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Motivation

@ So far, most algorithms we've learned are designed for binary classification.
o Sentiment analysis (positive vs. negative)

o Spam filter (spam vs. non-spam)

@ Many real-world problems have more than two classes.
o Document classification (over 10 classes)

o Object recognition (over 20k classes)
o Face recognition (millions of classes)
@ What are some potential issues when we have a large number of classes?
o Computation cost
o Class imbalance
o Different cost of errors
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Today's lecture

@ How to reduce multiclass classification to binary classification?
o We can think of binary classifier or linear regression as a black box. Naive ways:

o E.g. multiple binary classifiers produce a binary code for each class (000, 001, 010)
o E.g. a linear regression produces a numerical value for each class (1.0, 2.0, 3.0)

e How do we generalize binary classification algorithm to the multiclass setting?
o We also need to think about the loss function.

o Example of very large output space: structured prediction.
o Multi-class: Mutually exclusive class structure.

o Text: Temporal relational structure.
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Reduction to Binary Classification J
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One-vs-All / One-vs-Rest

Setting @ Input space: X

@ OQutput space: Y={1,...,k}
Training e Train k binary classifiers, one for each class: hy,..., h: X — R.
o Classifier h; distinguishes class i (+1) from the rest (-1).

Prediction @ Majority vote:
h(x) = argmax h;(x)
iefl,... k)

Ties can be broken arbitrarily.
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OvA: 3-class example (linear classifier)

Consider a dataset with three classes:

o% Assumption: each class is linearly separable from the
o © rest.
° %o Ideal case: only target class has positive score.
o © ©
[ J
Train OVA classifiers:
OOO OOO
o © o ©
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T TTe—ay o | e
[ ] o
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OVA: 4-class non linearly separable example

Consider a dataset with four classes:

° )
: ° Cannot separate red points from the rest.
b @ Which classes might have low accuracy?
o) g Yy
[ ] OO
o ©

Train OvVA classifiers:

0% 0% 0% 0%
o © o © o © o ©
€ o ®  og € log %o
o 0p T Te—o0Q o | e@p o 0p
o
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All vs All / One vs One / All pairs

Setting @ Input space: X
@ Output space: Y={1,..., k}

Training @ Train (&) binary classifiers, one for each pair: h;: X — R
forie(l,k] and je [i+1, k]
o Classifier hj; distinguishes class i (+1) from class j (-1).

Prediction e Majority vote (each class gets k —1 votes)

h(x) = arg maxZ hij(x)I{i < j}—hji(x)I{j < i}
ie{1,..., k}J?él

class i is +1 class i is -1

@ Tournament
@ Ties can be broken arbitrarily.
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AvVA: four-class example

Consider a dataset with four classes:

[ ) . . .
: ° Assumption: each pair of classes are linearly separable.
d @ More expressive than OvA.
%o
e o0,
o ©

What's the decision region for the red class?

0%
o ©
® o
e 0
o ©
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OvA vs AvA

OvA AvA
. train O(kBirain(n)) O(k2Btrain(n/k))
computation
P test 0o ( kBtest) 0o ( k2 Btest)
train  class imbalance small training set
challenges test calibration / scale

tie breaking

Lack theoretical justification but simple to implement and works well in practice (when #

classes is small).
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Code word for labels

Using the reduction approach, can you train fewer than k binary classifiers?

Key idea: Encode labels as binary codes and predict the code bits directly.
OvA encoding:

class | hi | ho | h3 | ha
1 1 0 0 0
2 0 1 0 0
3 ol0|1]0
4 00|01

OVA uses k bits to encode each label, what's the minimal number of bits you can use?
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Error correcting output codes (ECOC)

Example: 8 classes, 6-bit code

class hl h2 h3 h4 h5 h6
1 0jo0ojoyj1{0]O0
2 1,0]0]0|O0]|O
3 o011 ,0|1]O0
4 1,1]0]0|0}|O0
5 1,100 1}|0
6 ojo|171]0]1
7 ojo0o|1(0|0]O0
8 0j17011]0]O0

(CDS, NYU)

Training Binary classifier h;:

@ +1: classes whose /-th bit is 1

@ -1: classes whose i-th bit is 0

Prediction Closest label in terms of Hamming

distance.

h

h>

h3

hy

hs

he

0

1

1

0

1

1

Code design Want good binary classifiers.
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Error correcting output codes: summary

e Computationally more efficient than OvA (a special case of ECOC). Better for large k.

