Kernel Methods

Ravid Shwartz Ziv

Slides based on Lecture 4d from David Rosenberg's course material.

CDS, NYU

February 21, 2023

Today's lecture:

- Wrap-up SVM
- Motivation of kernel methods: Our data is typically not linearly separable, but we like to work with linear models.
- Adding features (going to high-dimensional space) allow us to use linear models for complex data.
- Kernels allow us to think about similarities rather than feature engineering.

Feature Maps

The Input Space $\mathfrak X$

- ullet Our general learning theory setup: no assumptions about ${\mathcal X}$
- But $\mathfrak{X} = \mathbb{R}^d$ for the specific methods we've developed:
 - Ridge regression
 - Lasso regression
 - Support Vector Machines
- Our hypothesis space for these was all affine functions on R^d :

$$\mathcal{F} = \left\{ x \mapsto w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \right\}.$$

• What if we want to do prediction on inputs not natively in R^d ?

The Input Space $\mathfrak X$

- Often want to use inputs not natively in R^d:
 - Text documents
 - Image files
 - Sound recordings
 - DNA sequences
- But everything in a computer is a sequence of numbers
 - The ith entry of each sequence should have the same "meaning"
 - All the sequences should have the same length

Feature Extraction

Definition

Mapping an input from X to a vector in R^d is called **feature extraction** or **featurization**.

Raw Input

Feature Vector

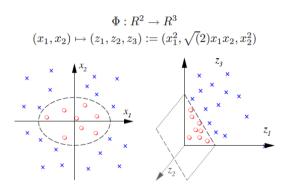
$$\mathcal{X} \xrightarrow{x}$$
 Feature $\phi(x)$ \mathbb{R}^{d}

Linear Models with Explicit Feature Map

- Input space: X (no assumptions)
- Introduce feature map $\phi: \mathcal{X} \to \mathbb{R}^d$
- The feature map maps into the feature space R^d .
- Hypothesis space of affine functions on feature space:

$$\mathcal{F} = \left\{ x \mapsto w^T \varphi(x) + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \right\}.$$

Geometric Example: Two class problem, nonlinear boundary



- With identity feature map $\phi(x) = (x_1, x_2)$ and linear models, can't separate regions
- With appropriate featurization $\phi(x) = (x_1, x_2, x_1^2 + x_2^2)$, becomes linearly separable .
- Video: http://voutu.be/3liCbRZPrZA

Expressivity of Hypothesis Space

- For linear models, to grow the hypothesis spaces, we must add features.
- Sometimes we say a larger hypothesis is more expressive.
 - (can fit more relationships between input and action)
- Many ways to create new features.

Handling Nonlinearity with Linear Methods

Example Task: Predicting Health

- General Philosophy: Extract every feature that might be relevant
- Features for medical diagnosis
 - height
 - weight
 - body temperature
 - blood pressure
 - etc...

Feature Issues for Linear Predictors

- For linear predictors, it's important how features are added
 - The relation between a feature and the label may not be linear
 - There may be complex dependence among features
- Three types of nonlinearities can cause problems:
 - Non-monotonicity
 - Saturation
 - Interactions between features

Non-monotonicity: The Issue

- Feature Map: $\phi(x) = [1, temperature(x)]$
- Action: Predict health score $y \in R$ (positive is good)
- Hypothesis Space \mathcal{F} ={affine functions of temperature}
- Issue:
 - Health is not an affine function of temperature.
 - Affine function can either say
 - Very high is bad and very low is good, or
 - Very low is bad and very high is good,
 - But here, both extremes are bad.

Non-monotonicity: Solution 1

• Transform the input:

$$\phi(x) = \left[1, \{\text{temperature}(x) - 37\}^2\right],$$

where 37 is "normal" temperature in Celsius.

- Ok, but requires manually-specified domain knowledge
 - Do we really need that?
 - What does $w^T \phi(x)$ look like?

Non-monotonicity: Solution 2

• Think less, put in more:

$$\phi(x) = \left[1, \text{temperature}(x), \{\text{temperature}(x)\}^2\right].$$

More expressive than Solution 1.

General Rule

Features should be simple building blocks that can be pieced together.

Saturation: The Issue

- Setting: Find products relevant to user's query
- Input: Product x
- Action: Score the relevance of x to user's query
- Feature Map:

$$\phi(x) = [1, N(x)],$$

where N(x) = number of people who bought x.

• We expect a monotonic relationship between N(x) and relevance, but also expect diminishing return.

