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Today’s lecture

Another way to get non-linear models in a linear form—adaptive basis function models.

A general algorithm for greedy function approximation—gradient boosting machine.
Adaboost is a special case.
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Motivation

Ravid Shwartz Ziv Slides based on Lecture 11c from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 11, 2023 3 / 52

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/11c.gradient-boosting.pdf
https://github.com/davidrosenberg/mlcourse


Recap: Adaboost

From ESL Figure 10.1
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AdaBoost: Algorithm

Given training set D= {(x1,y1) , . . . ,(xn,yn)}.

1 Initialize observation weights wi = 1, i = 1,2, . . . ,n.
2 For m = 1 to M:

1 Base learner fits weighted training data and returns Gm(x)
2 Compute weighted empirical 0-1 risk:

errm =
1
W

n∑
i=1

wi1(yi 6= Gm(xi )) where W =

n∑
i=1

wi .

3 Compute classifier weight: αm = ln
(
1−errm
errm

)
.

4 Update example weight: wi ← wi · exp [αm1(yi 6= Gm(xi ))]

3 Return voted classifier: G (x) = sign
[∑M

m=1αmGm(x)
]
. Why not learn G (x) directly?
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Nonlinear Regression

How do we fit the following data?
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Linear Model with Basis Functions

Fit a linear combination of transformations of the input:

f (x) =
M∑

m=1

vmhm(x),

where hm’s are called basis functions (or feature functions in ML):

h1, . . . ,hM : X→ R

Example: polynomial regression where hm(x) = xm.

Can we use this model for classification?

Can fit this using standard methods for linear models (e.g. least squares, lasso, ridge, etc.)
Note that hm’s are fixed and known, i.e. chosen ahead of time.
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Adaptive Basis Function Model

What if we want to learn the basis functions? (hence adaptive)

Base hypothesis space H consisting of functions h : X→ R.

An adaptive basis function expansion over H is an ensemble model:

f (x) =
M∑

m=1

vmhm(x), (1)

where vm ∈ R and hm ∈H.

Combined hypothesis space:

FM =

{
M∑

m=1

vmhm(x) | vm ∈ R, hm ∈H, m = 1, . . . ,M

}
What are the learnable?
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Empirical Risk Minimization

What’s our learning objective?

f̂ = argmin
f∈FM

1
n

n∑
i=1

`(yi , f (xi )) ,

for some loss function `.

Write ERM objective function as

J(v1, . . . ,vM ,h1, . . . ,hM) =
1
n

n∑
i=1

`

(
yi ,

M∑
m=1

vmhm(x)

)
.

How to optimize J? i.e. how to learn?
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Gradient-Based Methods

Suppose our base hypothesis space is parameterized by Θ= Rb:

J(v1, . . . ,vM ,θ1, . . . ,θM) =
1
n

n∑
i=1

`

(
yi ,

M∑
m=1

vmh(x ;θm)

)
.

Can we optimize it with SGD?
Can we differentiate J w.r.t. vm’s and θm’s?

For some hypothesis spaces and typical loss functions, yes!
Neural networks fall into this category! (h1, . . . ,hM are neurons of last hidden layer.)
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What if Gradient Based Methods Don’t Apply?

What if base hypothesis space H consists of decision trees?

Can we even parameterize trees with Θ= Rb?

Even if we could, predictions would not change continuously w.r.t. θ ∈Θ, so certainly not
differentiable.

What about a greedy algorithm similar to Adaboost?
Applies to non-parametric or non-differentiable basis functions.

But is it optimizing our objective using some loss function?
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Today we’ll discuss gradient boosting.
Gradient descent in the function space.

It applies whenever
our loss function is [sub]differentiable w.r.t. training predictions f (xi ), and

we can do regression with the base hypothesis space H.
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History

Kearns, Valiant (1989): Can weak learners (e.g., 51% accuracy) be trans-
formed to strong learners (e.g., 99.9% accuracy)?

Schapire (1990) & Freund (1995): Yes, weak learners can be iteratively improved to a
strong learner.

Freund, Schapire (1996): And here is a practical algorithm—Adaboost.
Breiman (1996 & 1998): Yes, it works! Boosting is the best off-the-shelf

classifier in the world.
(Attempts to explain why Adaboost works and improvements)

Friedman, Hastie, Tibshirani (2000): Actually, boosting fits an additive model.
Friedman (2001): Furthermore, it can be considered as gradient de-

scent in the function space.
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Forward Stagewise Additive Modeling
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Forward Stagewise Additive Modeling (FSAM)

Goal fit model f (x) =
∑M

m=1 vmhm(x) given some loss function.
Approach Greedily fit one function at a time without adjusting previous functions, hence

“forward stagewise”.

