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Today’s lecture

Our first inherently non-linear classifier: decision trees.

Ensemble methods: bagging and boosting.
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Decision Trees
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Regression trees: Predicting basketball players’ salaries
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Classification trees
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Can we classify these points using a linear classifier?

Partition the data into axis-aligned regions recursively (on the board)
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Decision trees setup

We focus on binary trees (as opposed to
multiway trees where nodes can have more
than two children)

Each node contains a subset of data points

The data splits created by each node
involve only a single feature

For continuous variables, the splits are
always of the form xi 6 t

For discrete variables, we partition values
into two sets (not covered today)

Predictions are made in terminal nodes
From Criminisi et al. MSR-TR-2011-114, 28 October 2011.
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Constructing the tree

Goal Find boxes R1, . . . ,RJ that minimize
J∑

j=1

∑
i∈Rj

(yi − ŷRj
)2, subject to complexity

constraints.
Problem Finding the optimal binary tree is computationally intractable.
Solution Greedy algorithm: starting from the root, and repeating until a stopping criterion

is reached (e.g., max depth), find the non-terminal node that results in the “best”
split

We only split regions defined by previous non-terminal nodes
Prediction Our prediction is the mean value of a terminal node: ŷRm =mean(yi | xi ∈ Rm)

A greedy algorithm is the one that make the best local decisions, without
lookahead to evaluate their downstream consequences

This procedure is not very likely to result in the globally optimal tree
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Prediction in a Regression Tree
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Finding the Best Split Point

We enumerate all features and all possible split points for each feature. There are infinitely
many split points, but...

Suppose we are now considering splitting on the j-th feature xj , and let xj(1), . . . ,xj(n) be
the sorted values of the j-th feature.

We only need to consider split points between two adjacent values, and any split point in
the interval (xj(r),x(j(r+1)) will result in the same loss

It is common to split half way between two adjacent values:

sj ∈
{
1
2
(
xj(r)+ xj(r+1)

)
| r = 1, . . . ,n−1

}
. n−1 splits (1)
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Decision Trees and Overfitting

What will happen if we keep splitting the data into more and more regions?
Every data point will be in its own region—overfitting.

When should we stop splitting? (Controlling the complexity of the hypothesis space)
Limit total number of nodes.

Limit number of terminal nodes.

Limit tree depth.

Require minimum number of data points in a terminal node.
Backward pruning (the approach used in CART; Breiman et al 1984):

1 Build a really big tree (e.g. until all regions have 6 5 points).
2 Prune the tree back greedily, potentially all the way to the root, until validation performance

starts decreasing.
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Pruning: Example
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What Makes a Good Split for Classification?

Our plan is to predict the majority label in each region.

Which of the following splits is better?

Split 1 R1 : 8+/2− R2 : 2+/8−
Split 2 R1 : 6+/4− R2 : 4+/6−

How about here?
Split 1 R1 : 8+/2− R2 : 2+/8−
Split 2 R1 : 6+/4− R2 : 0+/10−

Intuition: we want to produce pure nodes, i.e. nodes where most instances have the same class.
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Misclassification error in a node

Let’s consider the multiclass classification case: Y= {1,2, . . . ,K }.

Let node m represent region Rm, with Nm observations

We denote the proportion of observations in Rm with class k by

p̂mk =
1
Nm

∑
{i :xi∈Rm}

1(yi = k).

We predict the majority class in node m:

k(m) = argmax
k

p̂mk
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Node Impurity Measures

Three measures of node impurity for leaf node m:
Misclassification error

1− p̂mk(m).

The Gini index encourages p̂mk to be close to 0 or 1

K∑
k=1

p̂mk(1− p̂mk).

Entropy / Information gain

−

K∑
k=1

p̂mk log p̂mk .

The Gini index and entropy are numerically similar to each other, and both work better in
practice than the misclassification error.
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Impurity Measures for Binary Classification

(p is the relative frequency of class 1)

HTF Figure 9.3
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Quantifying the Impurity of a Split

Scoring a potential split that produces the nodes RL and RR :

Suppose we have NL points in RL and NR points in RR .

