# Feature learning, neural networks and backpropagation 

CDS, NYU

April 18, 2022

## Today's lecture

- Neural networks: huge empirical success but poor theoretical understanding
- Key idea: representation learning
- Optimization: backpropagation + SGD


## Feature engineering

- Many problems are non-linear
- We can express certain non-linear models in a linear form:

$$
\begin{equation*}
f(x)=w^{\top} \phi(x) . \tag{1}
\end{equation*}
$$

- Note that this model is not linear in the inputs $x$ - we represent the inputs differently, and the new representation is amenable to linear modeling
- For example, we can use a feature map that defines a kernel, e.g., polynomials in $x$


## Decomposing the problem

- Example: predicting how popular a restaurant is

Raw features \#dishes, price, wine option, zip code, \#seats, size

- Decomposing the problem into subproblems:
- $h_{1}([\#$ dishes, price, wine option] $)=$ food quality
- $h_{2}([$ zip code $])=$ walkable
- $h_{3}([\#$ seats, size $])=$ noisy
- Each intermediate models solves one of the subproblems
- A final linear predictor uses the intermediate features computed by the $h_{i}$ 's:

$$
w_{1} \cdot \text { food quality }+w_{2} \cdot \text { walkable }+w_{3} \cdot \text { noisy }
$$

## Perceptrons as logical gates

- Suppose that our input features indicate light at a two points in space ( $0=$ no light; $1=$ light )

- How can we build a perceptron that detects when there is light in both locations?

$$
w_{1}=1, w_{2}=1, \theta=2
$$

| $i_{1}$ | $i_{2}$ |
| :---: | :---: |$w_{1} i_{1}+w_{2} i_{2}$

## Limitations of a perceptrons as logical gates

- Can we build a perceptron that fires when the two pixels have the same value ( $\mathrm{i}_{1}=\mathrm{i}_{2}$ )?


$$
\begin{array}{cll}
\text { Positive: } & (1,1) & (0,0) \\
& w_{1}+w_{2} \geq \theta, & 0 \geq \theta \\
w_{1}<\theta, & w_{2}<\theta \\
\text { Negative: } & (1,0) & (0,1)
\end{array}
$$

If $\boldsymbol{\theta}$ is negative, the sum of two numbers that


The positive and negative cases cannot be separated by a plane are both less than $\boldsymbol{\theta}$ cannot be greater than $\boldsymbol{\theta}$

## Multilayer perceptron

- Fire when the two pixels have the same value $\left(\mathrm{i}_{1}=\mathrm{i}_{2}\right)$


|  |  |  | Hidden layer input |  | Hidden layer output |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{I}_{1}$ | $\mathrm{I}_{2}$ | $\mathrm{h}_{1}$ | $\mathrm{h}_{2}$ | $\mathrm{h}_{1}$ | $\mathrm{h}_{2}$ | 0 |
| $\mathrm{x}_{1}$ | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 01 | 0 | 1 | 1 | -1 | 0 | 0 | 0 |
| $\mathrm{O}_{2}$ | 1 | 0 | 1 | -1 | 0 | 0 | 0 |
| X2 | 1 | 1 | 2 | -2 | 1 | 0 | 1 |

(for $\mathrm{x}_{1}$ and $\mathrm{x}_{2}$ the correct output is 1 ; for $\mathrm{O}_{1}$ and $\mathrm{o}_{2}$ the correct output is 0 )

## Multilayer perceptron

- Recode the input: the hidden layer representations are now linearly separable


Linearly separable
Not linearly
separable



## Decomposing the problem into predefined subproblems

| Input <br> features | Intermediate <br> features | Output |
| :---: | :---: | :---: |



