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Today’s lecture:
Wrap-up SVM

Motivation of kernel methods: Our data is typically not linearly separable, but we like to
work with linear models.

Adding features (going to high-dimensional space) allow us to use linear models for
complex data.

Kernels allow us to think about similarities rather than feature engineering.
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Feature Maps
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The Input Space X

Our general learning theory setup: no assumptions about X

But X= Rd for the specific methods we’ve developed:
Ridge regression

Lasso regression

Support Vector Machines

Our hypothesis space for these was all affine functions on Rd :

F =
{
x 7→ wT x +b | w ∈ Rd ,b ∈ R

}
.

What if we want to do prediction on inputs not natively in Rd?
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The Input Space X

Often want to use inputs not natively in Rd :
Text documents

Image files

Sound recordings

DNA sequences

But everything in a computer is a sequence of numbers
The ith entry of each sequence should have the same “meaning”

All the sequences should have the same length
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Feature Extraction

Definition

Mapping an input from X to a vector in Rd is called feature extraction or featurization.
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Linear Models with Explicit Feature Map

Input space: X (no assumptions)

Introduce feature map φ : X→ Rd

The feature map maps into the feature space Rd .

Hypothesis space of affine functions on feature space:

F =
{
x 7→ wTφ(x)+b | w ∈ Rd ,b ∈ R

}
.
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Geometric Example: Two class problem, nonlinear boundary

With identity feature map φ(x) = (x1,x2) and linear models, can’t separate regions

With appropriate featurization φ(x) =
(
x1,x2,x

2
1 + x2

2
)
, becomes linearly separable .

Video: http://youtu.be/3liCbRZPrZA
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Expressivity of Hypothesis Space

For linear models, to grow the hypothesis spaces, we must add features.

Sometimes we say a larger hypothesis is more expressive.
(can fit more relationships between input and action)

Many ways to create new features.

Ravid Shwartz Ziv Slides based on Lecture 4d from David Rosenberg’s course material. (CDS, NYU)DS-GA 1003 February 21, 2023 9 / 80

https://davidrosenberg.github.io/mlcourse/Archive/2019/Lectures/04d.kernel-methods.pdf
https://github.com/davidrosenberg/mlcourse


Handling Nonlinearity with Linear Methods
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Example Task: Predicting Health

General Philosophy: Extract every feature that might be relevant

Features for medical diagnosis
height

weight

body temperature

blood pressure

etc...

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Feature Issues for Linear Predictors

For linear predictors, it’s important how features are added
The relation between a feature and the label may not be linear

There may be complex dependence among features

Three types of nonlinearities can cause problems:
Non-monotonicity

Saturation

Interactions between features

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Non-monotonicity: The Issue

Feature Map: φ(x) = [1, temperature(x)]

Action: Predict health score y ∈ R (positive is good)

Hypothesis Space F= {affine functions of temperature}

Issue:
Health is not an affine function of temperature.

Affine function can either say
Very high is bad and very low is good, or
Very low is bad and very high is good,
But here, both extremes are bad.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Non-monotonicity: Solution 1

Transform the input:
φ(x) =

[
1, {temperature(x)-37}2

]
,

where 37 is “normal” temperature in Celsius.

Ok, but requires manually-specified domain knowledge
Do we really need that?

What does wTφ(x) look like?

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Non-monotonicity: Solution 2

Think less, put in more:

φ(x) =
[
1, temperature(x), {temperature(x)}2

]
.

More expressive than Solution 1.

General Rule
Features should be simple building blocks that can be pieced together.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.

Ravid Shwartz Ziv Slides based on Lecture 4d from David Rosenberg’s course material. (CDS, NYU)DS-GA 1003 February 21, 2023 15 / 80

https://davidrosenberg.github.io/mlcourse/Archive/2019/Lectures/04d.kernel-methods.pdf
https://github.com/davidrosenberg/mlcourse


Saturation: The Issue

Setting: Find products relevant to user’s query

Input: Product x

Action: Score the relevance of x to user’s query

Feature Map:
φ(x) = [1,N(x)] ,

where N(x) = number of people who bought x .