Let Q(RL) and Q(RR) be the node impurity measures for each node.

We aim to find a split that minimizes the weighted average of node impurities:

NLQ(RL)+NRQ(RR)

NL+NR
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Discussion: Interpretability of Decision Trees

Trees are easier to visualize and explain than other classifiers (even linear regression)

Small trees are interpretable – large trees, maybe not so much
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Discussion: Trees vs. Linear Models

Trees may have to work hard to capture linear decision boundaries, but can easily capture
certain nonlinear ones:
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Discussion: Review

Decision trees are:
Non-linear: the decision boundary that results from splitting may end up being quite
complicated

Non-metric: they do not rely on the geometry of the space (inner products or distances)

Non-parametric: they make no assumptions about the distribution of the data

Additional pros:
Interpretable and simple to understand

Cons:
Struggle to capture linear decision boundaries

They have high variance and tend to overfit: they are sensitive to small changes in the
training data (The ensemble techniques we discuss next can mitigate these issues)
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Bagging and Random Forests
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Recap: Statistics and Point Estimators

We observe data D= (x1,x2, . . . ,xn) sampled i.i.d. from a parametric distribution p(· | θ)

A statistic s = s(D) is any function of the data:
E.g., sample mean, sample variance, histogram, empirical data distribution

A statistic θ̂= θ̂(D) is a point estimator of θ if θ̂≈ θ
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Recap: Bias and Variance of an Estimator

Statistics are random, so they have probability distributions.
The distribution of a statistic is called a sampling distribution.
The standard deviation of the sampling distribution is called the standard error.
Some parameters of the sampling distribution we might be interested in:

Bias Bias(θ̂) def
= E

[
θ̂
]
−θ.

Variance Var(θ̂) def
= E

[
θ̂2
]
−E2

[
θ̂
]
.

Why does variance matter if an estimator is unbiased?
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Variance of a Mean

Let θ̂(D) be an unbiased estimator with variance σ2: E
[
θ̂
]
= θ, Var(θ̂) = σ2.

So far we have used a single statistic θ̂= θ̂(D) to estimate θ.

Its standard error is
√

Var(θ̂) = σ

Consider a new estimator that takes the average of i.i.d. θ̂1, . . . , θ̂n where θ̂i = θ̂(Di ).

The average has the same expected value but smaller standard error (recall that
Var(cX ) = c2Var(X ), and that the θ̂i -s are uncorrelated):

E

[
1
n

n∑
i=1

θ̂i

]
= θ Var

[
1
n

n∑
i=1

θ̂i

]
=
σ2

n
(2)
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Averaging Independent Prediction Functions

Suppose we have B independent training sets, all drawn from the same distribution
(D ∼ p(· | θ)).

Our learning algorithm gives us B prediction functions: f̂1(x), f̂2(x), . . . , f̂B(x)

We will define the average prediction function as:

f̂avg
def
=

1
B

B∑
b=1

f̂b (3)
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Averaging Reduces Variance of Predictions

The average prediction for x0 is

f̂avg(x0) =
1
B

B∑
b=1

f̂b(x0).

f̂avg(x0) and f̂b(x0) have the same expected value, but

f̂avg(x0) has smaller variance:

Var(f̂avg(x0)) =
1
B

Var
(
f̂1(x0)

)

Problem: in practice we don’t have B independent training sets!
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The Bootstrap Sample

How do we simulate multiple samples when we only have one?

A bootstrap sample from Dn = (x1, . . . ,xn) is a sample of size n drawn with replacement
from Dn

Some elements of Dn will show up multiple times, and some won’t show up at all

Each xi has a probability of (1−1/n)n of not being included in a given bootstrap sample

For large n, (
1−

1
n

)n

≈ 1
e
≈ .368. (4)

So we expect ~63.2% of elements of Dn will show up at least once.
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The Bootstrap Method

Definition
A bootstrap method simulates B independent samples from P by taking B bootstrap
samples from the sample Dn.