## Learned intermediate features

| Input | Hidden | Output |
| :---: | :---: | :---: |
| layer | layer | layer |



## Neural networks

Key idea: learn the intermediate features.
Feature engineering Manually specify $\phi(x)$ based on domain knowledge and learn the weights:

$$
\begin{equation*}
f(x)=w^{\top} \phi(x) . \tag{2}
\end{equation*}
$$

Feature learning Learn both the features ( $K$ hidden units) and the weights:

$$
\begin{align*}
& h(x)=\left[h_{1}(x), \ldots, h_{K}(x)\right],  \tag{3}\\
& f(x)=w^{T} h(x) \tag{4}
\end{align*}
$$

Feature learning example

- A filter convolves over the image and looks for the highest pattern match.
- Traditionally, people use Gabor filters or other image feature extractors, e.g. SIFT, SURF, etc, and an SVM on top for image classification.
- Neural networks take in images and can learn the filters that are the most useful for solving the tasks. Likely more efficient than hand engineered features.



## Inspiration: The brain

- Our brain has about 100 billion $\left(10^{11}\right)$ neurons, each of which communicates (is connected) to $\sim 10^{4}$ other neurons, with non-linear computations.


Figure: The basic computational unit of the brain: Neuron

## Inspiration: The brain

- Neurons receive input signals and accumulate voltage. After some threshold they will fire spiking responses.



## Activation function

- We can model a simpler computation by using "activation function".
- It applies a non-linearity on the inputs and "fires" after some threshold.

$$
\begin{equation*}
h_{i}(x)=\sigma\left(v_{i}^{\top} x\right) . \tag{5}
\end{equation*}
$$

- Some possible activation functions:
- sign function (as in classic perceptron)? Non-differentiable.
- Differentiable approximations: sigmoid functions.
- E.g., logistic function, hyperbolic tangent function.
- Two-layer neural network (one hidden layer and one output layer) with $K$ hidden units:

$$
\begin{equation*}
f(x)=\sum_{k=1}^{K} w_{k} h_{k}(x)=\sum_{k=1}^{K} w_{k} \sigma\left(v_{k}^{T} x\right) \tag{6}
\end{equation*}
$$

## Activation Functions

- The hyperbolic tangent is a common activation function:

$$
\sigma(x)=\tanh (x)
$$



## Activation Functions

- More recently, the rectified linear (ReLU) function has been very popular:

$$
\sigma(x)=\max (0, x) .
$$

- Faster to calculate this function and its derivatives
- Often more effective in practice



## Approximation Ability: $f(x)=x^{2}$

- 3 hidden units; tanh activation functions
- Blue dots are training points; dashed lines are hidden unit outputs; final output in red.



## Approximation Ability: $f(x)=\sin (x)$

- 3 hidden units; logistic activation function
- Blue dots are training points; dashed lines are hidden unit outputs; final output in red.



## Approximation Ability: $f(x)=|x|$

- 3 hidden units; logistic activation functions
- Blue dots are training points; dashed lines are hidden unit outputs; final output in red.



## Universal approximation theorem

## Theorem (Universal approximation theorem)

A neural network with one possibly huge hidden layer $\hat{F}(x)$ can approximate any continuous function $F(x)$ on a closed and bounded subset of $\mathrm{R}^{d}$ under mild assumptions on the activation function, i.e. $\forall \epsilon>0$, there exists an integer $N$ s.t.

$$
\begin{equation*}
\hat{F}(x)=\sum_{i=1}^{N} w_{i} \sigma\left(v_{i}^{\top} x+b_{i}\right) \tag{7}
\end{equation*}
$$

satisfies $|\hat{F}(x)-F(x)|<\epsilon$.

## Universal approximation theorem

- For the theorem to work, the number of hidden units needs to be exponential in $d$
- The theorem doesn't tell us how to find the parameters of this network
- It doesn't explain why practical neural networks work, or tell us how to build them


## Deep neural networks

- Wider: more hidden units (as in the approximation theorem).
- Deeper: more hidden layers.