We expect a monotonic relationship between N(x) and relevance, but also expect
diminishing return.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Saturation: Solve with nonlinear transform

Smooth nonlinear transformation:

φ(x) = [1, log {1+N(x)}]

log (·) good for values with large dynamic ranges

Discretization (a discontinuous transformation):

φ(x) = (1(06 N(x)< 10),1(106 N(x)< 100), . . .)

Small buckets allow quite flexible relationship

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Interactions: The Issue

Input: Patient information x

Action: Health score y ∈ R (higher is better)

Feature Map
φ(x) = [height(x),weight(x)]

Issue: It’s the weight relative to the height that’s important.

Impossible to get with these features and a linear classifier.

Need some interaction between height and weight.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Interactions: Approach 1

Google “ideal weight from height”

J. D. Robinson’s “ideal weight” formula (for a male):

weight(kg)= 52+1.9 [height(in)−60]

Make score square deviation between height(h) and ideal weight(w)

f (x) = (52+1.9 [h(x)−60]−w(x))2

WolframAlpha for complicated Mathematics:

f (x) = 3.61h(x)2−3.8h(x)w(x)−235.6h(x)+w(x)2+124w(x)+3844

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Interactions: Approach 2

Just include all second order features:

φ(x) =

1,h(x),w(x),h(x)2,w(x)2, h(x)w(x)︸ ︷︷ ︸
cross term


More flexible, no Google, no WolframAlpha.

General Principle
Simpler building blocks replace a single “smart” feature.

From Percy Liang’s "Lecture 3" slides from Stanford’s CS221, Autumn 2014.
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Monomial Interaction Terms

Interaction terms are useful building blocks to model non-linearities in features.

Suppose we start with x = (1,x1, . . . ,xd) ∈ Rd+1 = X.

Consider adding all monomials of degree M: xp1
1 · · ·x

pd
d , with p1+ · · ·+pd =M.

Monomials with degree 2 in 2D space: x2
1 , x

2
2 , x1x2

How many features will we end up with?
(
M+d−1

M

)
(“stars and bars”)

This leads to extremely large data matrices
For d = 40 and M = 8, we get 314457495 features.
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Big Feature Spaces

Very large feature spaces have two potential issues:
Overfitting

Memory and computational costs

Solutions:
Overfitting we handle with regularization.

Kernel methods can help with memory and computational costs when we go to high (or
infinite) dimensional spaces.
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The Kernel Trick
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SVM with Explicit Feature Map

Let ψ : X→ Rd be a feature map.

The SVM objective (with explicit feature map):

min
w∈Rd

1
2
||w ||2+

c

n

n∑
i=1

max
(
0,1− yiw

Tψ(xi )
)
.

Computation is costly if d is large (e.g. with high-degree monomials)

Last time we mentioned an equivalent optimization problem from Lagrangian duality.
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SVM Dual Problem

By Lagrangian duality, it is equivalent to solve the following dual problem:

maximize
n∑

i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjψ(xj)
T ψ(xi )

s.t.
n∑

i=1

αiyi = 0 and αi ∈
[
0,
c

n

]
∀i .

If α∗ is an optimal value, then

w∗ =
n∑

i=1

α∗i yiψ(xi ) and f̂ (x) =
n∑

i=1

α∗i yiψ(xi )
Tψ(x).

Key observation: ψ(x) only shows up in inner products with another ψ(x ′) for both
training and inference.
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Compute the Inner Products

Consider 2D data. Let’s introduce degree-2 monomials using ψ : R2→ R3.

(x1,x2) 7→ (x2
1 ,
√
2x1x2,x

2
2 ).

The inner product is

ψ(x)Tψ(x ′) = x2
1x
′
1
2
+(
√
2x1x2)(

√
2x ′1x

′
2)+ x2

2x
′
2
2

= (x1x
′
1)

2+2(x1x
′
1)(x2x

′
2)+(x2x

′
2)

2

= (x1x
′
1 + x2x

′
2)

2

= (xT x ′)2

We can calculate the inner product ψ(x)Tψ(x ′) in the original input space without accessing
the features ψ(x)!
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Compute the Inner Products

Now, consider monomials up to degree-2:

(x1,x2) 7→ (1,
√
2x1,
√
2x2,x

2
1 ,
√
2x1x2,x

2
2 ).