@ Why not use the minimal number of bits (log, k)?

o If the minimum Hamming distance between any pair of code word is d, then it can
d—1

correct LTJ errors.
o In plain words, if rows are far from each other, ECOC is robust to errors.
@ Trade-off between code distance and binary classification performance.

@ Nice theoretical results [Allwein et al., 2000] (also incoporates AvA).
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Review

Reduction-based approaches:
@ Reducing multiclass classification to binary classification: OvA, AvA

o Key is to design “natural” binary classification problems without large computation cost.

But,
@ Unclear how to generalize to extremely large # of classes.
@ ImageNet: >20k labels; Wikipedia: >1M categories.

Next, generalize previous algorithms to multiclass settings.
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Multiclass Loss J
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Binary Logistic Regression

@ Given an input x, we would like to output a classification between (0,1).

1 1
Fix) — si () — _ _ 1
(x) = sigmoid () l+exp(—z) 1l+4exp(—w'x—b) (1)
@ The other class is represented in 1—f(x):
—w T —
1—1f(x) expl—w_x—b) 1 = sigmoid(—2z). (2)

T ltexp(—wTx—b) ltexp(w!x+b)

@ Another way to view: one class has (+w,+b) and the other class has (—w,—b).
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Multi-class Logistic Regression

Now what if we have one w, for each class ¢?

exp(w/ x) + b
> cexp(wd x+bc)

fc(x) =

Also called “softmax” in neural networks.

@ Loss function: L:Zi—yc(i) log f.(x(1)

Gradient: % =f—y. Recall: MSE loss.
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Comparison to OvA

Base Hypothesis Space: H ={h: X — R} (score functions).

Multiclass Hypothesis Space (for k classes):

F= {Xr—>argmaxh,~(x) | hy,..., hy EJ—C}

]

Intuitively, h;j(x) scores how likely x is to be from class i.

OvA objective: h;(x) > 0 for x with label i and h;(x) < 0 for x with all other labels.
@ At test time, to predict (x, /) correctly we only need

h,'(X)>hj(X) \V/j#l (4)
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Multiclass Perceptron

o Base linear predictors: h;(x) = w." x (w € R9).

e Multiclass perceptron:
Given a multiclass dataset D ={(x, y)};
Initialize w + 0;
for iter=1,2,..., T do
for (x,y) € D do
y =argmax,cy WyT,X;
if  #y then // We’ve made a mistake
wy < wy,+x ; // Move the target-class scorer towards x
wy <~ wp—x ; // Move the wrong-class scorer away from x
end

end

end
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Rewrite the scoring function

@ Remember that we want to scale to very large # of classes and reuse algorithms and
analysis for binary classification

e — a single weight vector is desired

@ How to rewrite the equation such that we have one w instead of k7

w; x =wTP(x, 1) (5)
hi(x) = h(x, 1) (6)

o Encode labels in the feature space.

o Score for each label — score for the “compatibility’ of a label and an input.
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The Multivector Construction

How to construct the feature map {7

e What if we stack w;'s together (e.g., x € R2.Y ={1,2,3})

@ And then do the following: W:R? x{1,2,3} — R® defined by
Y(x,1) = (x1,x,0,0,0,0)
Y(x,2) := (0,0,x1,x,0,0)
Y(x,3) = (0,0,0,0,x1,x)

e Then (w,¥(x,y)) = (w,,x), which is what we want.
DS-GA 1003
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Rewrite multiclass perceptron

Multiclass perceptron using the multivector construction.

Given a multiclass dataset D ={(x, y)};
Initialize w <« 0;
for iter=1,2,..., T do
for (x,y) € D do
y =argmax,,cyw b(x,y’) ; // Equivalent to argmax,,cyw,x
if y #y then // We’ve made a mistake
w < w+VP(x,y); // Move the scorer towards \(x,y)

w <+ w—1P(x,y) ; // Move the scorer away from \(x,y)
end

end

end

Exercise: What is the base binary classification problem in multiclass perceptron?
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Features

Toy multiclass example: Part-of-speech classification

@ X ={All possible words}

o Y={NOUN,VERB,ADJECTIVE,...}.

e Features of x € X: [The word itself], ENDS IN Iy, ENDS IN ness, ...
How to construct the feature vector?

Rka

@ Multivector construction: w &€ —doesn't scale.