Saturation: Solve with nonlinear transform

• Smooth nonlinear transformation:

$$\phi(x) = [1, \log\{1 + N(x)\}]$$

- \bullet $\log\left(\cdot\right)$ good for values with large dynamic ranges
- Discretization (a discontinuous transformation):

$$\phi(x) = (1(0 \leqslant N(x) < 10), 1(10 \leqslant N(x) < 100), \ldots)$$

• Small buckets allow quite flexible relationship

Interactions: The Issue

- Input: Patient information x
- Action: Health score $y \in R$ (higher is better)
- Feature Map

$$\phi(x) = [\mathsf{height}(x), \mathsf{weight}(x)]$$

- Issue: It's the weight *relative* to the height that's important.
- Impossible to get with these features and a linear classifier.
- Need some interaction between height and weight.

Interactions: Approach 1

- Google "ideal weight from height"
- J. D. Robinson's "ideal weight" formula (for a male):

$$weight(kg) = 52 + 1.9 [height(in) - 60]$$

• Make score square deviation between height(h) and ideal weight(w)

$$f(x) = (52 + 1.9 [h(x) - 60] - w(x))^{2}$$

WolframAlpha for complicated Mathematics:

$$f(x) = 3.61h(x)^2 - 3.8h(x)w(x) - 235.6h(x) + w(x)^2 + 124w(x) + 3844$$

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Interactions: Approach 2

• Just include all second order features:

$$\phi(x) = \left[1, h(x), w(x), h(x)^2, w(x)^2, \underbrace{h(x)w(x)}_{\text{cross term}}\right]$$

More flexible, no Google, no WolframAlpha.

General Principle

Simpler building blocks replace a single "smart" feature.

Monomial Interaction Terms

Interaction terms are useful building blocks to model non-linearities in features.

- Suppose we start with $x = (1, x_1, \dots, x_d) \in \mathbb{R}^{d+1} = \mathfrak{X}$.
- Consider adding all **monomials** of degree M: $x_1^{p_1} \cdots x_d^{p_d}$, with $p_1 + \cdots + p_d = M$.
 - Monomials with degree 2 in 2D space: x_1^2 , x_2^2 , x_1x_2
- How many features will we end up with? $\binom{M+d-1}{M}$ ("stars and bars")
- This leads to extremely large data matrices
 - For d = 40 and M = 8, we get 314457495 features.

Big Feature Spaces

Very large feature spaces have two potential issues:

- Overfitting
- Memory and computational costs

Solutions:

- Overfitting we handle with regularization.
- Kernel methods can help with memory and computational costs when we go to high (or infinite) dimensional spaces.

The Kernel Trick

SVM with Explicit Feature Map

- Let $\psi: \mathcal{X} \to \mathsf{R}^d$ be a feature map.
- The SVM objective (with explicit feature map):

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max (0, 1 - y_i w^T \psi(x_i)).$$

- Computation is costly if d is large (e.g. with high-degree monomials)
- Last time we mentioned an equivalent optimization problem from Lagrangian duality.

SVM Dual Problem

• By Lagrangian duality, it is equivalent to solve the following dual problem:

maximize
$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \psi(x_{j})^{T} \psi(x_{i})$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \quad \text{and} \quad \alpha_{i} \in \left[0, \frac{c}{n}\right] \quad \forall i.$$

• If α^* is an optimal value, then

$$w^* = \sum_{i=1}^n \alpha_i^* y_i \psi(x_i)$$
 and $\hat{f}(x) = \sum_{i=1}^n \alpha_i^* y_i \psi(x_i)^T \psi(x)$.

• Key observation: $\psi(x)$ only shows up in inner products with another $\psi(x')$ for both training and inference.

Compute the Inner Products

Consider 2D data. Let's introduce degree-2 monomials using $\psi: R^2 \to R^3$.

$$(x_1, x_2) \mapsto (x_1^2, \sqrt{2}x_1x_2, x_2^2).$$

The inner product is

$$\psi(x)^{T}\psi(x') = x_{1}^{2}x_{1}'^{2} + (\sqrt{2}x_{1}x_{2})(\sqrt{2}x_{1}'x_{2}') + x_{2}^{2}x_{2}'^{2}$$

$$= (x_{1}x_{1}')^{2} + 2(x_{1}x_{1}')(x_{2}x_{2}') + (x_{2}x_{2}')^{2}$$

$$= (x_{1}x_{1}' + x_{2}x_{2}')^{2}$$

$$= (x^{T}x')^{2}$$

We can calculate the inner product $\psi(x)^T \psi(x')$ in the original input space without accessing the features $\psi(x)$!