The inner product can be computed by

ψ(x)Tψ(x ′) = (1+ xT x ′)2 (check).

More generally, for features maps producing monomials up to degree-p, we have

ψ(x)Tψ(x ′) = (1+ xT x ′)p.

(Note that the coefficients of each monomial in ψ may not be 1)

Kernel trick: we do not need explicit features to calculate inner products.

Using explicit features: O(dp)

Using implicit computation: O(d)
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Kernel Function
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The Kernel Function

Input space: X

Feature space: H (a Hilbert space, e.g. Rd)

Feature map: ψ : X→H

The kernel function corresponding to ψ is

k(x ,x ′) =
〈
ψ(x),ψ(x ′)

〉
,

where 〈·, ·〉 is the inner product associated with H.

Why introduce this new notation k(x ,x ′)?

We can often evaluate k(x ,x ′) without explicitly computing ψ(x) and ψ(x ′).

When can we use the kernel trick?
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Some Methods Can Be “Kernelized”

Definition
A method is kernelized if every feature vector ψ(x) only appears inside an inner product with
another feature vector ψ(x ′). This applies to both the optimization problem and the prediction
function.

The SVM Dual is a kernelization of the original SVM formulation.

Optimization:

maximize
n∑

i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjψ(xj)
T ψ(xi )

s.t.
n∑

i=1

αiyi = 0 and αi ∈
[
0,
c

n

]
∀i .

Prediction:
f̂ (x) =

n∑
i=1

α∗i yiψ(xi )
Tψ(x).
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The Kernel Matrix

Definition
The kernel matrix for a kernel k on x1, . . . ,xn ∈ X is

K =
(
k(xi ,xj)

)
i ,j

=

k(x1,x1) · · · k(x1,xn)
...

. . . · · ·
k(xn,x1) · · · k(xn,xn)

 ∈ Rn×n.

In ML this is also called a Gram matrix, but traditionally (in linear algebra), Gram
matrices are defined without reference to a kernel or feature map.
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The Kernel Matrix

The kernel matrix summarizes all the information we need about the training inputs
x1, . . . ,xn to solve a kernelized optimization problem.

In the kernelized SVM, we can replace ψ(xi )Tψ(xj) with Kij :

maximizeα
n∑

i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjKij

s.t.
n∑

i=1

αiyi = 0 and αi ∈
[
0,
c

n

]
i = 1, . . . ,n.
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Kernel Methods

Given a kernelized ML algorithm (i.e. all ψ(x)’s show up as 〈ψ(x),ψ(x ′)〉),

Can swap out the inner product for a new kernel function.

New kernel may correspond to a very high-dimensional feature space.

Once the kernel matrix is computed, the computational cost depends on number of data
points n, rather than the dimension of feature space d .

Useful when d >> n.

Computing the kernel matrix may still depend on d and the essence of the trick is getting
around this O(d) dependence.
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Example Kernels
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Kernels as Similarity Scores

Often useful to think of the k(x ,x ′) as a similarity score for x and x ′.

We can design similarity functions without thinking about the explicit feature map, e.g.
“string kernels”, “graph kerners”.

How do we know that our kernel functions actually correspond to inner products in some
feature space?
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How to Get Kernels?

Explicitly construct ψ(x) : X→ Rd (e.g. monomials) and define k(x ,x ′) =ψ(x)Tψ(x ′).

Directly define the kernel function k(x ,x ′) (“similarity score”), and verify it corresponds to
〈ψ(x),ψ(x ′)〉 for some ψ.

There are many theorems to help us with the second approach.
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Linear Algebra Review: Positive Semidefinite Matrices

Definition

A real, symmetric matrix M ∈ Rn×n is positive semidefinite (psd) if for any x ∈ Rn,

xTMx > 0.

Theorem
The following conditions are each necessary and sufficient for a symmetric matrix M to be
positive semidefinite:

M can be factorized as M = RTR , for some matrix R .

