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Parametric Family of Densities

A parametric family of densities is a set

{p(y | θ) : θ ∈Θ} ,

where p(y | θ) is a density on a sample space Y, and
θ is a parameter in a [finite dimensional] parameter space Θ.

This is the common starting point for a treatment of classical or Bayesian statistics.
In this lecture, whenever we say “density”, we could replace it with “mass function.” (and
replace integrals with sums).
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Frequentist or “Classical” Statistics

We’re still working with a parametric family of densities:

{p(y | θ) | θ ∈Θ} .

Assume that p(y | θ) governs the world we are observing, for some θ ∈Θ.

If we knew the right θ ∈Θ, there would be no need for statistics.

But instead of θ, we have data D: y1, . . . ,yn sampled i.i.d. from p(y | θ).

Statistics is about how to get by with D in place of θ.
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Point Estimation

One type of statistical problem is point estimation.

A statistic s = s(D) is any function of the data.

A statistic θ̂= θ̂(D) taking values in Θ is a point estimator of θ.

A good point estimator will have θ̂≈ θ.
Desirable statistical properties of point estimators:

Consistency: As data size n→∞, we get θ̂n→ θ.

Efficiency: (Roughly speaking) θ̂n is as accurate as we can get from a sample of size n.

Maximum likelihood estimators are consistent and efficient under reasonable conditions.
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Example of Point Estimation: Coin Flipping

Parametric family of mass functions:

p(Heads | θ) = θ,

for θ ∈Θ= (0,1).
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Coin Flipping: MLE

Data D= (H,H,T ,T ,T ,T ,T ,H, . . . ,T ), assumed i.i.d. flips.
nh: number of heads
nt : number of tails

Likelihood function for data D:

LD(θ) = p(D | θ) = θnh (1−θ)nt

As usual, it is easier to maximize the log-likelihood function:

θ̂MLE = argmax
θ∈Θ

logLD(θ)

= argmax
θ∈Θ

[nh logθ+nt log(1−θ)]

First order condition (equating the derivative to zero):
nh
θ

−
nt

1−θ
= 0 ⇐⇒ θ=

nh
nh+nt

θ̂MLE is the empirical fraction of heads.
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Bayesian Statistics

Baysian statistics introduces a crucial new ingredient: the prior distribution.

A prior distribution p(θ) is a distribution on the parameter space Θ.

The prior reflects our belief about θ, before seeing any data.
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A Bayesian Model

A [parametric] Bayesian model consists of two pieces:
1 A parametric family of densities

{p(D | θ) | θ ∈Θ} .
2 A prior distribution p(θ) on parameter space Θ.

Putting the pieces together, we get a joint density on θ and D:

p(D,θ) = p(D | θ)p(θ).
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The Posterior Distribution

The posterior distribution for θ is p(θ | D).

Whereas the prior represents belief about θ before observing data D,

The posterior represents the rationally updated belief about θ, after seeing D.
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Expressing the Posterior Distribution

By Bayes rule, can write the posterior distribution as

p(θ | D) =
p(D | θ)p(θ)

p(D)
.

Let’s consider both sides as functions of θ, for fixed D.
Then both sides are densities on Θ and we can write

p(θ | D)︸ ︷︷ ︸
posterior

∝ p(D | θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

.

Where ∝ means we’ve dropped factors that are independent of θ.
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Coin Flipping: Bayesian Model

Recall that we have a parametric family of mass functions:

p(Heads | θ) = θ,

for θ ∈Θ= (0,1).

We need a prior distribution p(θ) on Θ= (0,1).