Given original data Dn, compute B bootstrap samples D1
n , . . . ,D

B
n .

For each bootstrap sample, compute some function

φ(D1
n), . . . ,φ(D

B
n )

Use these values as though D1
n , . . . ,D

B
n were i.i.d. samples from P .

This often ends up being very close to what we’d get with independent samples from P!
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Independent Samples vs. Bootstrap Samples

Point estimator α̂= α̂(D100) for samples of size 100, for a synthetic case where the data
generating distribution is known

Histograms of α̂ based on
1000 independent samples of size 100 (left), vs.

1000 bootstrap samples of size 100 (right)
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Figure 5.10 from ISLR (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Ensemble Methods

Key ideas:

In general, ensemble methods combine multiple weak models into a single, more
powerful model

Averaging i.i.d. estimates reduces variance without changing bias

We can use bootstrap to simulate multiple data samples and average them

Parallel ensemble (e.g., bagging): models are built independently

Sequential ensemble (e.g., boosting): models are built sequentially
We try to find new learners that do well where previous learners fall short
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Bagging: Bootstrap Aggregation

We draw B bootstrap samples D1, . . . ,DB from original data D

Let f̂1, f̂2, . . . , f̂B be the prediction functions resulting from training on D1, . . . ,DB ,
respectively

The bagged prediction function is a combination of these:

f̂avg(x) = Combine
(
f̂1(x), f̂2(x), . . . , f̂B(x)

)
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Bagging: Bootstrap Aggregation

Bagging is a general method for variance reduction, but it is particularly useful for decision
trees

For classification, averaging doesn’t make sense; we can take a majority vote instead

Increasing the number of trees we use in bagging does not lead to overfitting

Is there a downside, compared to having a single decision tree?

Yes: if we have many trees, the bagged predictor is much less interpretable
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Aside: Out-of-Bag Error Estimation

Recall that each bagged predictor was trained on about 63% of the data.

The remaining 37% are called out-of-bag (OOB) observations.

For ith training point, let

Si =
{
b | Db does not contain ith point

}
The OOB prediction on xi is

f̂OOB(xi ) =
1
|Si |

∑
b∈Si

f̂b(xi )

The OOB error is a good estimate of the test error

Similar to cross validation error: both are computed on the training set
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Applying Bagging to Classification Trees

Input space X= R5 and output space Y= {−1,1}. Sample size n = 30.

Each bootstrap tree is quite different: different
splitting variable at the root!

High variance: small perturbations of the training
data lead to a high degree of model variability

Bagging helps most when the base learners are
relatively unbiased but have high variance (exactly
the case for decision trees)

From HTF Figure 8.9
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Motivating Random Forests: Correlated Prediction Functions

Recall the motivating principle of bagging:

For θ̂1, . . . , θ̂n i.i.d. with E
[
θ̂
]
= θ and Var

[
θ̂
]
= σ2,

E

[
1
n

n∑
i=1

θ̂i

]
= µ Var

[
1
n

n∑
i=1

θ̂i

]
=
σ2

n
.

What if θ̂’s are correlated?

For large n, the covariance term dominates, limiting the benefits of averaging

Bootstrap samples are
independent samples from the training set, but

not independent samples from PX×Y

Can we reduce the dependence between f̂i ’s?
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Random Forests

Key idea
Use bagged decision trees, but modify the tree-growing procedure to reduce the dependence
between trees.

Build a collection of trees independently (in parallel), as before

When constructing each tree node, restrict choice of splitting variable to a randomly
chosen subset of features of size m

This prevents a situation where all trees are dominated by the same small number of
strong features (and are therefore too similar to each other)

We typically choose m ≈√p, where p is the number of features (or we can choose m
using cross validation)

If m = p, this is just bagging
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Random Forests: Effect of m

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten,
T. Hastie and R. Tibshirani.