All eigenvalues of M are greater than or equal to 0.
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Positive Definite Kernel

Definition
A symmetric function k :X×X→ R is a positive definite (pd) kernel on X if for any finite set
{x1, . . . ,xn} ∈ X (n ∈ N), the kernel matrix on this set

K =
(
k(xi ,xj)

)
i ,j

=

k(x1,x1) · · · k(x1,xn)
...

. . . · · ·
k(xn,x1) · · · k(xn,xn)


is a positive semidefinite matrix.

Symmetric: k(x ,x ′) = k(x ′,x)

The kernel matrix needs to be positive semidefinite for any finite set of points.

Equivalent definition:
∑n

i=1
∑n

j=1αiαjk(xi ,xj)> 0 given αi ∈ R ∀i .
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Mercer’s Theorem

Theorem
A symmetric function k(x ,x ′) can be expressed as an inner product

k(x ,x ′) =
〈
ψ(x),ψ(x ′)

〉
for some ψ if and only if k(x ,x ′) is positive definite.

Proving a kernel function is positive definite is typically not easy.

But we can construct new kernels from valid kernels.
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Generating New Kernels from Old

Suppose k ,k1,k2 : X×X→ R are pd kernels. Then so are the following:

knew(x ,x ′) = αk(x ,x ′) for α> 0 (non-negative scaling)
knew(x ,x ′) = k1(x ,x

′)+k2(x ,x
′) (sum)

knew(x ,x ′) = k1(x ,x
′)k2(x ,x

′) (product)
knew(x ,x ′) = k(ψ(x),ψ(x ′)) for any function ψ(·) (recursion)
knew(x ,x ′) = f (x)f (x ′) for any function f (·) (f as 1D feature map)

Lots more theorems to help you construct new kernels from old.

Based on Mark Schmidt’s slides:https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf
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Linear Kernel

Input space: X= Rd

Feature space: H = Rd , with standard inner product

Feature map
ψ(x) = x

Kernel:
k(x ,x ′) = xT x ′
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Quadratic Kernel in Rd

Input space X= Rd

Feature space: H = RD , where D = d +
(
d
2

)
≈ d2/2.

Feature map:

ψ(x) = (x1, . . . ,xd ,x
2
1 , . . . ,x

2
d ,
√
2x1x2, . . . ,

√
2xixj , . . .

√
2xd−1xd)

T

Then for ∀x ,x ′ ∈ Rd

k(x ,x ′) =
〈
ψ(x),ψ(x ′)

〉
=

〈
x ,x ′

〉
+
〈
x ,x ′

〉2
Computation for inner product with explicit mapping: O(d2)

Computation for implicit kernel calculation: O(d).
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Polynomial Kernel in Rd

Input space X= Rd

Kernel function:
k(x ,x ′) =

(
1+
〈
x ,x ′

〉)M
Corresponds to a feature map with all monomials up to degree M.

For any M, computing the kernel has same computational cost

Cost of explicit inner product computation grows rapidly in M.
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Radial Basis Function (RBF) / Gaussian Kernel

Input space X= Rd

k(x ,x ′) = exp

(
−
‖x − x ′‖2

2σ2

)
,

where σ2 is known as the bandwidth parameter.

Probably the most common nonlinear kernel.

Does it act like a similarity score?

Have we departed from our “inner product of feature vector” recipe?
Yes and no: corresponds to an infinite dimensional feature vector
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Remaining Questions

Our current recipe:
Recognize kernelized problem: ψ(x) only occur in inner products ψ(x)Tψ(x ′)

Pick a kernel function (“similarity score”)

Compute the kernel matrix (n by n where n is the dataset size)

Optimize the model and make predictions by accessing the kernel matrix

Next: When can we apply kernelization?
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Representer Theorem
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SVM solution is in the “span of the data”

We found the SVM dual problem can be written as:

sup
α∈Rn

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

Given dual solution α∗, primal solution is w∗=
∑n

i=1α
∗
i yixi .

Notice: w∗ is a linear combination of training inputs x1, . . . ,xn.