@ Directly design features for each class.

Y(x,y) = Wi(x,y), W2(x,¥) b3(x,y), ..., balx,y)) (7)

o Size can be bounded by d.
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Features
Sample training data:
The boy grabbed the apple and ran away quickly .

Feature:

= 1(x =apple AND y = NOUN)
1(x =run AND y = NOUN)
(x=
(

1(x = run AND y = VERB)
= 1(x ENDS_IN_ly AND y =ADVERB)

s e e=e
== ==
[

e E.g., ¥(x=run,y =NOUN)=(0,1,0,0,...)
o After training, what's wy, wo, wz, wy?

@ No need to include features unseen in training data.

(CDS, NYU) DS-GA 1003 March 28, 2023

25 /55



Feature templates: implementation

@ Flexible, e.g., neighboring words, suffix/prefix.
@ "Read off" features from the training data.
e Often sparse—efficient in practice, e.g., NLP problems.

@ Can use a hash function: template —{1,2,...,d}.
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Review

Ingredients in multiclass classification:
@ Scoring functions for each class (similar to ranking).

@ Represent labels in the input space = single weight vector.

We've seen
@ How to generalize the perceptron algorithm to multiclass setting.

@ Very simple idea. Was popular in NLP for structured prediction (e.g., tagging, parsing).

Next,
@ How to generalize SVM to the multiclass setting.

e Concept check: Why might one prefer SVM / perceptron?
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Margin for Multiclass

Binary e Margin for (x("), y(n):
L)y () ®

T

Want margin to be large and positive (w ' x(") has same sign as y("))

Multiclass e Class-specific margin for (x("), y(")):
h(x!™,y M) —h(x"), y). 9)

Difference between scores of the correct class and each other class

Want margin to be large and positive for all y # y(").
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Multiclass SVM: separable case

Binary
) 1 5
min *HWH (10)
w
s.t. y()w xM>1 vy y)yen (11)
—_—
margin

Multiclass As in the binary case, take 1 as our target margin.

My (W) & (w, Wy D)) — (w w(x(™), ) (12)
score of correct class score of other class

min 2w’ (13)

st. mpy,(w)>1 V(xM ytmy e D,y £y (14)

Exercise: write the objective for the non-separable case
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Recap: hingle loss for binary classification

@ Hinge loss: a convex upperbound on the 0-1 loss

ehinge(}/v)?) = max(O, 1—yh(x))

Loss
= Zero_One

== Hinge

Loss(m)

0
Margin m=yf(x)
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Generalized hinge loss

@ What's the zero-one loss for multiclass classification?

Aly.y")=I{y #y'} (16)
@ In general, can also have different cost for each class.
e Upper bound on A(y,y’).
f/défargmax<w,‘£’(x,y')> (17)
y'eyY
= (w,¥(x,y)) <
Y

x, 7)) (18)
= Aly,7) <A( (W

{w,
V) — ( (x,y)—=Y¥(x,9))) When are they equal? (19)

@ Generalized hinge loss:

Chinge (v, x, w) £ max (Aly,y") = (w, (Ylx.y) = ¥ixy"))) (20)
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Multiclass SVM with Hinge Loss

@ Recall the hinge loss formulation for binary SVM (without the bias term):

N
.1 5
min =||lw||+ C max | 0,1—y(MwTx(n
min, I+ €2 X"

n=1 margin

@ The multiclass objective:

N
I S / /
min 3wl +CHZ_1;T)2§ Aly,y")—{w, (¥(x,y)=¥(x,y')))
- margin
o A(y,y’) as target margin for each class.

o If margin m, ,/(w) meets or exceeds its target A(y" y') Yy €Y, then no loss on
example n.
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Recap: What Have We Got?

@ Problem: Multiclass classification Y =11, ..., k}

@ Solution 1: One-vs-All
o Train k models: hi(x),..., hi(x): X = R.

o Predict with argmax, ¢y hy(x).

o Gave simple example where this fails for linear classifiers

@ Solution 2: Multiclass loss
e Train one model: h(x,y): X xY —R.

o Prediction involves solving argmax, cy h(x,y).
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Does it work better in practice?

e Paper by Rifkin & Klautau: “In Defense of One-Vs-All Classification” (2004)
o Extensive experiments, carefully done
o albeit on relatively small UCI datasets

o Suggests one-vs-all works just as well in practice

o (or at least, the advantages claimed by earlier papers for multiclass methods were not
compelling)

o Compared
o many multiclass frameworks (including the one we discuss)

o one-vs-all for SVMs with RBF kernel

o one-vs-all for square loss with RBF kernel (for classification!)