## Multilayer Perceptron (MLP): formal definition

- Input space: $X=\mathrm{R}^{d} \quad$ Action space $\mathcal{A}=\mathrm{R}^{k}$ (for $k$-class classification).
- Let $\sigma: \mathrm{R} \rightarrow \mathrm{R}$ be an activation function (e.g. tanh or ReLU).
- Let's consider an MLP of $L$ hidden layers, each having $m$ hidden units.
- First hidden layer is given by

$$
h^{(1)}(x)=\sigma\left(W^{(1)} x+b^{(1)}\right)
$$

for parameters $W^{(1)} \in \mathrm{R}^{m \times d}$ and $b \in \mathrm{R}^{m}$, and where $\sigma(\cdot)$ is applied to each entry of its argument.

## Multilayer Perceptron (MLP): formal definition

- Each subsequent hidden layer takes the output $o \in R^{m}$ of previous layer and produces

$$
h^{(j)}\left(o^{(j-1)}\right)=\sigma\left(W^{(j)} o^{(j-1)}+b^{(j)}\right), \text { for } j=2, \ldots, L
$$

where $W^{(j)} \in \mathrm{R}^{m \times m}, b^{(j)} \in \mathrm{R}^{m}$.

- Last layer is an affine mapping (no activation function):

$$
a\left(o^{(L)}\right)=W^{(L+1)} o^{(L)}+b^{(L+1)},
$$

where $W^{(L+1)} \in R^{k \times m}$ and $b^{(L+1)} \in R^{k}$.

- The full neural network function is given by the composition of layers:

$$
\begin{equation*}
f(x)=\left(a \circ h^{(L)} \circ \cdots \circ h^{(1)}\right)(x) \tag{8}
\end{equation*}
$$

- Typically, the last layer gives us a score. How do we perform classification?

What did we do in multinomial logistic regression?

- From each $x$, we compute a linear score function for each class:

$$
x \mapsto\left(\left\langle w_{1}, x\right\rangle, \ldots,\left\langle w_{k},\right\rangle\right) \in \mathrm{R}^{k}
$$

- We need to map this $R^{k}$ vector into a probability vector $\theta$.
- The softmax function maps scores $s=\left(s_{1}, \ldots, s_{k}\right) \in \mathrm{R}^{k}$ to a categorical distribution:

$$
\left(s_{1}, \ldots, s_{k}\right) \mapsto \theta=\operatorname{Softmax}\left(s_{1}, \ldots, s_{k}\right)=\left(\frac{\exp \left(s_{1}\right)}{\sum_{i=1}^{k} \exp \left(s_{i}\right)}, \ldots, \frac{\exp \left(s_{k}\right)}{\sum_{i=1}^{k} \exp \left(s_{i}\right)}\right)
$$

## Nonlinear Generalization of Multinomial Logistic Regression

- From each $x$, we compute a non-linear score function for each class:

$$
x \mapsto\left(f_{1}(x), \ldots, f_{k}(x)\right) \in \mathrm{R}^{k}
$$

where $f_{i}$ 's are the outputs of the last hidden layer of a neural network.

- Learning: Maximize the log-likelihood of training data

$$
\underset{f_{1}, \ldots, f_{k}}{\arg \max } \sum_{i=1}^{n} \log \left[\operatorname{Softmax}\left(f_{1}(x), \ldots, f_{k}(x)\right)_{y_{i}}\right] .
$$

## Interim discussion

- With the right representations, we can turn nonlinear problems into linear ones
- The goal of represenation learning is to automatically discover useful features from raw data
- Building blocks:

Input layer no learnable parameters
Hidden layer(s) affine + nonlinear activation function Output layer affine (+ softmax)

- A single, potentially huge hidden layer is sufficient to approximate any function
- In practice, it is often helpful to have multiple hidden layers


## Fitting the parameters of an MLP

- Input space: $X=\mathrm{R}$
- Action Space / Output space: $\mathcal{A}=y=\mathrm{R}$
- Hypothesis space: MLPs with a single 3-node hidden layer:

$$
f(x)=w_{0}+w_{1} h_{1}(x)+w_{2} h_{2}(x)+w_{3} h_{3}(x),
$$

where

$$
h_{i}(x)=\sigma\left(v_{i} x+b_{i}\right) \text { for } i=1,2,3,
$$

for some fixed activation function $\sigma: \mathrm{R} \rightarrow \mathrm{R}$.