After m−1 stages, we have

fm−1 =

m−1∑
i=1

vihi .

In m’th round, we want to find hm ∈H (i.e. a basis function) and vm > 0 such that

fm = fm−1︸︷︷︸
fixed

+vmhm

improves objective function value by as much as possible.
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Forward Stagewise Additive Modeling for ERM

Let’s plug in our objective function.

1 Initialize f0(x) = 0.
2 For m = 1 to M:

1 Compute:

(vm,hm) = argmin
v∈R,h∈H

1
n

n∑
i=1

`

yi , fm−1(xi )+vh(xi )︸ ︷︷ ︸
new piece

 .

2 Set fm = fm−1+ vmhm.
3 Return: fM .
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Recap: margin-based classifier

Binary classification

Outcome space Y= {−1,1}

Action space A= R (model outoput)

Score function f : X→A.

Margin for example (x ,y) is m = yf (x).
m > 0 ⇐⇒ classification correct

Larger m is better.

Concept check: What are margin-based loss functions we’ve seen?

Ravid Shwartz Ziv Slides based on Lecture 11c from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 11, 2023 17 / 52

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/11c.gradient-boosting.pdf
https://github.com/davidrosenberg/mlcourse


Exponential Loss

Introduce the exponential loss: `(y , f (x)) = exp

−yf (x)︸ ︷︷ ︸
margin

 .
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Forward Stagewise Additive Modeling with exponential loss

Recall that we want to do FSAM with exponential loss.

1 Initialize f0(x) = 0.
2 For m = 1 to M:

1 Compute:

(vm,hm) = argmin
v∈R,h∈H

1
n

n∑
i=1

`exp

yi , fm−1(xi )+vh(xi )︸ ︷︷ ︸
new piece

 .

2 Set fm = fm−1+ vmhm.
3 Return: fM .
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FSAM with Exponential Loss: objective function

Base hypothesis: H = {h : X→ {−1,1}}.

Objective function in the m’th round:

J(v ,h) =
n∑

i=1

exp [−yi (fm−1(xi )+ vh(xi ))] (2)

=

n∑
i=1

wm
i exp [−yivh(xi )] wm

i
def
= exp [−yi fm−1(xi )] (3)

=

n∑
i=1

wm
i

[
I(yi = h(xi ))e

−v + I(yi 6= h(xi ))e
v
]

h(xi ) ∈ {1,−1} (4)

=

n∑
i=1

wm
i

[
(ev − e−v )I(yi 6= h(xi ))+ e−v

]
I(yi = h(xi )) = 1− I(yi 6= h(xi ))

(5)
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FSAM with Exponential Loss: basis function

Objective function in the m’th round:

J(v ,h) =
n∑

i=1

wm
i

[
(ev − e−v )I(yi 6= h(xi ))+ e−v

]
. (6)

If v > 0, then

argmin
h∈H

J(v ,h) = argmin
h∈H

n∑
i=1

wm
i I(yi 6= h(xi )) (7)

hm = argmin
h∈H

n∑
i=1

wm
i I(yi 6= h(xi )) (8)

= argmin
h∈H

1∑n
i=1w

m
i

n∑
i=1

wm
i I(yi 6= h(xi )) multiply by a positive constant

(9)

i.e. hm is the minimizer of the weighted zero-one loss.
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FSAM with Exponential Loss: classifier weights

Define the weighted zero-one error:

errm =

∑n
i=1w

m
i I(yi 6= h(xi ))∑n
i=1w

m
i

. (10)

Exercise: show that the optimal v is:

vm =
1
2
log

1− errm
errm

(11)

Same as the classifier weights in Adaboost (differ by a constant).

If errm < 0.5 (better than chance), then vm > 0.
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FSAM with Exponential Loss: example weights

Weights in the next round:

wm+1
i

def
= exp [−yi fm(xi )] (12)
= wm

i exp [−yivmhm(xi )] fm(xi ) = fm−1(xi )+ vmhm(xi ) (13)
= wm

i exp [−vmI(yi = hm(xi ))+ vmI(yi 6= hm(xi ))] (14)
= wm

i exp [2vmI(yi 6= hm(xi ))]exp
−vm︸ ︷︷ ︸

scaler

(15)

The constant scaler will cancel out during normalization.

2vm = αm in Adaboost.
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Why Exponential Loss

`exp(y , f (x)) = exp(−yf (x)).

Exercise: show that the optimal estimate is

f ∗(x) =
1
2
log

p(y = 1 | x)
p(y = 0 | x)

. (16)

How is it different from other losses?
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AdaBoost / Exponential Loss: Robustness Issues

Exponential loss puts a high penalty on misclassified examples.
=⇒ not robust to outliers / noise.