We refer to this phenomenon by saying “w∗ is in the span of the data.”
Or in math, w∗ ∈ span(x1, . . . ,xn).
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Ridge regression solution is in the “span of the data”

The ridge regression solution for regularization parameter λ > 0 is

w∗ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖22.

This has a closed form solution (Homework #3):

w∗ =
(
XTX +λI

)−1
XT y ,

where X is the design matrix, with x1, . . . ,xn as rows.
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Ridge regression solution is in the “span of the data”

Rearranging w∗ =
(
XTX +λI

)−1
XT y , we can show that (also Homework #3):

w∗ = XT

(
1
λ
y −

1
λ
Xw∗

)
︸ ︷︷ ︸

α∗

= XTα∗ =

n∑
i=1

α∗i xi .

So w∗ is in the span of the data.
i.e. w∗ ∈ span(x1, . . . ,xn)
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If solution is in the span of the data, we can reparameterize

The ridge regression solution for regularization parameter λ > 0 is

w∗ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖22.

We now know that w∗ ∈ span(x1, . . . ,xn)⊂ Rd .

So rather than minimizing over all of Rd , we can minimize over span(x1, . . . ,xn).

w∗ = argmin
w∈span(x1,...,xn)

1
n

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖22.

Let’s reparameterize the objective by replacing w as a linear combination of the inputs.
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If solution is in the span of the data, we can reparameterize

Note that for any w ∈ span(x1, . . . ,xn), we have w = XTα, for some α ∈ Rn.

So let’s replace w with XTα in our optimization problem:

[original] w∗ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖22

[reparameterized] α∗ = argmin
α∈Rn

1
n

n∑
i=1

{(
XTα

)T
xi − yi

}2
+λ‖XTα‖22.

To get w∗ from the reparameterized optimization problem, we just take w∗ = XTα∗.

We changed the dimension of our optimization variable from d to n. Is this useful?
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Consider very large feature spaces

Suppose we have a 300-million dimension feature space [very large]
(e.g. using high order monomial interaction terms as features, as described last
lecture)

Suppose we have a training set of 300,000 examples [fairly large]

In the original formulation, we solve a 300-million dimension optimization problem.

In the reparameterized formulation, we solve a 300,000-dimension optimization problem.

This is why we care about when the solution is in the span of the data.

This reparameterization is interesting when we have more features than data (d � n).
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What’s next?

For SVM and ridge regression, we found that the solution is in the span of the data.
derived in two rather ad-hoc ways

Up next: The Representer Theorem, which shows that this “span of the data” result occurs
far more generally, and we prove it using basic linear algebra.
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Math Review: Inner Product Spaces and Hilbert Spaces
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Hypothesis spaces we’ve seen so far

Finite-dimensional vector space (linear functions):

H =
{
f : X→ R | f (x) = wT x , w ,x ∈ Rd

}
.

To consider more complex input spaces (e.g. text, images), we use a feature map φ : X→ F:

H =
{
f : X→ R | f (x) = wTφ(x)

}
.

φ does not have to be linear.

The feature space F can be Rd (Euclidean space) or an infinite-dimensional vector space.

We would like more structure on F.
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Inner Product Space (or “Pre-Hilbert” Spaces)

An inner product space (over reals) is a vector space V with an inner product, which is a
mapping

〈·, ·〉 : V×V→ R

that has the following properties: ∀x ,y ,z ∈ V and a,b ∈ R:

Symmetry: 〈x ,y〉= 〈y ,x〉

Linearity: 〈ax +by ,z〉= a 〈x ,z〉+b 〈y ,z〉

Positive-definiteness: 〈x ,x〉> 0 and 〈x ,x〉= 0 ⇐⇒ x = 0V.

To show a function 〈·, ·〉 is an inner product, we need to check the above conditions.

Exercise: show that 〈x ,y〉 def
= xT y is an inner product on Rd .
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Norm from Inner Product

Inner product is nice because it gives us notions of “size”, “distance”, “angle” in the vector space.

For an inner product space, we can ddefine a norm as

‖x‖ def
=
√
〈x ,x〉.