- What are the parameters we need to fit?

$$
b_{1}, b_{2}, b_{3}, v_{1}, v_{2}, v_{3}, w_{0}, w_{1}, w_{2}, w_{3} \in R
$$

## Finding the best hypothesis

- As usual, we choose our prediction function using empirical risk minimization.
- Our hypothesis space is parameterized by

$$
\theta=\left(b_{1}, b_{2}, b_{3}, v_{1}, v_{2}, v_{3}, w_{0}, w_{1}, w_{2}, w_{3}\right) \in \Theta=\mathrm{R}^{10}
$$

- For a training set $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, our goal is to find

$$
\hat{\theta}=\underset{\theta \in \mathrm{R}^{10}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i} ; \theta\right)-y_{i}\right)^{2} .
$$

## How do we learn these parameters?

- For a training set $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, our goal is to find

$$
\hat{\theta}=\underset{\theta \in \mathrm{R}^{10}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i} ; \theta\right)-y_{i}\right)^{2} .
$$

- We can use gradient descent
- Is $f$ differentiable w.r.t. $\theta$ ? $f(x)=w_{0}+\sum_{i=1}^{3} w_{i} \tanh \left(v_{i} x+b_{i}\right)$.
- Is the loss convex in $\theta$ ?
- tanh is not convex
- Regardless of nonlinearity, the composition of convex functions is not necessarily convex
- We might converge to a local minimum.


## Gradient descent for (large) neural networks

- Mathematically, it's just partial derivatives, which you can compute by hand using the chain rule
- In practice, this could be time-consuming and error-prone
- Back-propagation computes gradients for neural networks (and other models) in a systematic and efficient way
- We can visualize the process using computation graphs, which expose the structure of the computation (modularity and dependency)

Functions as nodes in a graph

- We represent each component of the network as a node that takes in a set of inputs and produces a set of outputs.
- Example: $g: \mathrm{R}^{p} \rightarrow \mathrm{R}^{n}$.
- Typical computation graph:

- Broken down by component:



## Partial derivatives of an affine function

- Define the affine function $g(x)=M x+c$, for $M \in \mathrm{R}^{n \times p}$ and $c \in \mathrm{R}$.
- Let $b=g(a)=M a+c$. What is $b_{i}$ ?

- $b_{i}$ depends on the $i$ th row of $M$ :

$$
b_{i}=\sum_{k=1}^{p} M_{i k} a_{k}+c_{i}
$$

- If $a_{j} \leftarrow a_{j}+\delta$, what is $b_{i}$ ?

$$
b_{i} \leftarrow b_{i}+M_{i j} \delta .
$$

The partial derivative/gradient measures sensitivity: If we perturb an input a little bit, how much does the output change?

## Partial derivatives in general

- Consider a function $g: R^{p} \rightarrow R^{n}$.

- Partial derivative $\frac{\partial b_{i}}{\partial a_{j}}$ is the rate of change of $b_{i}$ as we change $a_{j}$
- If we change $a_{j}$ slightly to

$$
a_{j}+\delta,
$$

- Then (for small $\delta$ ), $b_{i}$ changes to approximately

$$
b_{i}+\frac{\partial b_{i}}{\partial a_{j}} \delta .
$$

## Composing multiple functions

- We have $g: \mathrm{R}^{p} \rightarrow \mathrm{R}^{n}$ and $f: \mathrm{R}^{n} \rightarrow \mathrm{R}^{m}$
- $b=g(a), c=f(b)$.
- How does a small change in $a_{j}$ affect $c_{i}$ ?
- Visualizing the chain rule:
- We sum changes induced on all paths from $a_{j}$ to $c_{i}$.
- The change contributed by each path is the product of changes on each edge along the path.

