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Overview
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Motivation

So far, most algorithms we’ve learned are designed for binary classification.
Sentiment analysis (positive vs. negative)

Spam filter (spam vs. non-spam)

Many real-world problems have more than two classes.
Document classification (over 10 classes)

Object recognition (over 20k classes)

Face recognition (millions of classes)

What are some potential issues when we have a large number of classes?
Computation cost

Class imbalance

Different cost of errors
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Today’s lecture

How to reduce multiclass classification to binary classification?
We can think of binary classifier or linear regression as a black box. Naive ways:

E.g. multiple binary classifiers produce a binary code for each class (000, 001, 010)

E.g. a linear regression produces a numerical value for each class (1.0, 2.0, 3.0)

How do we generalize binary classification algorithm to the multiclass setting?
We also need to think about the loss function.

Example of very large output space: structured prediction.
Multi-class: Mutually exclusive class structure.

Text: Temporal relational structure.
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Reduction to Binary Classification
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One-vs-All / One-vs-Rest

Setting Input space: X

Output space: Y= {1, . . . ,k}

Training Train k binary classifiers, one for each class: h1, . . . ,hk : X→ R.

Classifier hi distinguishes class i (+1) from the rest (-1).

Prediction Majority vote:
h(x) = argmax

i∈{1,...,k}
hi (x)

Ties can be broken arbitrarily.
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OvA: 3-class example (linear classifier)

Consider a dataset with three classes:
Assumption: each class is linearly separable from the
rest.
Ideal case: only target class has positive score.

Train OvA classifiers:
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OvA: 4-class non linearly separable example

Consider a dataset with four classes:

Cannot separate red points from the rest.
Which classes might have low accuracy?

Train OvA classifiers:
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All vs All / One vs One / All pairs

Setting Input space: X
Output space: Y= {1, . . . ,k}

Training Train
(
k
2

)
binary classifiers, one for each pair: hij : X→ R

for i ∈ [1,k ] and j ∈ [i +1,k ].
Classifier hij distinguishes class i (+1) from class j (-1).

Prediction Majority vote (each class gets k−1 votes)

h(x) = argmax
i∈{1,...,k}

∑
j 6=i

hij(x)I {i < j}︸ ︷︷ ︸
class i is +1

−hji (x)I {j < i }︸ ︷︷ ︸
class i is -1

Tournament
Ties can be broken arbitrarily.
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AvA: four-class example

Consider a dataset with four classes:

Assumption: each pair of classes are linearly separable.
More expressive than OvA.

What’s the decision region for the red class?
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OvA vs AvA

OvA AvA

computation
train O(kBtrain(n)) O(k2Btrain(n/k))
test O(kBtest) O(k2Btest)

challenges
train class imbalance small training set

test
calibration / scale

tie breaking

Lack theoretical justification but simple to implement and works well in practice (when #
classes is small).
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Code word for labels

Using the reduction approach, can you train fewer than k binary classifiers?

Key idea: Encode labels as binary codes and predict the code bits directly.

OvA encoding:

class h1 h2 h3 h4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

OvA uses k bits to encode each label, what’s the minimal number of bits you can use?
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Error correcting output codes (ECOC)

Example: 8 classes, 6-bit code

class h1 h2 h3 h4 h5 h6

1 0 0 0 1 0 0
2 1 0 0 0 0 0
3 0 1 1 0 1 0
4 1 1 0 0 0 0
5 1 1 0 0 1 0
6 0 0 1 1 0 1
7 0 0 1 0 0 0
8 0 1 0 1 0 0

Training Binary classifier hi :
+1: classes whose i-th bit is 1

-1: classes whose i-th bit is 0
Prediction Closest label in terms of Hamming

distance.
h1 h2 h3 h4 h5 h6

0 1 1 0 1 1

Code design Want good binary classifiers.
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Error correcting output codes: summary

Computationally more efficient than OvA (a special case of ECOC). Better for large k .

Why not use the minimal number of bits (log2 k)?
If the minimum Hamming distance between any pair of code word is d , then it can
correct

⌊
d−1

2

⌋
errors.