(CDS, NYU) DS-GA 1003 April 4, 2022 36 / 60



Review

The usual approach is to build very deep trees—low bias but high variance

Ensembling many models reduces variance
Motivation: Mean of i.i.d. estimates has smaller variance than single estimate

Use bootstrap to simulate many data samples from one dataset
=⇒ Bagged decision trees

But bootstrap samples (and the induced models) are correlated

Ensembling works better when we combine a diverse set of prediction functions
=⇒ Random forests: select a random subset of features for each decision tree
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Boosting
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Boosting: Overview

Bagging Reduce variance of a low bias, high variance estimator by ensembling many
estimators trained in parallel (on different datasets obtained through sampling).

Boosting Reduce the error rate of a high bias estimator by ensembling many estimators
trained in sequence (without bootstrapping).

Like bagging, boosting is a general method that is particularly popular with
decision trees.

Main intuition: instead of fitting the data very closely using a large decision
tree, train gradually, using a sequence of simpler trees
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Boosting: Overview

A weak/base learner is a classifier that does slightly better than chance.

Weak learners are like rules of thumb:
“Inheritance” =⇒ spam

From a friend =⇒ not spam

Key idea:
Each weak learner focuses on different training examples (reweighted data)

Weak learners make different contributions to the final prediction (reweighted
classifier)

A set of smaller, simpler trees may improve interpretability

We’ll focus on a specific implementation, AdaBoost (Freund & Schapire, 1997)

(CDS, NYU) DS-GA 1003 April 4, 2022 40 / 60



AdaBoost: Setting

Binary classification: Y= {−1,1}

Base hypothesis space H = {h : X→ {−1,1}}.

Typical base hypothesis spaces:
Decision stumps (tree with a single split)

Trees with few terminal nodes

Linear decision functions
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Weighted Training Set

Each base learner is trained on weighted data.

Training set D= ((x1,y1) , . . . ,(xn,yn)).

Weights (w1, . . . ,wn) associated with each example.

Weighted empirical risk:

R̂w
n (f )

def
=

1
W

n∑
i=1

wi `(f (xi ),yi ) whereW =

n∑
i=1

wi

Examples with larger weights affect the loss more.
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AdaBoost: Schematic

From ESL Figure 10.1
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AdaBoost: Sketch of the Algorithm

Start with equal weights for all training points: w1 = · · ·= wn = 1

Repeat for m = 1, . . . ,M (where M is the number of classifiers we plan to train):
Train base classifier Gm(x) on the weighted training data; this classifier may not fit
the data well

Increase the weight of the points misclassified by Gm(x) (this is the key idea of
boosting!)

Our final prediction is G (x) = sign
[∑M

m=1αmGm(x)
]
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AdaBoost: Classifier Weights

Our final prediction is G (x) = sign
[∑M

m=1αmGm(x)
]
.

We would like αm to be:
Nonnegative

Larger when Gm fits its weighted training data well

The weighted 0-1 error of Gm(x) is

errm =
1
W

n∑
i=1

wi1(yi 6= Gm(xi )) where W =

n∑
i=1

wi .

errm ∈ [0,1]
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AdaBoost: Classifier Weights

The weight of classifier Gm(x) is αm = ln
(

1−errm
errm

)

Higher weighted error =⇒ lower weight

(CDS, NYU) DS-GA 1003 April 4, 2022 46 / 60



AdaBoost: Example Reweighting

We train Gm to minimize weighted error; the resulting error rate is errm

Then αm = ln
(

1−errm
errm

)
is the weight of Gm in the final ensemble

We want the next base learner to focus more on examples misclassified by the previous learner.

Suppose wi is the weight of example xi before training:
If Gm classifies xi correctly, keep wi as is

Otherwise, increase wi :

wi ← wie
αm

= wi

(
1− errm
errm

)
If Gm is a strong classifier overall, then its αm will be large; this means that if xi is
misclassified, wi will increase to a greater extent
(CDS, NYU) DS-GA 1003 April 4, 2022 47 / 60



AdaBoost: Algorithm

Given training set D= {(x1,y1) , . . . ,(xn,yn)}.