$$
\frac{\partial c_{i}}{\partial a_{j}}=\sum_{k=1}^{n} \frac{\partial c_{i}}{\partial b_{k}} \frac{\partial b_{k}}{\partial a_{j}} .
$$

## Example: Linear least squares

- Hypothesis space $\left\{f(x)=w^{T} x+b \mid w \in \mathrm{R}^{d}, b \in \mathrm{R}\right\}$.
- Data set $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathrm{R}^{d} \times \mathrm{R}$.
- Define

$$
\ell_{i}(w, b)=\left[\left(w^{T} x_{i}+b\right)-y_{i}\right]^{2} .
$$

- In SGD, in each round we choose a random training instance $i \in 1, \ldots, n$ and take a gradient step

$$
\begin{aligned}
w_{j} & \leftarrow w_{j}-\eta \frac{\partial \ell_{i}(w, b)}{\partial w_{j}}, \text { for } j=1, \ldots, d \\
b & \leftarrow b-\eta \frac{\partial \ell_{i}(w, b)}{\partial b}
\end{aligned}
$$

for some step size $\eta>0$.

- How do we calculate these partial derivatives on a computation graph?

Computation graph and intermediate variables

- For a training point $(x, y)$, the loss is

$$
\ell(w, b)=\left[\left(w^{T} x+b\right)-y\right]^{2}
$$

- Let's break this down into intermediate computations:

$$
\begin{aligned}
\text { (prediction) } \hat{y} & =\sum_{j=1}^{d} w_{j} x_{j}+b
\end{aligned}
$$

## Partial derivatives on computation graph

- We'll work our way from the output $\ell$ back to the parameters $w$ and $b$, reusing previous computations as much as possible:


$$
\begin{aligned}
\frac{\partial \ell}{\partial r} & =2 r \\
\frac{\partial \ell}{\partial \hat{y}} & =\frac{\partial \ell}{\partial r} \frac{\partial r}{\partial \hat{y}}=(2 r)(-1)=-2 r \\
\frac{\partial \ell}{\partial b} & =\frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b}=(-2 r)(1)=-2 r \\
\frac{\partial \ell}{\partial w_{j}} & =\frac{\partial \ell}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_{j}}=(-2 r) x_{j}=-2 r x_{j}
\end{aligned}
$$

Example: Ridge Regression

- For training point $(x, y)$, the $\ell_{2}$-regularized objective function is

$$
J(w, b)=\left[\left(w^{\top} x+b\right)-y\right]^{2}+\lambda w^{\top} w .
$$

- Let's break this down into some intermediate computations:

$$
\begin{aligned}
\text { (prediction) } \hat{y} & =\sum_{j=1}^{d} w_{j} x_{j}+b \\
\text { (residual) } r & =y-\hat{y} \\
\text { (loss) } \ell & =r^{2} \\
\text { (regularization) } R & =\lambda w^{T} w \\
\text { (objective) } J & =\ell+R
\end{aligned}
$$



## Partial Derivatives on Computation Graph

- We'll work our way from graph output $\ell$ back to the parameters $w$ and $b$ :



## Backpropagation: Overview

- Learning: run gradient descent to find the parameters that minimize our objective J.
- Backpropagation: we compute the gradient w.r.t. each (trainable) parameter $\frac{\partial J}{\partial \theta_{i}}$.

Forward pass Compute intermediate function values, i.e. output of each node


Backward pass Compute the partial derivative of $J$ w.r.t. all intermediate variables and the model parameters

How do we minimize computation?