Empirically, AdaBoost has degraded performance in situations with
high Bayes error rate (intrinsic randomness in the label)

Logistic/Log loss performs better in settings with high Bayes error.

Exponential loss has some computational advantages over log loss though.
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Review

We’ve seen

Use basis function to obtain nonlinear models: f (x) =
∑M

i=1 vmhm(x) with known hm’s.

Adaptive basis function models: f (x) =
∑M

i=1 vmhm(x) with unknown hm’s.

Forward stagewise additive modeling: greedily fit hm’s to minimize the average loss.

But,

We only know how to do FSAM for certain loss functions.

Need to derive new algorithms for different loss functions.

Next, how to do FSAM in general.
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Gradient Boosting / “Anyboost”
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FSAM with squared loss

Objective function at m’th round:

J(v ,h) =
1
n

n∑
i=1

yi −

fm−1(xi )+vh(xi )︸ ︷︷ ︸
new piece




2

If H is closed under rescaling (i.e. if h ∈H, then vh ∈H for all h ∈ R), then don’t need v .

Take v = 1 and minimize

J(h) =
1
n

n∑
i=1

yi − fm−1(xi )︸ ︷︷ ︸
residual

−h(xi )

2

This is just fitting the residuals with least-squares regression!

Example base hypothesis space: regression stumps.
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L2 Boosting with Decision Stumps: Demo

Consider FSAM with L2 loss (i.e. L2 Boosting)

For base hypothesis space of regression stumps

x

y

Plot courtesy of Brett Bernstein.
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L2 Boosting with Decision Stumps: Results

Plots and code courtesy of Brett Bernstein.
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L2 Boosting with Decision Stumps: Results

Plots and code courtesy of Brett Bernstein.
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L2 Boosting with Decision Stumps: Results

Plots and code courtesy of Brett Bernstein.
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Interpret the residual

Objective: J(f ) = 1
n

∑n
i=1 (yi − f (xi ))

2.

What is the residual at x = xi?
∂

∂f (xi )
J(f ) = −2(yi − f (xi )) (17)

Gradient w.r.t. f : how should the output of f change to minimize the squared loss.

Residual is the negative gradient (differ by some constant).

At each boosting round, we learn a function h ∈H to fit the residual.

f ← f + vh FSAM / boosting (18)
f ← f −α∇f J(f ) gradient descent (19)

h approximates the gradient (step direction).
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“Functional” Gradient Descent

We want to minimize

J(f ) =
n∑

i=1

`(yi , f (xi )) .

In some sense, we want to take the gradient w.r.t. f .

J(f ) only depends on f at the n training points.

Define “parameters”
f = (f (x1), . . . , f (xn))

T

and write the objective function as

J(f) =
n∑

i=1

`(yi ,fi ) .
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Functional Gradient Descent: Unconstrained Step Direction

Consider gradient descent on

J(f) =
n∑

i=1

`(yi ,fi ) .

The negative gradient step direction at f is

−g = −∇f J(f)
= −(∂f1`(y1, f1) , . . . ,∂fn`(yn, fn))

which we can easily calculate.

−g ∈ Rn is the direction we want to change each of our n predictions on training data.

With gradient descent, our final predictor will be an additive model: f0+
∑M

m=1 vt(−gt).
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Functional Gradient Descent: Projection Step

Unconstrained step direction is

−g =−∇f J(f) = −(∂f1`(y1, f1) , . . . ,∂fn`(yn, fn)) .

Also called the “pseudo-residuals”. (For squared loss, they’re exactly the residuals.)

Problem: only know how to update at n points. How do we take a gradient step in H?

Solution: approximate by the closest base hypothesis h ∈H (in the `2 sense):

min
h∈H

n∑
i=1

(−gi −h(xi ))
2 . least square regression (20)

Take the h ∈H that best approximates −g as our step direction.
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Recap

Objective function:

J(f ) =
n∑

i=1

`(yi , f (xi )). (21)

Unconstrained gradient g ∈ Rn w.r.t. f = (f (x1), . . . , f (xn))
T :

g =∇f J(f) = (∂f1`(y1, f1) , . . . ,∂fn`(yn, fn)) . (22)

Projected negative gradient h ∈H:

h = argmin
h∈H

n∑
i=1

(−gi −h(xi ))
2 . (23)

Gradient descent:

f ← f + vh (24)
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Functional Gradient Descent: hyperparameters

Choose a step size by line search.

vm = argmin
v

n∑
i=1

` {yi , fm−1(xi )+ vhm(xi )} .

Not necessary. Can also choose a fixed hyperparameter v .

Regularization through shrinkage:

fm← fm−1+λvmhm where λ ∈ [0,1] . (25)

Typically choose λ= 0.1.