1 Initialize observation weights wi = 1, i = 1,2, . . . ,n.
2 For m = 1 to M:

1 Base learner fits weighted training data and returns Gm(x)
2 Compute weighted empirical 0-1 risk:

errm =
1
W

n∑
i=1

wi1(yi 6= Gm(xi )) where W =

n∑
i=1

wi .

3 Compute classifier weight: αm = ln
(

1−errm
errm

)
.

4 Update example weight: wi ← wi · exp [αm1(yi 6= Gm(xi ))]

3 Return voted classifier: G (x) = sign
[∑M

m=1αmGm(x)
]
.
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AdaBoost with Decision Stumps

After 1 round:

Figure: Size of plus sign represents weight of example. Blackness represents preference for red class; whiteness
represents preference for blue class.

KPM Figure 16.10
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AdaBoost with Decision Stumps

After 3 rounds:

Figure: Size of plus sign represents weight of example. Blackness represents preference for red class; whiteness
represents preference for blue class.

KPM Figure 16.10
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AdaBoost with Decision Stumps

After 120 rounds:

Figure: Size of plus sign represents weight of example. Blackness represents preference for red class; whiteness
represents preference for blue class.

KPM Figure 16.10
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Does AdaBoost overfit?

Does a large number of rounds of boosting lead to overfitting?

If we were overfitting, the learning curves would look like:

From Rob Schapire’s NIPS 2007 Boosting tutorial.
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Learning Curves for AdaBoost

AdaBoost is usually quite resistant to overfitting

The test error continues to decrease even after the training error drops to zero!

From Rob Schapire’s NIPS 2007 Boosting tutorial.
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AdaBoost for Face Detection

Famous application of boosting: detecting faces in images (Viola & Jones, 2001)

A few twists on standard algorithm
Pre-define weak classifiers, so optimization=selection

Smart way to do inference in real-time (in 2001 hardware)
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Harr wavelet basis functions

A simple way to generate rectangular weights.

Over 180,000 filters on a small image (subwindow) of 24x24.
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Integral image

Harr Filter * Image means compute the sum of an area of the image.

Compute an “integral image”

Store a 2-D array: S[i, j] = Sum of the image from (0,0) to (i,j).

D = ABCD - AB - AC + A
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Learning Procedure (AdaBoost)

Review AdaBoost again here, with a slightly different but equivalent setup.

Given example images (x1,y1), . . . ,(xn,yn) where yi = 0,1 for negative and positive.

Initialize example weights w1,i =
1

2m , 1
2l for yi = 0,1 respectively, where m and l are the

number of negatives and positives.

For t = 1, . . . ,T :
1 Normalize the example weights, wt,i ← wt,i∑n

i ′=1wt,i ′
2 For each feature j , train a classifier hj . Evaluate weighted error εj =

∑
i wi |hj(xi )−yi |.

3 Choose the classifier ht , with the lowest error εt .
4 Update the example weights: wt+1 = wt,iβ

1−ei
t , βt =

εt
1−εt

,ei = 0 if correct else 1,

5 Final classifier h(x) =

{
1 if
∑

t αtht(x)>
1
2
∑

t αt

0 otherwise,
αt =− logβt
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Cascaded Processing for Faster Speed

Object detection: A large number of subwindows to process.

Do we need to run all the weak classifiers at test time?

Threshold can be adjusted so that there is almost no false negative.

False positive is ok. We can reject the windows later.

Stop processing if one weak classifier says no.
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AdaBoost Face Detection Results
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Summary

Boosting is used to reduce bias from shallow decision trees

Each classifier is trained to reduce errors of its previous ensemble.

AdaBoost is a very powerful off-the-self classifier!

Next week
What is the objective function of AdaBoost?

Generalizations to other loss functions

Gradient Boosting
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