@ All performed roughly the same
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Why Are We Bothering with Multiclass?

@ The framework we have developed for multiclass
o compatibility features / scoring functions

o multiclass margin

o target margin / multiclass loss
@ Generalizes to situations where k is very large and one-vs-all is intractable.

o Key idea is that we can generalize across outputs y by using features of y.
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Introduction to Structured Prediction J
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Example: Part-of-speech (POS) Tagging

@ Given a sentence, give a part of speech tag for each word:

Yo

x | [START] He eats | apples
— ~— | ~——

X0 X1 X2 X3
y | [START] | Pronoun | Verb | Noun
— | ~~ | ~~—~

i y2 y3

e V ={all English words} U{[START],"."}

e X=V",n=1,23,... [Word sequences of any length]

o P ={START, Pronoun,Verb,Noun,Adjective}

e Y="P",n=1,2,3,...[Part of speech sequence of any length]

(CDS, NYU)
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Multiclass Hypothesis Space

@ Discrete output space: Y(x)
o Very large but has structure, e.g., linear chain (sequence labeling), tree (parsing)

o Size depends on input x

(]

Base Hypothesis Space: H ={h: X xY — R}
o h(x,y) gives compatibility score between input x and output y

Multiclass hypothesis space

F=< x> argmaxh(x,y)|heH
y€eY

Final prediction function is an f € F.

For each f € F there is an underlying compatibility score function h € H.
DS-GA 1003 March 28, 2023  38/55



Structured Prediction

o Part-of-speech tagging
x: he eats apples
y: pronoun verb noun

@ Multiclass hypothesis space:

h(x,y) = WTW(X,y) (21)
ff"{x'—mrgmaxh(x,y) IthH} (22)
yeY

@ A special case of multiclass classification

@ How to design the feature map W7 What are the considerations?
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Unary features

@ A unary feature only depends on
o the label at a single position, y;, and x

@ Example:
¢1(x,yi) = 1(xi =runs)1(y; = Verb)
$a(x,yi) = 1(xi =runs)1(y; = Noun)
d3(x,yi) = 1(xi—1=He)l(x; =runs)1(y; = Verb)
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Markov features

@ A markov feature only depends on
o two adjacent labels, y; 7 and y;, and x

o Example:
01(x,yi—1,¥i) = 1(yj—1 =Pronoun)1(y; = Verb)
O2(x,yi-1,¥i) = 1(yi—1 =Pronoun)1(y; = Noun)
@ Reminiscent of Markov models in the output space

@ Possible to have higher-order features
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Local Feature Vector and Compatibility Score

@ At each position i in sequence, define the local feature vector (unary and markov):

Yilx,yi—1.yi) = (d1lx,yi), d2(x,yi), ...,
O1(x,yi—1.yi),O2(x,yi—1,yi),-..)

@ And local compatibility score at position i: (w,¥;(x,yi—1,vi))-

@ The compatibility score for (x,y) is the sum of local compatibility scores:

Z(W,‘F;(X,y, 1.Yi) —< Z‘i’ X, Yi1,Yi >=<W1‘1’(X.)/)>v (23)

where we define the sequence feature vector by

= Z‘P,-(x,y,-_l,y,-). decomposable
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Structured perceptron

Given a dataset D ={(x,y)};
Initialize w <« 0;
for iter=1,2,..., T do
for (x,y) € D do
5} = argmaxy/EH(x) WTq)(Xry/);
if  #y then // We’ve made a mistake
w<« w+Y¥(x,y); // Move the scorer towards \(x,y)

w< w—Y¥(x,9);// Move the scorer away from \(x,J)
end

end
end

Identical to the multiclass perceptron algorithm except the arg max is now over the structured
output space Y(x).
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Structured hinge loss

@ Recall the generalized hinge loss

)= max (Aly,y)+ (w, ($xy ) =¥(x.y))) (24)
y'€Y(x)

ehinge()’r)’}
@ What is A(y,y’) for two sequences?