Choose M, i.e. when to stop.
Tune on validation set.
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Gradient boosting algorithm

1 Initialize f to a constant: f0(x) = argminγ
∑n

i=1 `(yi ,γ).
2 For m from 1 to M:

1 Compute the pseudo-residuals (negative gradient):

rim =−

[
∂

∂f (xi )
`(yi , f (xi )

]
f (xi)=fm−1(xi)

(26)

2 Fit a base learner hm with squared loss using the dataset {(xi , rim)}
n
i=1.

3 [Optional] Find the best step size vm = argminv
∑n

i=1 `(yi , fm−1(xi )+ vhm(xi )) .
4 Update fm = fm−1+λvmhm

3 Return fM(x).
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The Gradient Boosting Machine Ingredients (Recap)

Take any loss function [sub]differentiable w.r.t. the prediction f (xi )

Choose a base hypothesis space for regression.

Choose number of steps (or a stopping criterion).

Choose step size methodology.

Then you’re good to go!
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BinomialBoost: Gradient Boosting with Logistic Loss

Recall the logistic loss for classification, with Y= {−1,1}:

`(y , f (x)) = log
(
1+ e−yf (x)

)
Pseudoresidual for i ’th example is negative derivative of loss w.r.t. prediction:

ri =−
∂

∂f (xi )
`(yi , f (xi )) (27)

=−
∂

∂f (xi )

[
log
(
1+ e−yi f (xi)

)]
(28)

=
yie

−yi f (xi)

1+ e−yi f (xi)
(29)

=
yi

1+ eyi f (xi)
(30)
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BinomialBoost: Gradient Boosting with Logistic Loss

Pseudoresidual for ith example:

ri = −
∂

∂f (xi )

[
log
(
1+ e−yi f (xi)

)]
=

yi
1+ eyi f (xi)

So if fm−1(x) is prediction after m−1 rounds, step direction for m’th round is

hm = argmin
h∈H

n∑
i=1

[(
yi

1+ eyi fm−1(xi)

)
−h(xi )

]2
.

And fm(x) = fm−1(x)+ vhm(x).
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Gradient Tree Boosting

One common form of gradient boosting machine takes

H = {regression trees of size S} ,

where S is the number of terminal nodes.

S = 2 gives decision stumps

HTF recommends 46 S 6 8 (but more recent results use much larger trees)

Software packages:
Gradient tree boosting is implemented by the gbm package for R

as GradientBoostingClassifier and GradientBoostingRegressor in sklearn

xgboost and lightGBM are state of the art for speed and performance
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Sinc Function: Our Dataset

From Natekin and Knoll’s "Gradient boosting machines, a tutorial"
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Minimizing Square Loss with Ensemble of Decision Stumps

Decision stumps with 1,10,50, and 100 steps, shrinkage λ= 1.
Figure 3 from Natekin and Knoll’s "Gradient boosting machines, a tutorial"
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Gradient Boosting in Practice
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Prevent overfitting

Boosting is resistant to overfitting. Some explanations:
Implicit feature selection: greedily selects the best feature (weak learner)

As training goes on, impact of change is localized.

But it can of course overfit. Common regularization methods:
Shrinkage (small learning rate)

Stochastic gradient boosting (row subsampling)

Feature subsampling (column subsampling)

Ravid Shwartz Ziv Slides based on Lecture 11c from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 11, 2023 47 / 52

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/11c.gradient-boosting.pdf
https://github.com/davidrosenberg/mlcourse


Step Size as Regularization

(continued) sinc function regression

Performance vs rounds of boosting and shrinkage. (Left is training set, right is validation
set)

Figure 5 from Natekin and Knoll’s "Gradient boosting machines, a tutorial"
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Rule of Thumb

The smaller the step size, the more steps you’ll need.

But never seems to make results worse, and often better.

So set your step size as small as you have patience for.
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Stochastic Gradient Boosting

For each stage,
choose random subset of data for computing projected gradient step.

Why do this?
Introduce randomization thus may help overfitting.

Faster; often better than gradient descent given the same computation resource.

We can view this is a minibatch method.
Estimate the “true” step direction using a subset of data.

Introduced by Friedman (1999) in Stochastic Gradient Boosting.
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Column / Feature Subsampling

Similar to random forest, randomly choose a subset of features for each round.

XGBoost paper says: “According to user feedback, using column sub-sampling prevents
overfitting even more so than the traditional row sub-sampling.”

Speeds up computation.
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Summary

Motivating idea of boosting: combine weak learners to produce a strong learner.

The statistical view: boosting is fitting an additive model (greedily).

The numerical optimization view: boosting makes local improvement iteratively—gradient
descent in the function space.

Gradient boosting is a generic framework
Any differentiable loss function

Classification, regression, ranking, multiclass etc.

Scalable, e.g., XGBoost
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