Compute the Inner Products

Now, consider monomials up to degree-2:

$$(x_1, x_2) \mapsto (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2).$$

The inner product can be computed by

$$\psi(x)^T \psi(x') = (1 + x^T x')^2$$
 (check).

More generally, for features maps producing monomials up to degree-p, we have

$$\psi(x)^T \psi(x') = (1 + x^T x')^p.$$

(Note that the coefficients of each monomial in ψ may not be 1)

Kernel trick: we do not need explicit features to calculate inner products.

- Using explicit features: $O(d^p)$
- Using implicit computation: O(d)

Kernel Function

The Kernel Function

- ullet Input space: χ
- Feature space: \mathcal{H} (a Hilbert space, e.g. \mathbb{R}^d)
- Feature map: $\psi: \mathfrak{X} \to \mathcal{H}$
- The kernel function corresponding to ψ is

$$k(x,x') = \langle \psi(x), \psi(x') \rangle$$
,

where $\langle \cdot, \cdot \rangle$ is the inner product associated with \mathcal{H} .

Why introduce this new notation k(x,x')?

• We can often evaluate k(x, x') without explicitly computing $\psi(x)$ and $\psi(x')$.

When can we use the kernel trick?

Some Methods Can Be "Kernelized"

Definition

A method is **kernelized** if every feature vector $\psi(x)$ only appears inside an inner product with another feature vector $\psi(x')$. This applies to both the optimization problem and the prediction function.

The SVM Dual is a kernelization of the original SVM formulation.

Optimization:

maximize
$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \psi(x_{j})^{T} \psi(x_{i})$$

s.t.
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
 and $\alpha_i \in \left[0, \frac{c}{n}\right] \quad \forall i$.

Prediction:

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha_i^* y_i \psi(x_i)^T \psi(x).$$
DS-GA 1003

The Kernel Matrix

Definition

The **kernel matrix** for a kernel k on $x_1, \ldots, x_n \in \mathcal{X}$ is

$$K = (k(x_i, x_j))_{i,j} = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \cdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix} \in \mathbb{R}^{n \times n}.$$

• In ML this is also called a **Gram matrix**, but traditionally (in linear algebra), Gram matrices are defined without reference to a kernel or feature map.

The Kernel Matrix

- The kernel matrix summarizes all the information we need about the training inputs x_1, \ldots, x_n to solve a kernelized optimization problem.
- In the kernelized SVM, we can replace $\psi(x_i)^T \psi(x_j)$ with K_{ij} :

$$\begin{aligned} \text{maximize}_{\alpha} & & \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K_{ij} \\ \text{s.t.} & & \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \quad \text{and} \quad \alpha_{i} \in \left[0, \frac{c}{n}\right] \ i = 1, \dots, n. \end{aligned}$$

Kernel Methods

Given a kernelized ML algorithm (i.e. all $\psi(x)$'s show up as $\langle \psi(x), \psi(x') \rangle$),

- Can swap out the inner product for a new kernel function.
- New kernel may correspond to a very high-dimensional feature space.
- Once the kernel matrix is computed, the computational cost depends on number of data points *n*, rather than the dimension of feature space *d*.
- Useful when d >> n.
- Computing the kernel matrix may still depend on d and the essence of the **trick** is getting around this O(d) dependence.

Example Kernels

Kernels as Similarity Scores

- Often useful to think of the k(x,x') as a similarity score for x and x'.
- We can design similarity functions without thinking about the explicit feature map, e.g. "string kernels", "graph kerners".
- How do we know that our kernel functions actually correspond to inner products in some feature space?

How to Get Kernels?

- Explicitly construct $\psi(x): \mathcal{X} \to \mathsf{R}^d$ (e.g. monomials) and define $k(x, x') = \psi(x)^T \psi(x')$.
- Directly define the kernel function k(x,x') ("similarity score"), and verify it corresponds to $\langle \psi(x), \psi(x') \rangle$ for some ψ .

There are many theorems to help us with the second approach.

Linear Algebra Review: Positive Semidefinite Matrices

Definition

A real, symmetric matrix $M \in \mathbb{R}^{n \times n}$ is **positive semidefinite (psd)** if for any $x \in \mathbb{R}^n$,

$$x^T M x \geqslant 0.$$

Theorem

The following conditions are each necessary and sufficient for a symmetric matrix M to be positive semidefinite:

- M can be factorized as $M = R^T R$, for some matrix R.
- All eigenvalues of M are greater than or equal to 0.