In plain words, if rows are far from each other, ECOC is robust to errors.

Trade-off between code distance and binary classification performance.

Nice theoretical results [Allwein et al., 2000] (also incoporates AvA).
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Review

Reduction-based approaches:

Reducing multiclass classification to binary classification: OvA, AvA

Key is to design “natural” binary classification problems without large computation cost.

But,

Unclear how to generalize to extremely large # of classes.

ImageNet: >20k labels; Wikipedia: >1M categories.

Next, generalize previous algorithms to multiclass settings.
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Multiclass Loss
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Binary Logistic Regression

Given an input x, we would like to output a classification between (0,1).

f (x) = sigmoid(z) =
1

1+ exp(−z)
=

1
1+ exp(−w>x −b)

. (1)

The other class is represented in 1− f (x):

1− f (x) =
exp(−w>x −b)

1+ exp(−w>x −b)
=

1
1+ exp(w>x +b)

= sigmoid(−z). (2)

Another way to view: one class has (+w ,+b) and the other class has (−w ,−b).
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Multi-class Logistic Regression

Now what if we have one wc for each class c?

fc(x) =
exp(w>c x)+bc∑
c exp(w

>
c x +bc)

(3)

Also called “softmax” in neural networks.

Loss function: L=
∑

i −y
(i)
c log fc(x

(i))

Gradient: ∂L
∂z = f − y . Recall: MSE loss.
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Comparison to OvA

Base Hypothesis Space: H = {h : X→ R} (score functions).

Multiclass Hypothesis Space (for k classes):

F =

{
x 7→ argmax

i
hi (x) | h1, . . . ,hk ∈H

}
Intuitively, hi (x) scores how likely x is to be from class i .

OvA objective: hi (x)> 0 for x with label i and hi (x)< 0 for x with all other labels.

At test time, to predict (x , i) correctly we only need

hi (x)> hj(x) ∀j 6= i . (4)
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Multiclass Perceptron

Base linear predictors: hi (x) = wT
i x (w ∈ Rd).

Multiclass perceptron:
Given a multiclass dataset D= {(x ,y)};
Initialize w ← 0;
for iter = 1,2, . . . ,T do

for (x ,y) ∈D do
ŷ = argmaxy ′∈Yw

T
y ′x ;

if ŷ 6= y then // We’ve made a mistake
wy ← wy + x ; // Move the target-class scorer towards x
wŷ ← wŷ − x ; // Move the wrong-class scorer away from x

end
end

end
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Rewrite the scoring function

Remember that we want to scale to very large # of classes and reuse algorithms and
analysis for binary classification

=⇒ a single weight vector is desired

How to rewrite the equation such that we have one w instead of k?

wT
i x = wTψ(x , i) (5)

hi (x) = h(x , i) (6)

Encode labels in the feature space.

Score for each label → score for the “compatibility” of a label and an input.
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The Multivector Construction

How to construct the feature map ψ?

What if we stack wi ’s together (e.g., x ∈ R2,Y= {1,2,3})

w =

−

√
2
2

,

√
2
2︸ ︷︷ ︸

w1

, 0,1︸︷︷︸
w2

,

√
2
2

,

√
2
2︸ ︷︷ ︸

w3


And then do the following: Ψ : R2× {1,2,3}→ R6 defined by

Ψ(x ,1) := (x1,x2,0,0,0,0)
Ψ(x ,2) := (0,0,x1,x2,0,0)
Ψ(x ,3) := (0,0,0,0,x1,x2)

Then 〈w ,Ψ(x ,y)〉= 〈wy ,x〉, which is what we want.
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Rewrite multiclass perceptron

Multiclass perceptron using the multivector construction.

Given a multiclass dataset D= {(x ,y)};
Initialize w ← 0;
for iter = 1,2, . . . ,T do

for (x ,y) ∈D do
ŷ = argmaxy ′∈Yw

Tψ(x ,y ′) ; // Equivalent to argmaxy ′∈Yw
T
y ′x

if ŷ 6= y then // We’ve made a mistake
w ← w +ψ(x ,y) ; // Move the scorer towards ψ(x ,y)
w ← w −ψ(x , ŷ) ; // Move the scorer away from ψ(x , ŷ)

end
end

end

Exercise: What is the base binary classification problem in multiclass perceptron?
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Features

Toy multiclass example: Part-of-speech classification

X= {All possible words}

Y= {NOUN,VERB,ADJECTIVE,. . . }.