One convenient choice would be a distribution from the Beta family
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Coin Flipping: Beta Prior

Prior:

θ ∼ Beta(α,β)
p(θ) ∝ θα−1 (1−θ)β−1

Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons
http://commons.wikimedia.org/wiki/File:Beta_distribution_pdf.svg.
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Coin Flipping: Beta Prior

Prior:

θ ∼ Beta(h, t)
p(θ) ∝ θh−1 (1−θ)t−1

Mean of Beta distribution:
Eθ=

h

h+ t

Mode of Beta distribution:

argmax
θ

p(θ) =
h−1

h+ t−2

for h, t > 1.
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Coin Flipping: Posterior

Prior:

θ ∼ Beta(h, t)
p(θ) ∝ θh−1 (1−θ)t−1

Likelihood function
L(θ) = p(D | θ) = θnh (1−θ)nt

Posterior density:

p(θ | D) ∝ p(θ)p(D | θ)

∝ θh−1 (1−θ)t−1×θnh (1−θ)nt

= θh−1+nh (1−θ)t−1+nt
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The Posterior is in the Beta Family!

Prior:

θ ∼ Beta(h, t)
p(θ) ∝ θh−1 (1−θ)t−1

Posterior density:

p(θ | D) ∝ θh−1+nh (1−θ)t−1+nt

Posterior is in the beta family:

θ | D ∼ Beta(h+nh, t+nt)

Interpretation:
Prior initializes our counts with h heads and t tails.
Posterior increments counts by observed nh and nt .
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Sidebar: Conjugate Priors

In this case, the posterior is in the same distribution family as the prior.
Let π be a family of prior distributions on Θ.
Let P parametric family of distributions with parameter space Θ.

Definition
A family of distributions π is conjugate to parametric model P if for any prior in π, the
posterior is always in π.

The beta family is conjugate to the coin-flipping (i.e. Bernoulli) model.
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Coin Flipping: Concrete Example

Suppose we have a coin, possibly biased (parametric probability model):

p(Heads | θ) = θ.

Parameter space θ ∈Θ= [0,1].
Prior distribution: θ ∼ Beta(2,2).
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Example: Coin Flipping

Next, we gather some data D= {H,H,T ,T ,T ,T ,T ,H, . . . ,T }:
Heads: 75 Tails: 60

θ̂MLE = 75
75+60 ≈ 0.556

Posterior distribution: θ | D ∼ Beta(77,62):
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Bayesian Point Estimates

We have the posterior distribution θ | D.
What if someone asks us for a point estimate θ̂ for θ?
Common options:

posterior mean θ̂= E [θ | D]

maximum a posteriori (MAP) estimate θ̂= argmaxθ p(θ | D)

Note: this is the mode of the posterior distribution
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What else can we do with a posterior?

Look at it: display uncertainty estimates to our client
Extract a credible set for θ (a Bayesian confidence interval).

e.g. Interval [a,b] is a 95% credible set if

P(θ ∈ [a,b] | D)> 0.95

Select a point estimate using Bayesian decision theory:
Choose a loss function.
Find action minimizing expected risk w.r.t. posterior
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Bayesian Decision Theory

Ingredients:
Parameter space Θ.
Prior: Distribution p(θ) on Θ.
Action space A.
Loss function: ` :A×Θ→ R.

The posterior risk of an action a ∈A is

r(a) := E [`(θ,a) | D]

=

∫
`(θ,a)p(θ | D)dθ.

It’s the expected loss under the posterior.

A Bayes action a∗ is an action that minimizes posterior risk:

r(a∗) = min
a∈A

r(a)
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Bayesian Point Estimation

General Setup:
Data D generated by p(y | θ), for unknown θ ∈Θ.
We want to produce a point estimate for θ.

Choose:
Prior p(θ) on Θ= R.
Loss `(θ̂,θ)

Find action θ̂ ∈Θ that minimizes the posterior risk:

r(θ̂) = E
[
`(θ̂,θ) | D

]
=

∫
`(θ̂,θ)p(θ | D)dθ
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Important Cases

Squared Loss : `(θ̂,θ) =
(
θ− θ̂

)2
⇒ posterior mean

Zero-one Loss: `(θ, θ̂) = 1(θ 6= θ̂) ⇒ posterior mode

Absolute Loss : `(θ̂,θ) =
∣∣∣θ− θ̂∣∣∣ ⇒ posterior median
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Bayesian Point Estimation: Square Loss

Find action θ̂ ∈Θ that minimizes posterior risk

r(θ̂) =

∫ (
θ− θ̂

)2
p(θ | D)dθ.