Positive Definite Kernel

Definition

A symmetric function $k: \mathcal{X} \times \mathcal{X} \to \mathsf{R}$ is a **positive definite (pd)** kernel on \mathcal{X} if for any finite set $\{x_1, \ldots, x_n\} \in \mathcal{X}$ $(n \in \mathbb{N})$, the kernel matrix on this set

$$K = (k(x_i, x_j))_{i,j} = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \cdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix}$$

is a positive semidefinite matrix.

- Symmetric: k(x,x') = k(x',x)
- The kernel matrix needs to be positive semidefinite for any finite set of points.
- Equivalent definition: $\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j k(x_i, x_j) \ge 0$ given $\alpha_i \in \mathbb{R} \ \forall i$.

Mercer's Theorem

Theorem

A symmetric function k(x,x') can be expressed as an inner product

$$k(x,x') = \langle \psi(x), \psi(x') \rangle$$

for some ψ if and only if k(x,x') is **positive definite**.

- Proving a kernel function is positive definite is typically not easy.
- But we can construct new kernels from valid kernels.

Generating New Kernels from Old

• Suppose k, k_1 , $k_2 : \mathcal{X} \times \mathcal{X} \to \mathsf{R}$ are pd kernels. Then so are the following:

$$\begin{array}{lll} k_{\mathsf{new}}(x,x') &=& \alpha k(x,x') \quad \text{for } \alpha \geqslant 0 \quad \text{(non-negative scaling)} \\ k_{\mathsf{new}}(x,x') &=& k_1(x,x') + k_2(x,x') \quad \text{(sum)} \\ k_{\mathsf{new}}(x,x') &=& k_1(x,x')k_2(x,x') \quad \text{(product)} \\ k_{\mathsf{new}}(x,x') &=& k(\psi(x),\psi(x')) \quad \text{for any function } \psi(\cdot) \quad \text{(recursion)} \\ k_{\mathsf{new}}(x,x') &=& f(x)f(x') \quad \text{for any function } f(\cdot) \quad \text{(f as $1D$ feature map)} \end{array}$$

• Lots more theorems to help you construct new kernels from old.

Based on Mark Schmidt's slides:https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf

Linear Kernel

- Input space: $\mathfrak{X} = \mathbb{R}^d$
- Feature space: $\mathcal{H} = \mathbb{R}^d$, with standard inner product
- Feature map

$$\psi(x) = x$$

• Kernel:

$$k(x,x') = x^T x'$$

Quadratic Kernel in R^d

- Input space $\mathfrak{X} = \mathbb{R}^d$
- Feature space: $\mathcal{H} = \mathbb{R}^D$, where $D = d + \binom{d}{2} \approx d^2/2$.
- Feature map:

$$\psi(x) = (x_1, \dots, x_d, x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_ix_j, \dots \sqrt{2}x_{d-1}x_d)^T$$

• Then for $\forall x, x' \in \mathbb{R}^d$

$$k(x,x') = \langle \psi(x), \psi(x') \rangle$$

= $\langle x, x' \rangle + \langle x, x' \rangle^2$

- Computation for inner product with explicit mapping: $O(d^2)$
- Computation for implicit kernel calculation: O(d).

Polynomial Kernel in R^d

- Input space $\mathfrak{X} = \mathbb{R}^d$
- Kernel function:

$$k(x,x') = (1 + \langle x,x' \rangle)^M$$

- \bullet Corresponds to a feature map with all monomials up to degree M.
- For any M, computing the kernel has same computational cost
- ullet Cost of explicit inner product computation grows rapidly in M.

Radial Basis Function (RBF) / Gaussian Kernel

Input space $X = \mathbb{R}^d$

$$k(x,x') = \exp\left(-\frac{\|x-x'\|^2}{2\sigma^2}\right),\,$$

where σ^2 is known as the bandwidth parameter.

- Probably the most common nonlinear kernel.
- Does it act like a similarity score?
- Have we departed from our "inner product of feature vector" recipe?
 - Yes and no: corresponds to an infinite dimensional feature vector

Remaining Questions

Our current recipe:

- Recognize kernelized problem: $\psi(x)$ only occur in inner products $\psi(x)^T \psi(x')$
- Pick a kernel function ("similarity score")
- Compute the kernel matrix (n by n where n is the dataset size)
- Optimize the model and make predictions by accessing the kernel matrix

Next: When can we apply kernelization?