Features of x ∈ X: [The word itself], ENDS_IN_ly, ENDS_IN_ness, ...

How to construct the feature vector?

Multivector construction: w ∈ Rd×k—doesn’t scale.

Directly design features for each class.

Ψ(x ,y) = (ψ1(x ,y),ψ2(x ,y),ψ3(x ,y), . . . ,ψd(x ,y)) (7)

Size can be bounded by d .
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Features

Sample training data:

The boy grabbed the apple and ran away quickly .

Feature:

ψ1(x ,y) = 1(x = apple AND y = NOUN)
ψ2(x ,y) = 1(x = run AND y = NOUN)
ψ3(x ,y) = 1(x = run AND y = VERB)
ψ4(x ,y) = 1(x ENDS_IN_ly AND y =ADVERB)

. . .

E.g., Ψ(x = run,y = NOUN) = (0,1,0,0, . . .)

After training, what’s w1,w2,w3,w4?

No need to include features unseen in training data.
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Feature templates: implementation

Flexible, e.g., neighboring words, suffix/prefix.

“Read off” features from the training data.

Often sparse—efficient in practice, e.g., NLP problems.

Can use a hash function: template → {1,2, . . . ,d}.
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Review

Ingredients in multiclass classification:

Scoring functions for each class (similar to ranking).

Represent labels in the input space =⇒ single weight vector.

We’ve seen

How to generalize the perceptron algorithm to multiclass setting.

Very simple idea. Was popular in NLP for structured prediction (e.g., tagging, parsing).

Next,

How to generalize SVM to the multiclass setting.

Concept check: Why might one prefer SVM / perceptron?
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Margin for Multiclass

Binary Margin for (x(n),y (n)):

y (n)wT x(n) (8)

Want margin to be large and positive (wT x(n) has same sign as y (n))
Multiclass Class-specific margin for (x(n),y (n)):

h(x(n),y (n))−h(x(n),y). (9)

Difference between scores of the correct class and each other class

Want margin to be large and positive for all y 6= y (n).
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Multiclass SVM: separable case

Binary

min
w

1
2
‖w‖2 (10)

s.t. y (n)wT x(n)︸ ︷︷ ︸
margin

> 1 ∀(x(n),y (n)) ∈D (11)

Multiclass As in the binary case, take 1 as our target margin.

mn,y (w)
def
=
〈
w ,Ψ(x(n),y (n))

〉
︸ ︷︷ ︸
score of correct class

−
〈
w ,Ψ(x(n),y)

〉
︸ ︷︷ ︸
score of other class

(12)

min
w

1
2
‖w‖2 (13)

s.t. mn,y (w)> 1 ∀(x(n),y (n)) ∈D, y 6= y (n) (14)

Exercise: write the objective for the non-separable case
(CDS, NYU) DS-GA 1003 March 28, 2023 29 / 55



Recap: hingle loss for binary classification

Hinge loss: a convex upperbound on the 0-1 loss

`hinge(y , ŷ) =max(0,1− yh(x)) (15)
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Generalized hinge loss

What’s the zero-one loss for multiclass classification?

∆(y ,y ′) = I
{
y 6= y ′

}
(16)

In general, can also have different cost for each class.

Upper bound on ∆(y ,y ′).