Differentiate:

dr(θ̂)

d θ̂
= −

∫
2
(
θ− θ̂

)
p(θ | D)dθ

= −2
∫
θp(θ | D)dθ+2θ̂

∫
p(θ | D)dθ︸ ︷︷ ︸

=1

= −2
∫
θp(θ | D)dθ+2θ̂
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Bayesian Point Estimation: Square Loss

Derivative of posterior risk is

dr(θ̂)

d θ̂
=−2

∫
θp(θ | D)dθ+2θ̂.

First order condition dr(θ̂)

dθ̂
= 0 gives

θ̂ =

∫
θp(θ | D)dθ

= E [θ | D]

The Bayes action for square loss is the posterior mean.

(CDS, NYU) DS-GA 1003 March 21, 2023 29 / 52



Table of Contents

1 Classical Statistics

2 Bayesian Statistics: Introduction

3 Bayesian Decision Theory

4 Interim summary

5 Recap: Conditional Probability Models

6 Bayesian Conditional Probability Models

7 Gaussian Regression Example

8 Gaussian Regression: Closed form

(CDS, NYU) DS-GA 1003 March 21, 2023 30 / 52



Recap and Interpretation

The prior represents belief about θ before observing data D.
The posterior represents rationally updated beliefs after seeing D.
All inferences and action-taking are based on the posterior distribution.
In the Bayesian approach,

No issue of justifying an estimator.
Only choices are

family of distributions, indexed by Θ, and
prior distribution on Θ

For decision making, we need a loss function.
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Conditional Probability Modeling

Input space X

Outcome space Y

Action space A= {p(y) | p is a probability distribution on Y}.
Hypothesis space F contains prediction functions f : X→A.
Prediction function f ∈ F takes input x ∈ X and produces a distribution on Y

A parametric family of conditional densities is a set

{p(y | x ,θ) : θ ∈Θ} ,

where p(y | x ,θ) is a density on outcome space Y for each x in input space X, and
θ is a parameter in a [finite dimensional] parameter space Θ.

This is the common starting point for either classical or Bayesian regression.
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Classical treatment: Likelihood Function

Data: D= (y1, . . . , ,yn)

The probability density for our data D is

p(D | x1, . . . ,xn,θ) =

n∏
i=1

p(yi | xi ,θ).

For fixed D, the function θ 7→ p(D | x ,θ) is the likelihood function:

LD(θ) = p(D | x ,θ),

where x = (x1, . . . ,xn).
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Maximum Likelihood Estimator

The maximum likelihood estimator (MLE) for θ in the family {p(y | x ,θ) | θ ∈Θ} is

θ̂MLE = argmax
θ∈Θ

LD(θ).

MLE corresponds to ERM, if we set the loss to be the negative log-likelihood.
The corresponding prediction function is

f̂ (x) = p(y | x , θ̂MLE).
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Bayesian Conditional Models

Input space X= Rd Outcome space Y= R

The Bayesian conditional model has two components:
A parametric family of conditional densities:

{p(y | x ,θ) : θ ∈Θ}

A prior distribution p(θ) on θ ∈Θ.
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The Posterior Distribution

The prior distribution p(θ) represents our beliefs about θ before seeing D.

The posterior distribution for θ is

p(θ | D,x) ∝ p(D | θ,x)p(θ)

= LD(θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

Posterior represents the rationally updated beliefs after seeing D.
Each θ corresponds to a prediction function,

i.e. the conditional distribution function p(y | x ,θ).
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Point Estimates of Parameter

What if we want point estimates of θ?
We can use Bayesian decision theory to derive point estimates.
We may want to use

θ̂= E [θ | D,x ] (the posterior mean estimate)
θ̂=median[θ | D,x ]
θ̂= argmaxθ∈Θ p(θ | D,x) (the MAP estimate)

depending on our loss function.
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Back to the basic question - Bayesian Prediction Function

Find a function takes input x ∈ X and produces a distribution on Y

In the frequentist approach:
Choose family of conditional probability densities (hypothesis space).

Select one conditional probability from family, e.g. using MLE.