Representer Theorem

SVM solution is in the "span of the data"

• We found the SVM dual problem can be written as:

$$\sup_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_j^T x_i$$
s.t.
$$\sum_{i=1}^n \alpha_i y_i = 0$$

$$\alpha_i \in \left[0, \frac{c}{n}\right] \ i = 1, \dots, n.$$

- Given dual solution α^* , primal solution is $w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$.
- Notice: w^* is a linear combination of training inputs x_1, \ldots, x_n .
- We refer to this phenomenon by saying " w^* is in the span of the data."
 - Or in math, $w^* \in \text{span}(x_1, \dots, x_n)$.

Ridge regression solution is in the "span of the data"

• The ridge regression solution for regularization parameter $\lambda > 0$ is

$$w^* = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2.$$

• This has a closed form solution (Homework #3):

$$w^* = \left(X^T X + \lambda I\right)^{-1} X^T y,$$

where X is the design matrix, with x_1, \ldots, x_n as rows.

Ridge regression solution is in the "span of the data"

• Rearranging $w^* = (X^T X + \lambda I)^{-1} X^T y$, we can show that (also Homework #3):

$$w^* = X^T \underbrace{\left(\frac{1}{\lambda}y - \frac{1}{\lambda}Xw^*\right)}_{\alpha^*}$$
$$= X^T \alpha^* = \sum_{i=1}^n \alpha_i^* x_i.$$

- So w^* is in the span of the data.
 - i.e. $w^* \in \operatorname{span}(x_1, \ldots, x_n)$

If solution is in the span of the data, we can reparameterize

• The ridge regression solution for regularization parameter $\lambda > 0$ is

$$w^* = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2.$$

- We now know that $w^* \in \operatorname{span}(x_1, \ldots, x_n) \subset \mathbb{R}^d$.
- So rather than minimizing over all of \mathbb{R}^d , we can minimize over span (x_1, \dots, x_n) .

$$w^* = \underset{w \in \text{span}(x_1, ..., x_n)}{\arg \min} \frac{1}{n} \sum_{i=1}^n \{ w^T x_i - y_i \}^2 + \lambda ||w||_2^2.$$

 \bullet Let's reparameterize the objective by replacing w as a linear combination of the inputs.

If solution is in the span of the data, we can reparameterize

- Note that for any $w \in \text{span}(x_1, \dots, x_n)$, we have $w = X^T \alpha$, for some $\alpha \in \mathbb{R}^n$.
- So let's replace w with $X^T \alpha$ in our optimization problem:

- To get w^* from the reparameterized optimization problem, we just take $w^* = X^T \alpha^*$.
- We changed the dimension of our optimization variable from d to n. Is this useful?

Consider very large feature spaces

- Suppose we have a 300-million dimension feature space [very large]
 - (e.g. using high order monomial interaction terms as features, as described last lecture)
- Suppose we have a training set of 300,000 examples [fairly large]
- In the original formulation, we solve a 300-million dimension optimization problem.
- In the reparameterized formulation, we solve a 300,000-dimension optimization problem.
- This is why we care about when the solution is in the span of the data.
- This reparameterization is interesting when we have more features than data $(d \gg n)$.

What's next?

- For SVM and ridge regression, we found that the solution is in the span of the data.
 - derived in two rather ad-hoc ways
- Up next: The Representer Theorem, which shows that this "span of the data" result occurs far more generally, and we prove it using basic linear algebra.

Math Review: Inner Product Spaces and Hilbert Spaces

Hypothesis spaces we've seen so far

Finite-dimensional vector space (linear functions):

$$\mathcal{H} = \{ f : \mathcal{X} \to \mathsf{R} \mid f(x) = w^T x, \quad w, x \in \mathsf{R}^d \} .$$

To consider more complex input spaces (e.g. text, images), we use a feature map $\phi: \mathcal{X} \to \mathcal{F}$:

$$\mathcal{H} = \left\{ f \colon \mathcal{X} \to \mathsf{R} \mid f(x) = w^{\mathsf{T}} \varphi(x) \right\} .$$

- Φ does not have to be linear.
- ullet The feature space ${\mathcal F}$ can be ${\mathsf R}^d$ (Euclidean space) or an infinite-dimensional vector space.
- We would like more structure on \mathcal{F} .

Inner Product Space (or "Pre-Hilbert" Spaces)

An inner product space (over reals) is a vector space $\mathcal V$ with an inner product, which is a mapping

$$\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathsf{R}$$

that has the following properties: $\forall x, y, z \in \mathcal{V}$ and $a, b \in \mathbb{R}$:

- Symmetry: $\langle x, y \rangle = \langle y, x \rangle$
- Linearity: $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$
- Positive-definiteness: $\langle x, x \rangle \geqslant 0$ and $\langle x, x \rangle = 0 \iff x = 0_{\mathcal{V}}$.