ŷ
def
= argmax

y ′∈Y

〈
w ,Ψ(x ,y ′)

〉
(17)

=⇒ 〈w ,Ψ(x ,y)〉6 〈w ,Ψ(x , ŷ)〉 (18)
=⇒ ∆(y , ŷ)6 ∆(y , ŷ)− 〈w ,(Ψ(x ,y)−Ψ(x , ŷ))〉 When are they equal? (19)

Generalized hinge loss:

`hinge(y ,x ,w)
def
= max

y ′∈Y

(
∆(y ,y ′)−

〈
w ,
(
Ψ(x ,y)−Ψ(x ,y ′

)
)
〉)

(20)
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Multiclass SVM with Hinge Loss

Recall the hinge loss formulation for binary SVM (without the bias term):

min
w∈Rd

1
2
||w ||2+C

N∑
n=1

max

0,1− y (n)wT x(n)︸ ︷︷ ︸
margin

 .

The multiclass objective:

min
w∈Rd

1
2
||w ||2+C

N∑
n=1

max
y ′∈Y

∆(y ,y ′)−〈w ,
(
Ψ(x ,y)−Ψ(x ,y ′

)
)
〉︸ ︷︷ ︸

margin


∆(y ,y ′) as target margin for each class.

If margin mn,y ′(w) meets or exceeds its target ∆(y (n),y ′) ∀y ∈ Y, then no loss on
example n.
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Recap: What Have We Got?

Problem: Multiclass classification Y= {1, . . . ,k}

Solution 1: One-vs-All
Train k models: h1(x), . . . ,hk(x) : X→ R.

Predict with argmaxy∈Y hy (x).

Gave simple example where this fails for linear classifiers

Solution 2: Multiclass loss
Train one model: h(x ,y) : X×Y→ R.

Prediction involves solving argmaxy∈Y h(x ,y).
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Does it work better in practice?

Paper by Rifkin & Klautau: “In Defense of One-Vs-All Classification” (2004)
Extensive experiments, carefully done

albeit on relatively small UCI datasets

Suggests one-vs-all works just as well in practice
(or at least, the advantages claimed by earlier papers for multiclass methods were not
compelling)

Compared
many multiclass frameworks (including the one we discuss)

one-vs-all for SVMs with RBF kernel

one-vs-all for square loss with RBF kernel (for classification!)

All performed roughly the same

(CDS, NYU) DS-GA 1003 March 28, 2023 34 / 55

http://www.jmlr.org/papers/v5/rifkin04a.html


Why Are We Bothering with Multiclass?

The framework we have developed for multiclass
compatibility features / scoring functions

multiclass margin

target margin / multiclass loss

Generalizes to situations where k is very large and one-vs-all is intractable.

Key idea is that we can generalize across outputs y by using features of y .
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Introduction to Structured Prediction
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Example: Part-of-speech (POS) Tagging

Given a sentence, give a part of speech tag for each word:

x [START]︸ ︷︷ ︸
x0

He︸︷︷︸
x1

eats︸︷︷︸
x2

apples︸ ︷︷ ︸
x3

y [START]︸ ︷︷ ︸
y0

Pronoun︸ ︷︷ ︸
y1

Verb︸︷︷︸
y2

Noun︸ ︷︷ ︸
y3

V= {all English words}∪ {[START],”.”}

X= Vn, n = 1,2,3, . . . [Word sequences of any length]

P= {START,Pronoun,Verb,Noun,Adjective}

Y= Pn, n = 1,2,3, . . .[Part of speech sequence of any length]
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Multiclass Hypothesis Space

Discrete output space: Y(x)
Very large but has structure, e.g., linear chain (sequence labeling), tree (parsing)

Size depends on input x

Base Hypothesis Space: H = {h : X×Y→ R}
h(x ,y) gives compatibility score between input x and output y

Multiclass hypothesis space

F =

{
x 7→ argmax

y∈Y
h(x ,y) | h ∈H

}

Final prediction function is an f ∈ F.