In the Bayesian setting:
We choose a parametric family of conditional densities

{p(y | x ,θ) : θ ∈Θ} ,

and a prior distribution p(θ) on this set.

Having set our Bayesian model, how do we predict a distribution on y for input x?
We don’t need to make a discrete selection from the hypothesis space: we maintain
uncertainty.
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The Prior Predictive Distribution

Suppose we have not yet observed any data.

In the Bayesian setting, we can still produce a prediction function.

The prior predictive distribution is given by

x 7→ p(y | x) =

∫
p(y | x ;θ)p(θ)dθ.

This is an average of all conditional densities in our family, weighted by the prior.
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The Posterior Predictive Distribution

Suppose we’ve already seen data D.
The posterior predictive distribution is given by

x 7→ p(y | x ,D) =

∫
p(y | x ;θ)p(θ | D)dθ.

This is an average of all conditional densities in our family, weighted by the posterior.
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Comparison to Frequentist Approach

In Bayesian statistics we have two distributions on Θ:
the prior distribution p(θ)
the posterior distribution p(θ | D).

These distributions over parameters correspond to distributions on the hypothesis space:

{p(y | x ,θ) : θ ∈Θ} .

In the frequentist approach, we choose θ̂ ∈Θ, and predict

p(y | x , θ̂(D)).

In the Bayesian approach, we integrate out over Θ w.r.t. p(θ | D) and predict with

p(y | x ,D) =

∫
p(y | x ;θ)p(θ | D)dθ
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What if we don’t want a full distribution on y?

Once we have a predictive distribution p(y | x ,D),
we can easily generate single point predictions.

x 7→ E [y | x ,D], to minimize expected square error.

x 7→median[y | x ,D], to minimize expected absolute error

x 7→ argmaxy∈Y p(y | x ,D), to minimize expected 0/1 loss

Each of these can be derived from p(y | x ,D).
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Example in 1-Dimension: Setup

Input space X= [−1,1] Output space Y= R
Given x , the world generates y as

y = w0+w1x +ε,

where ε ∼ N(0,0.22).

Written another way, the conditional probability model is

y | x ,w0,w1 ∼ N
(
w0+w1x , 0.22) .

What’s the parameter space? R2.
Prior distribution: w = (w0,w1) ∼ N

(
0, 1

2 I
)
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Example in 1-Dimension: Prior Situation

Prior distribution: w = (w0,w1) ∼ N
(
0, 1

2 I
)
(Illustrated on left)

On right, y(x) = E [y | x ,w ] = w0+w1x , for randomly chosen w ∼ p(w) =N
(
0, 1

2 I
)
.

Bishop’s PRML Fig 3.7
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Example in 1-Dimension: 1 Observation

On left: posterior distribution; white cross indicates true parameters
On right:

blue circle indicates the training observation
red lines, y(x) = E [y | x ,w ] = w0+w1x , for randomly chosen w ∼ p(w |D) (posterior)

Bishop’s PRML Fig 3.7
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Example in 1-Dimension: 2 and 20 Observations

Bishop’s PRML Fig 3.7
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Closed Form for Posterior

Model:

w ∼ N (0,Σ0)

yi | x ,w i.i.d. N(wT xi ,σ
2)

Design matrix X Response column vector y
Posterior distribution is a Gaussian distribution:

w | D ∼ N(µP ,ΣP)

µP =
(
XTX +σ2Σ−1

0
)−1

XT y

ΣP =
(
σ−2XTX +Σ−1

0
)−1

Posterior Variance ΣP gives us a natural uncertainty measure.
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Closed Form for Posterior

Posterior distribution is a Gaussian distribution:

w | D ∼ N(µP ,ΣP)

µP =
(
XTX +σ2Σ−1

0
)−1

XT y

ΣP =
(
σ−2XTX +Σ−1

0
)−1

If we want point estimates of w , MAP estimator and the posterior mean are given by

ŵ = µP =
(
XTX +σ2Σ−1

0
)−1

XT y

For the prior variance Σ0 =
σ2

λ I , we get

ŵ = µP =
(
XTX +λI

)−1
XT y ,

which is of course the ridge regression solution.
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