To show a function $\langle \cdot, \cdot \rangle$ is an inner product, we need to check the above conditions.

Exercise: show that $\langle x, y \rangle \stackrel{\text{def}}{=} x^T y$ is an inner product on \mathbb{R}^d .

Norm from Inner Product

Inner product is nice because it gives us notions of "size", "distance", "angle" in the vector space.

For an inner product space, we can ddefine a norm as

$$||x|| \stackrel{\text{def}}{=} \sqrt{\langle x, x \rangle}.$$

Example

 R^d with standard Euclidean inner product is an inner product space:

$$\langle x, y \rangle := x^T y \qquad \forall x, y \in \mathbb{R}^d.$$

Norm is

$$||x|| = \sqrt{x^T x}$$
.

Orthogonality (Definitions)

Definition

Two vectors are **orthogonal** if $\langle x, x' \rangle = 0$. We denote this by $x \perp x'$.

Definition

x is orthogonal to a set S, i.e. $x \perp S$, if $x \perp s$ for all $x \in S$.

Pythagorean Theorem

Theorem (Pythagorean Theorem)

If
$$x \perp x'$$
, then $||x + x'||^2 = ||x||^2 + ||x'||^2$.

Proof.

We have

$$||x+x'||^2 = \langle x+x', x+x' \rangle$$

$$= \langle x, x \rangle + \langle x, x' \rangle + \langle x', x \rangle + \langle x', x' \rangle$$

$$= ||x||^2 + ||x'||^2.$$

Hilbert Space

- A pre-Hilbert space is a vector space equipped with an inner product.
- We need an additional technical condition for Hilbert space: completeness.
- A space is **complete** if all Cauchy sequences in the space converge to a point in the space.

Definition

A Hilbert space is a complete inner product space.

Example

Any finite dimensional inner produce space is a Hilbert space.

The Representer Theorem

Generalize from SVM Objective

• SVM objective:

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max(0, 1 - y_i [\langle w, x_i \rangle]).$$

• Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$$

where

- $w, x_1, \dots, x_n \in \mathcal{H}$ for some Hilbert space \mathcal{H} . (We typically have $\mathcal{H} = \mathbb{R}^d$.)
- $\|\cdot\|$ is the norm corresponding to the inner product of \mathcal{H} . (i.e. $\|w\| = \sqrt{\langle w, w \rangle}$)
- $R:[0,\infty)\to R$ is nondecreasing (Regularization term), and
- $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary (Loss term).

General Objective Function for Linear Hypothesis Space (Details)

Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$$

- We can map x_i to a feature space.
- The prediction/score function $x \mapsto \langle w, x \rangle$ is linear in w.

General Objective Function for Linear Hypothesis Space (Details)

• Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$$

- Ridge regression and SVM are of this form. (Verify this!)
- What if we penalize with $\lambda ||w||_2$ instead of $\lambda ||w||_2^2$? Yes!
- ullet What if we use lasso regression? No! ℓ_1 norm does not correspond to an inner product.

The Representer Theorem: Quick Summary

• Generalized objective:

$$w^* = \arg\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$$

• Representer theorem tells us we can look for w^* in the span of the data:

$$w^* = \underset{w \in \operatorname{span}(x_1, \dots, x_n)}{\operatorname{arg\,min}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle).$$

• So we can reparameterize as before:

$$\alpha^* = \arg\min_{\alpha \in \mathbb{R}^n} R\left(\left\| \sum_{i=1}^n \alpha_i x_i \right\| \right) + L\left(\left\langle \sum_{i=1}^n \alpha_i x_i, x_1 \right\rangle, \dots, \left\langle \sum_{i=1}^n \alpha_i x_i, x_n \right\rangle \right).$$

• Our reparameterization trick applies much more broadly than SVM and ridge.

The Representer Theorem

Theorem (Representer Theorem)

Let

$$J(w) = R(||w||) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$$

where

- $w, x_1, ..., x_n \in \mathcal{H}$ for some Hilbert space \mathcal{H} . (We typically have $\mathcal{H} = R^d$.)
- $\|\cdot\|$ is the norm corresponding to the inner product of \mathfrak{H} . (i.e. $\|w\| = \sqrt{\langle w, w \rangle}$)
- $R:[0,\infty)\to R$ is nondecreasing (Regularization term), and
- $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary (Loss term).