For each f ∈ F there is an underlying compatibility score function h ∈H.
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Structured Prediction

Part-of-speech tagging
x : he eats apples
y : pronoun verb noun

Multiclass hypothesis space:

h(x ,y) = wTΨ(x ,y) (21)

F =

{
x 7→ argmax

y∈Y
h(x ,y) | h ∈H

}
(22)

A special case of multiclass classification

How to design the feature map Ψ? What are the considerations?
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Unary features

A unary feature only depends on
the label at a single position, yi , and x

Example:

φ1(x ,yi ) = 1(xi = runs)1(yi = Verb)
φ2(x ,yi ) = 1(xi = runs)1(yi = Noun)
φ3(x ,yi ) = 1(xi−1 = He)1(xi = runs)1(yi = Verb)
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Markov features

A markov feature only depends on
two adjacent labels, yi−1 and yi , and x

Example:

θ1(x ,yi−1,yi ) = 1(yi−1 = Pronoun)1(yi = Verb)
θ2(x ,yi−1,yi ) = 1(yi−1 = Pronoun)1(yi = Noun)

Reminiscent of Markov models in the output space

Possible to have higher-order features
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Local Feature Vector and Compatibility Score

At each position i in sequence, define the local feature vector (unary and markov):

Ψi (x ,yi−1,yi ) = (φ1(x ,yi ),φ2(x ,yi ), . . . ,

θ1(x ,yi−1,yi ),θ2(x ,yi−1,yi ), . . .)

And local compatibility score at position i : 〈w ,Ψi (x ,yi−1,yi )〉.

The compatibility score for (x ,y) is the sum of local compatibility scores:

∑
i

〈w ,Ψi (x ,yi−1,yi )〉=

〈
w ,
∑
i

Ψi (x ,yi−1,yi )

〉
= 〈w ,Ψ(x ,y)〉 , (23)

where we define the sequence feature vector by

Ψ(x ,y) =
∑
i

Ψi (x ,yi−1,yi ). decomposable
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Structured perceptron

Given a dataset D= {(x ,y)};
Initialize w ← 0;
for iter = 1,2, . . . ,T do

for (x ,y) ∈D do
ŷ = argmaxy ′∈Y(x)w

Tψ(x ,y ′);
if ŷ 6= y then // We’ve made a mistake

w ← w +Ψ(x ,y) ; // Move the scorer towards ψ(x ,y)
w ← w −Ψ(x , ŷ) ; // Move the scorer away from ψ(x , ŷ)

end
end

end

Identical to the multiclass perceptron algorithm except the argmax is now over the structured
output space Y(x).
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Structured hinge loss

Recall the generalized hinge loss

`hinge(y , ŷ)
def
= max

y ′∈Y(x)

(
∆(y ,y ′)+

〈
w ,
(
Ψ(x ,y ′)−Ψ(x ,y

)
)
〉)

(24)

What is ∆(y ,y ′) for two sequences?

Hamming loss is common:

∆(y ,y ′) =
1
L

L∑
i=1

1(yi 6= y ′i )

where L is the sequence length.
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Structured SVM

Exercise:

Write down the objective of structured SVM using the structured hinge loss.

Stochastic sub-gradient descent for structured SVM (similar to HW3 P3)

Compare with the structured perceptron algorithm
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The argmax problem for sequences

Problem To compute predictions, we need to find argmaxy∈Y(x) 〈w ,Ψ(x ,y)〉, and |Y(x)| is
exponentially large.

Observation Ψ(x ,y) decomposes to
∑

i Ψi (x ,y).
Solution Dynamic programming (similar to the Viterbi algorithm)

What’s the running time?

Figure by Daumé III. A course in machine learning. Figure 17.1.
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Conditional random field (CRF)

Recall that we can write logistic regression in a general form:

p(y |x) =
1

Z (x)
exp(w>ψ(x ,y)).

Z is normalization constant: Z (x) =
∑

y∈Y exp(w>ψ(x ,y)).

Example: linear chain {yt }

We can incorporate unary and Markov features: p(y |x) = 1
Z(x) exp(

∑
t w
>ψ(x ,yt ,yt−1))

(CDS, NYU) DS-GA 1003 March 28, 2023 47 / 55



Conditional random field (CRF)

Compared to Structured SVM, CRF has a probabilistic interpretation.

We can draw samples in the output space.