- Path sharing: each node caches intermediate results: we don't need to compute them over and over again
- An example of dynamic programming


## Forward pass

- Order nodes by topological sort (every node appears before its children)
- For each node, compute the output given the input (output of its parents).
- Forward at intermediate node $f_{i}$ and $f_{j}$ :



## Backward pass

- Order nodes in reverse topological order (every node appears after its children)
- For each node, compute the partial derivative of its output w.r.t. its input, multiplied by the partial derivative of its children (chain rule)
- Backward pass at intermediate node $f_{i}$ :



## Multiple children

- First sum partial derivatives from all children, then multiply.
- Backprop for node $f$ :

- Input: $\frac{\partial J}{\partial b^{(1)}}, \ldots, \frac{\partial J}{\partial b^{(N)}}$
(Partials w.r.t. inputs to all children)
- Output:

$$
\begin{aligned}
& \frac{\partial J}{\partial b}=\sum_{k=1}^{N} \frac{\partial J}{\partial b^{(k)}} \\
& \frac{\partial J}{\partial a}=\frac{\partial J}{\partial b} \frac{\partial b}{\partial a}
\end{aligned}
$$

## Why backward?

- We can write the gradient in terms of chain rule.

$$
\begin{align*}
y & =y(c(b(a)))  \tag{9}\\
\frac{\partial y}{\partial a} & =\frac{\partial b}{\partial a} \frac{\partial c}{\partial b} \frac{\partial y}{\partial c}  \tag{10}\\
\frac{\partial y}{\partial a} & =\frac{\partial b}{\partial a}\left(\frac{\partial c}{\partial b} \frac{\partial y}{\partial c}\right)  \tag{11}\\
\frac{\partial y}{\partial a} & =\left(\frac{\partial b}{\partial a} \frac{\partial c}{\partial b}\right) \frac{\partial y}{\partial c} \tag{12}
\end{align*}
$$

- The reverse order (backprop) is faster since we have a scalar output and a vector input, and it works well on most neural networks.
- Forward order could be faster if we have a scalar input and a vector output (less memory).
- Optimal ordering $=$ matrix chain ordering problem.


## Non-convex optimization



- Left: convex loss function. Right: non-convex loss function.


## Non-convex optimization: challenges

- What if we converge to a bad local minimum?
- Rerun with a different initialization
- Hit a saddle point
- Doesn't often happen with SGD
- Second partial derivative test
- Flat region: low gradient magnitude
- Possible solution: use ReLU instead of sigmoid
- High curvature: large gradient magnitude

- Possible solutions: Gradient clipping, adaptive step sizes


## Learning rate

- One of the most important hyperparameter.
- Start with a higher learning rate then decay towards zero.
- Classic theory: convergence guarantee for stochastic gradient descent. Otherwise the update step has a noise term dominated by the noise of data sample.
- Other explanation: Loss surface, avoidance of local minima, avoidance of memorization of noisy samples
- Learning rate decay (staircase 10x, cosine, etc.), speeds up convergence


## More in-depth topics

- Neural networks have been a popular machine learning model in the past decade, due to its learning capability.
- Today: MLP + SGD (backprop)
- Adding structures: weight-sharing, convolution, recurrent, residual connection, attention
- Learning conditioning: normalization, optimizers
- Learning tasks: generative modeling, 3D perception, planning \& control
- System: GPU/TPU, parallel computing, gradient aggregation
- Some topics covered in DS-GA 1008 Deep Learning


## A side note

- Backprop is used to train the overwhelming majority of neural nets today.
- Despite its practical success, backprop is believed to be neurally implausible.
- No evidence for biological signals analogous to error derivatives.
- Forward \& backward weights are tied in backprop.
- Backprop requires synchronous update (1 forward followed by 1 backward).
- Biologically plausible alternatives we know about learn much more slowly on computers.
- Backpropagation is an algorithm for computing the gradient (partial derivatives + chain rule) efficiently.
- It is used in gradient descent optimization for neural networks.
- Key idea: function composition and the chain rule
- In practice, we can use existing software packages, e.g. PyTorch (backpropagation, neural network building blocks, optimization algorithms etc.)