Then it has a minimizer of the form $w^* = \sum_{i=1}^n \alpha_i x_i$.

The Representer Theorem (Proof sketch)

Reparameterizing our Generalized Objective Function

Rewriting the Objective Function

• Define the training score function $s: \mathbb{R}^d \to \mathbb{R}^n$ by

$$s(w) = \begin{pmatrix} \langle w, x_1 \rangle \\ \vdots \\ \langle w, x_n \rangle \end{pmatrix},$$

which gives the **training score vector** for any w.

• We can then rewrite the objective function as

$$J(w) = R(||w||) + L(s(w)),$$

where now $L: \mathbb{R}^{n \times 1} \to \mathbb{R}$ takes a column vector as input.

• This will allow us to have a slick reparameterized version...

Reparameterize the Generalized Objective

- By the Representer Theorem, it's sufficient to minimize J(w) for w of the form $\sum_{i=1}^{n} \alpha_i x_i$.
- Plugging this form into J(w), we see we can just minimize

$$J_0(\alpha) = R\left(\left\|\sum_{i=1}^n \alpha_i x_i\right\|\right) + L\left(s\left(\sum_{i=1}^n \alpha_i x_i\right)\right)$$

over
$$\alpha = (\alpha_1, \dots, \alpha_n)^T \in \mathbb{R}^{n \times 1}$$
.

- With some new notation, we can substantially simplify
 - the norm piece $||w|| = ||\sum_{i=1}^{n} \alpha_i x_i||$, and
 - the score piece $s(w) = s(\sum_{i=1}^{n} \alpha_i x_i)$.

Simplifying the Reparameterized Norm

• For the norm piece $||w|| = ||\sum_{i=1}^{n} \alpha_i x_i||$, we have

$$||w||^{2} = \langle w, w \rangle$$

$$= \left\langle \sum_{i=1}^{n} \alpha_{i} x_{i}, \sum_{j=1}^{n} \alpha_{j} x_{j} \right\rangle$$

$$= \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} \langle x_{i}, x_{j} \rangle.$$

- This expression involves the n^2 inner products between all pairs of input vectors.
- We often put those values together into a matrix (Gram/Kernel matrix).

Example: Gram Matrix for the Dot Product

- Consider $x_1, \ldots, x_n \in \mathbb{R}^{d \times 1}$ with the standard inner product $\langle x, x' \rangle = x^T x'$.
- Let $X \in \mathbb{R}^{n \times d}$ be the **design matrix**, which has each input vector as a row:

$$X = \begin{pmatrix} -x_1^T - \\ \vdots \\ -x_n^T - \end{pmatrix}.$$

Then the Gram matrix is

$$K = \begin{pmatrix} x_1^T x_1 & \cdots & x_1^T x_n \\ \vdots & \ddots & \cdots \\ x_n^T x_1 & \cdots & x_n^T x_n \end{pmatrix} = \begin{pmatrix} -x_1^T - \\ \vdots \\ -x_n^T - \end{pmatrix} \begin{pmatrix} | & \cdots & | \\ x_1 & \cdots & x_n \\ | & \cdots & | \end{pmatrix}$$
$$= \mathbf{X} \mathbf{X}^T$$

Simplifying the Reparametrized Norm

• With $w = \sum_{i=1}^{n} \alpha_i x_i$, we have

$$||w||^{2} = \langle w, w \rangle$$

$$= \left\langle \sum_{i=1}^{n} \alpha_{i} x_{i}, \sum_{j=1}^{n} \alpha_{j} x_{j} \right\rangle$$

$$= \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} \langle x_{i}, x_{j} \rangle$$

$$= \alpha^{T} K \alpha.$$

Simplifying the Training Score Vector

• The score for x_j for $w = \sum_{i=1}^n \alpha_i x_i$ is

$$\langle w, x_j \rangle = \left\langle \sum_{i=1}^n \alpha_i x_i, x_j \right\rangle = \sum_{i=1}^n \alpha_i \left\langle x_i, x_j \right\rangle$$