How do we learn w? Maximum log likelihood, and regularization term: λ‖w‖2

Loss function:

l(w) = −
1
N

N∑
i=1

logp(y (i)|x(i))+
1
2
λ‖w‖2

=−
1
N

∑
i

∑
t

∑
k

wkψk(y
(i)
t ,y

(i)
t−1)+

1
N

∑
i

logZ (x(i))+
1
2

∑
k

λw2
k
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Conditional random field (CRF)

Loss function:

l(w) = −
1
N

∑
i

∑
t

∑
k

wkψk(x
(i),y

(i)
t ,y

(i)
t−1)+

1
N

∑
i

logZ (x(i))+
1
2

∑
k

λw2
k

Gradient:

∂l(w)

∂wk
=−

1
N

∑
i

∑
t

∑
k

ψk(x
(i),y

(i)
t ,y

(i)
t−1) (25)

+
1
N

∑
i

∂

∂wk
log
∑
y ′∈Y

exp(
∑
t

∑
k ′

wk ′ψk ′(x
(i),y ′t ,y

′
t−1))+

∑
k

λwk (26)
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Conditional random field (CRF)

What is 1
N

∑
i

∑
t

∑
kψk(x

(i),y
(i)
t ,y

(i)
t−1)?

It is the expectation ψk(x
(i),yt ,yt−1) under the empirical distribution

p̃(x ,y) = 1
N

∑
i 1[x = x(i)]1[y = y (i)].
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Conditional random field (CRF)

What is 1
N

∑
i

∂
∂wk

log
∑

y ′∈Y exp(
∑

t

∑
k ′wk ′ψk ′(x

(i),y ′t ,y
′
t−1))?

1
N

∑
i

∂

∂wk
log
∑
y ′∈Y

exp(
∑
t

∑
k ′

wk ′ψk ′(x
(i),y ′t ,y

′
t−1)) (27)

=
1
N

∑
i

∑
y ′∈Y

exp(
∑
t

∑
k ′

wk ′ψk ′(x
(i),y ′t ,y

′
t−1))

−1

(28)

∑
y ′∈Y

exp(
∑
t

∑
k ′

wk ′ψk ′(x
(i),y

(i)
t ,y

(i)
t−1))

∑
t

ψk(x
(i),y ′t ,y

′
t−1)

 (29)

=
1
N

∑
i

∑
t

∑
y ′∈Y

p(y ′t ,y
′
t−1|x)ψk(x

(i),y ′t ,y
′
t−1) (30)

It is the expectation of ψk(x
(i),y ′t ,y

′
t−1) under the model distribution p(y ′t ,y

′
t−1|x).
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Conditional random field (CRF)

To compute the gradient, we need to infer expectation under the model distribution p(y |x).

Compare the learning algorithms: in structured SVM we need to compute the argmax,
whereas in CRF we need to compute the model expectation.

Both problems are NP-hard for general graphs.
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CRF Inference

In the linear chain structure, we can use the forward-backward algorithm for inference,
similar to Viterbi.

Initiate αj(1) = exp(w>ψ(y1 = j ,x1))

Recursion: αj(t) =
∑

i αi (t−1)exp(w>ψ(yt = j ,yt−1 = i ,xt))

Result: Z (x) =
∑

j αj(T )

Similar for the backward direction.

Test time, again use Viterbi algorithm to infer argmax.

The inference algorithm can be generalized to belief propagation (BP) in a tree structure
(exact inference).

In general graphs, we rely on approximate inference (e.g. loopy belief propagation).
(CDS, NYU) DS-GA 1003 March 28, 2023 53 / 55



Examples

POS tag Relationship between constituents, e.g. NP is likely to be followed by a VP.

Semantic segmentation
Relationship between pixels, e.g. a grass pixel is likely to be next to another grass pixel,
and a sky pixel is likely to be above a grass pixel.

Multi-label learning
An image may contain multiple class labels, e.g. a bus is likely to co-occur with a car.
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Conclusion

Multiclass algorithms

Reduce to binary classification, e.g., OvA, AvA
Good enough for simple multiclass problems

They don’t scale and have simplified assumptions

Generalize binary classification algorithms using multiclass loss
Multi-class perceptron, multi-class logistics regression, multi-class SVM

Structured prediction: Structured SVM, CRF. Data containing structure. Extremely large
output space. Text and image applications.
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