp(x|8)
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Maximizing over q for fixed 0.

e Find g maximizing

L(q.,0) = —KLlg(z) p(z|x,06)]+logp(x|6)
——

no g here
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Maximizing over q for fixed 0.

e Find g maximizing

L(q.,0) = —KLlg(z) p(z|x,06)]+logp(x|6)
——

no g here

@ Recall KL(p||g) >0, and KL(p||p) =0.
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Maximizing over q for fixed 0.

e Find g maximizing

L(q.,0) = —KLlg(z) p(z|x,06)]+logp(x|6)
——

no g here

@ Recall KL(p||g) >0, and KL(p||p) =0.

@ Best gis g*(z) = p(z|x,0) and
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Maximizing over q for fixed 0.

e Find g maximizing

L(q.,0) = —KLlg(z) p(z|x,06)]+logp(x|6)
——

no g here

@ Recall KL(p||g) >0, and KL(p||p) =0.

@ Best gis g*(z) = p(z|x,0) and

£(q",8) =—KLI[p(z|x,6),p(z|x,6)]+logp(x|6)
=0
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Maximizing over q for fixed 0.

e Find g maximizing

L(q.,0) = —KLlg(z) p(z|x,06)]+logp(x|6)
——

no g here

@ Recall KL(p||g) >0, and KL(p||p) =0.

@ Best gis g*(z) = p(z|x,0) and

£(q",8) =—KLI[p(z|x,6),p(z|x,6)]+logp(x|6)
=0

@ Summary:
logp(x [0) =supL(q,0) VO
q

@ For any 0, sup is attained at g(z) = p(z|x,0).
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Marginal Log-Likelihood IS the Supremum over Lower Bounds

sup is over all distributions on z




Summary

Latent variable models: clustering, latent structure, missing lables etc.
Parameter estimation: maximum marginal log-likelihood
Challenge: directly maximize the evidence log p(x;0) is hard

Solution: maximize the evidence lower bound:

ELBO = £(q,0) = —KL(q(2)|[p(z | x;0)) +log p(x; 0)

Why does it work?

q*(z) =p(z1x;0) VOcO
L(q",0%) = mgX'ng(x;e)
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EM algorithm

Coordinate ascent on £(q,0)
@ Random initialization: 8°4 « 9,
@ Repeat until convergence
@ qg(z)+arg maqu(q,GO'd)

Expectation (the E-step): g*(z) = p(z] x; 9°9)

@ 0"« argmaxgy L(g*,0)

0" < argmax J(0)

0

Maximization (the M-step):
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EM Algorithm

© Expectation Step
o Let g*(z) = p(z|x,0°9). [g* gives best lower bound at 8°'9]
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EM Algorithm

© Expectation Step
o Let g*(z) = p(z|x,0°9). [g* gives best lower bound at 8°'9]

o Let
J(8) :=L(q",0) Zq Iog<:(zz|)e)>

expectation w.r.t. z~g*(z)
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© Expectation Step
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@ Maximization Step
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EM Algorithm

© Expectation Step
o Let g*(z) = p(z|x,0°9). [g* gives best lower bound at 8°'9]

o Let
J(8) :=L(q",0) Zq Iog<:(zz|)e)>

expectation w.r.t. z~g*(z)

@ Maximization Step

enew

=argmaxJ(0).
)

[Equivalent to maximizing expected complete log-likelihood.]
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EM Algorithm

© Expectation Step
o Let g*(z) = p(z|x,0°9). [g* gives best lower bound at 8°'9]

o Let
J(8) :=L(q",0) Zq Iog<:(zz|)e)>

expectation w.r.t. z~g*(z)

@ Maximization Step

enew

=argmaxJ(0).
)

[Equivalent to maximizing expected complete log-likelihood.]

EM puts no constraint on g in the E-step and assumes the M-step is easy. In general, both
steps can be hard.
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Monotonically increasing likelihood

Inp(X|6)

L (q,9)

\

: . Tgold g .
Exercise: prove that EM increases the marginal likelihood monotonically

log p(x; 0™") > log p(x; 6°) .

Does EM converge to a global maximum?
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Variations on EM J
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EM Gives Us Two New Problems

@ The "E" Step: Computing
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@ The “M" Step: Computing

enew

=argmaxJ(0).
0
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EM Gives Us Two New Problems

@ The "E" Step: Computing

o=t =L es (g

@ The “M" Step: Computing

enew

=argmaxJ(0).
0

o Either of these can be too hard to do in practice.
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Generalized EM (GEM)

o Addresses the problem of a difficult “M" step.
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Generalized EM (GEM)

o Addresses the problem of a difficult “M" step.

@ Rather than finding

enew

=argmaxJ(0),
0

find any "W for which
J(enew) >J(90|d)
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Generalized EM (GEM)

o Addresses the problem of a difficult “M" step.

@ Rather than finding

enew

=argmaxJ(0),
0

find any "W for which
J(enew) >J(90|d)

@ Can use a standard nonlinear optimization strategy
o e.g. take a gradient step on J.
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Generalized EM (GEM)

o Addresses the problem of a difficult “M" step.

@ Rather than finding

0" = argmax J(0),
0

find any "W for which
J(enew) >J(90|d)

@ Can use a standard nonlinear optimization strategy
o e.g. take a gradient step on J.

@ We still get monotonically increasing likelihood.
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EM and More General Variational Methods

@ Suppose “E" step is difficult:
o Hard to take expectation w.r.t. ¢*(z) = p(z | x,0°9).
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EM and More General Variational Methods

@ Suppose “E" step is difficult:
o Hard to take expectation w.r.t. ¢*(z) = p(z | x,0°9).

@ Solution: Restrict to distributions Q that are easy to work with.
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EM and More General Variational Methods

@ Suppose “E" step is difficult:
o Hard to take expectation w.r.t. ¢*(z) = p(z | x,0°9).

@ Solution: Restrict to distributions Q that are easy to work with.

o Lower bound now looser:

q* =argminKLI[q(z), p(z | x,0°9)]
qeQ
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Today's Summary

@ Motivation: Unsupervised learning

K-means: A simple algorithm for discovering clusters

Making k-means probabilistic: Gaussian mixture models

@ More generally: Latent variable models

Learning of latent variable models: EM

Underlying principle: Maximizing ELBO
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