• The training score vector is

$$s\left(\sum_{i=1}^{n}\alpha_{i}x_{i}\right) = \begin{pmatrix} \sum_{i=1}^{n}\alpha_{i}\langle x_{i}, x_{1}\rangle \\ \vdots \\ \sum_{i=1}^{n}\alpha_{i}\langle x_{i}, x_{n}\rangle \end{pmatrix} = \begin{pmatrix} \alpha_{1}\langle x_{1}, x_{1}\rangle + \dots + \alpha_{n}\langle x_{n}, x_{1}\rangle \\ \vdots \\ \alpha_{1}\langle x_{1}, x_{n}\rangle + \dots + \alpha_{n}\langle x_{n}, x_{n}\rangle \end{pmatrix}$$
$$= \begin{pmatrix} \langle x_{1}, x_{1}\rangle & \dots & \langle x_{1}, x_{n}\rangle \\ \vdots & \ddots & \dots \\ \langle x_{n}, x_{1}\rangle & \dots & \langle x_{n}, x_{n}\rangle \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{pmatrix}$$
$$= K\alpha$$

Reparameterized Objective

Putting it all together, our reparameterized objective function can be written as

$$J_0(\alpha) = R\left(\left\|\sum_{i=1}^n \alpha_i x_i\right\|\right) + L\left(s\left(\sum_{i=1}^n \alpha_i x_i\right)\right)$$
$$= R\left(\sqrt{\alpha^T K \alpha}\right) + L(K\alpha),$$

which we minimize over $\alpha \in \mathbb{R}^n$.

- All information needed about x_1, \ldots, x_n is summarized in the Gram matrix K.
- We're now minimizing over R^n rather than R^d .
- If $d \gg n$, this can be a big win computationally (at least once K is computed).

Reparameterizing Predictions

Suppose we've found

$$\alpha^* \in \operatorname*{arg\,min}_{\alpha \in \mathsf{R}^n} R\left(\sqrt{\alpha^T K \alpha}\right) + L\left(K\alpha\right).$$

• Then we know $w^* = \sum_{i=1}^n \alpha^* x_i$ is a solution to

$$\underset{w \in \mathcal{H}}{\operatorname{arg\,min}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle).$$

• The prediction on a new point $x \in \mathcal{H}$ is

$$\hat{f}(x) = \langle w^*, x \rangle = \sum_{i=1}^n \alpha_i^* \langle x_i, x \rangle.$$

• To make a new prediction, we may need to touch all the training inputs x_1, \ldots, x_n .

More Notation

• It will be convenient to define the following column vector for any $x \in \mathcal{H}$:

$$k_{\mathsf{x}} = \begin{pmatrix} \langle \mathsf{x}_1, \mathsf{x} \rangle \\ \vdots \\ \langle \mathsf{x}_n, \mathsf{x} \rangle \end{pmatrix}$$

• Then we can write our predictions on a new point x as

$$\hat{f}(x) = k_x^T \alpha^*$$

Summary So Far

- Original plan:
 - Find $w^* \in \operatorname{arg\,min}_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$
 - Predict with $\hat{f}(x) = \langle w^*, x \rangle$.
- We showed that the following is equivalent:
 - Find $\alpha^* \in \operatorname{arg\,min}_{\alpha \in \mathbb{R}^n} R\left(\sqrt{\alpha^T K \alpha}\right) + L(K \alpha)$
 - Predict with $\hat{f}(x) = k_x^T \alpha^*$, where

$$K = \begin{pmatrix} \langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \\ \vdots & \ddots & \cdots \\ \langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle \end{pmatrix} \quad \text{and} \quad k_x = \begin{pmatrix} \langle x_1, x \rangle \\ \vdots \\ \langle x_n, x \rangle \end{pmatrix}$$

• Every element $x \in \mathcal{H}$ occurs inside an inner products with a training input $x_i \in \mathcal{H}$.

Kernelization

Definition

A method is **kernelized** if every feature vector $\psi(x)$ only appears inside an inner product with another feature vector $\psi(x')$. This applies to both the optimization problem and the prediction function.

• Here we are using $\psi(x) = x$. Thus finding

$$\alpha^* \in \operatorname*{arg\,min}_{\alpha \in \mathsf{R}^n} R\left(\sqrt{\alpha^T K \alpha}\right) + L(K \alpha)$$

and making predictions with $\hat{f}(x) = k_x^T \alpha^*$ is a kernelization of finding

$$w^* \in \arg\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$$

and making predictions with $\hat{f}(x) = \langle w^*, x \rangle$.

Summary

- We used duality for SVM and bare hands for ridge regression to find their kernelized version.
- Many other algorithms can be kernelized.
- Our principled tool for kernelization is reparameterization by the representer theorem.
- Representer theorem says that all norm-regularized linear models can be kernelized.
- ullet Once kernelized, we can apply the kernel trick: doesn't need to represent $\varphi(x)$ explicitly.