@ Hamming loss is common:

L
Aly,yV =7 1lyi#y)

i=1

~l=

where L is the sequence length.
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Structured SVM

Exercise:
@ Write down the objective of structured SVM using the structured hinge loss.
@ Stochastic sub-gradient descent for structured SVM (similar to HW3 P3)

o Compare with the structured perceptron algorithm
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The argmax problem for sequences

Problem To compute predictions, we need to find argmax, cy(,) (w,¥(x,y)), and [Y(x]| is
exponentially large.

Observation W(x,y) decomposes to ) _;Wi(x,y).

Solution Dynamic programming (similar to the Viterbi algorithm)

monsters eat tasty  bunnies

What's the running time?

Figure by Daumé Ill. A course in machine learning. Figure 17.1.
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Conditional random field (CRF)

@ Recall that we can write logistic regression in a general form:

plylx) = exp(w " (x,y)).

1
Z(x)
@ Z is normalization constant: Z(x) = Zyeyexp(Wle)(x,y)).

o Example: linear chain {y;}

@ We can incorporate unary and Markov features: p(y|x) = ﬁexp(zt w (X, ye, Ve—1))

SEQUENCE

Logistic Regression Linear-chain CRFs
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Conditional random field (CRF)

@ Compared to Structured SVM, CRF has a probabilistic interpretation.
@ We can draw samples in the output space.
@ How do we learn w? Maximum log likelihood, and regularization term: Al|w||?

o Loss function:
1o R |
w) = ——Z log p(y " x'V) + ~A[|w]?
N . 2
ZZZWkll)k ,yt 1 Z'ng )+ = Z)‘Wk
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Conditional random field (CRF)

@ Loss function:

ZZZWklbk Y, ,yt 1 NZIogZ )+ = Z?\Wk

o Gradient:

aWk ZZZIP" 'yt 'yt 1) (25)
+N;a og 3 ex()_ Y web b v+ 3 hwe - (26)

y'eYy k
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Conditional random field (CRF)

o What is NZ > Dk Wk(x :Yt ):Yt@ﬂ?

@ It is the expectation tbk(x . ¥t ¥t—1) under the empirical distribution
Blx,y) =42 i 1lx=x1[y = yI].
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Conditional random field (CRF)
o What is %Z: vy IOgZy rey P2 2 Wi (x thryt )7

Nzﬁbg D_exp ZZWMPW vl (27)

y'ey
-1
:%Z Z exp ZZWk'ﬂ)k' Lvlviy)) (28)
i |y'eY
Z exp ZZWk/ll)kf yt yt 1 le’k }’t Yi-1) (29)
y'ey
*ZZ Z p( yt,yt 11x) wk( v.ytvyt 1) (30)
it y'eYy

o It is the expectation of Py (x'"),y/, y{_1) under the model distribution p(y/,y/ ;Ix).
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Conditional random field (CRF)

@ To compute the gradient, we need to infer expectation under the model distribution p(y|x).

@ Compare the learning algorithms: in structured SVM we need to compute the argmax,
whereas in CRF we need to compute the model expectation.

@ Both problems are NP-hard for general graphs.
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CRF Inference

@ In the linear chain structure, we can use the forward-backward algorithm for inference,
similar to Viterbi.

o Initiate (1) =exp(w ' P(y1 =J4,x1))

o Recursion: o;(t) =3 ;o;(t—1)exp(w " $lyr =j,yr—1=1,x))
@ Result: Z(x) :ZJ- o(T)

@ Similar for the backward direction.

@ Test time, again use Viterbi algorithm to infer argmax.

@ The inference algorithm can be generalized to belief propagation (BP) in a tree structure
(exact inference).

@ In general graphs, we rely on approximate inference (e.g. loopy belief propagation).
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Examples

@ POS tag Relationship between constituents, e.g. NP is likely to be followed by a VP.

@ Semantic segmentation
Relationship between pixels, e.g. a grass pixel is likely to be next to another grass pixel,
and a sky pixel is likely to be above a grass pixel.

e Multi-label learning
An image may contain multiple class labels, e.g. a bus is likely to co-occur with a car.

(CDS, NYU) DS-GA 1003 March 28, 2023 54 /55



Conclusion

Multiclass algorithms

@ Reduce to binary classification, e.g., OvA, AvA
o Good enough for simple multiclass problems

o They don't scale and have simplified assumptions

e Generalize binary classification algorithms using multiclass loss
o Multi-class perceptron, multi-class logistics regression, multi-class SVM

@ Structured prediction: Structured SVM, CRF. Data containing structure. Extremely large
output space. Text and image applications.
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