Example

Rd with standard Euclidean inner product is an inner product space:

〈x ,y〉 := xT y ∀x ,y ∈ Rd .

Norm is
‖x‖=

√
xT x .
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Orthogonality (Definitions)

Definition
Two vectors are orthogonal if 〈x ,x ′〉= 0. We denote this by x ⊥ x ′.

Definition
x is orthogonal to a set S , i.e. x ⊥ S , if x ⊥ s for all x ∈ S .
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Pythagorean Theorem

Theorem (Pythagorean Theorem)

If x ⊥ x ′, then ‖x + x ′‖2 = ‖x‖2+‖x ′‖2.

Proof.
We have

‖x + x ′‖2 =
〈
x + x ′,x + x ′

〉
= 〈x ,x〉+

〈
x ,x ′

〉
+
〈
x ′,x

〉
+
〈
x ′,x ′

〉
= ‖x‖2+‖x ′‖2.
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Hilbert Space

A pre-Hilbert space is a vector space equipped with an inner product.

We need an additional technical condition for Hilbert space: completeness.

A space is complete if all Cauchy sequences in the space converge to a point in the space.

Definition
A Hilbert space is a complete inner product space.

Example
Any finite dimensional inner produce space is a Hilbert space.
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The Representer Theorem
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Generalize from SVM Objective

SVM objective:

min
w∈Rd

1
2
‖w‖2+ c

n

n∑
i=1

max(0,1− yi [〈w ,xi 〉]) .

Generalized objective:

min
w∈H

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉) ,

where
w ,x1, . . . ,xn ∈H for some Hilbert space H. (We typically have H = Rd .)

‖ · ‖ is the norm corresponding to the inner product of H. (i.e. ‖w‖=
√
〈w ,w〉)

R : [0,∞)→ R is nondecreasing (Regularization term), and

L : Rn→ R is arbitrary (Loss term).
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General Objective Function for Linear Hypothesis Space (Details)

Generalized objective:

min
w∈H

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉)

We can map xi to a feature space.

The prediction/score function x 7→ 〈w ,x〉 is linear in w .
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General Objective Function for Linear Hypothesis Space (Details)

Generalized objective:

min
w∈H

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉)

Ridge regression and SVM are of this form. (Verify this!)

What if we penalize with λ‖w‖2 instead of λ‖w‖22? Yes!

What if we use lasso regression? No! `1 norm does not correspond to an inner product.
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The Representer Theorem: Quick Summary

Generalized objective:

w∗ = argmin
w∈H

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉)

Representer theorem tells us we can look for w∗ in the span of the data:

w∗ = argmin
w∈span(x1,...,xn)

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉) .

So we can reparameterize as before:

α∗ = argmin
α∈Rn

R

(∥∥∥∥∥
n∑

i=1

αixi

∥∥∥∥∥
)
+L

(〈
n∑

i=1

αixi ,x1

〉
, . . . ,

〈
n∑

i=1

αixi ,xn

〉)
.

Our reparameterization trick applies much more broadly than SVM and ridge.
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The Representer Theorem

Theorem (Representer Theorem)

Let
J(w) = R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉) ,

where
w ,x1, . . . ,xn ∈H for some Hilbert space H. (We typically have H = Rd .)

‖ · ‖ is the norm corresponding to the inner product of H. (i.e. ‖w‖=
√
〈w ,w〉)

R : [0,∞)→ R is nondecreasing (Regularization term), and

L : Rn→ R is arbitrary (Loss term).
Then it has a minimizer of the form w∗ =

∑n
i=1αixi .
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The Representer Theorem (Proof sketch)
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Reparameterizing our Generalized Objective Function
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Rewriting the Objective Function

Define the training score function s : Rd → Rn by

s(w) =

〈w ,x1〉
...

〈w ,xn〉

 ,

which gives the training score vector for any w .

We can then rewrite the objective function as

J(w) = R (‖w‖)+L(s(w)) ,

where now L : Rn×1→ R takes a column vector as input.

This will allow us to have a slick reparameterized version...
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Reparameterize the Generalized Objective

By the Representer Theorem, it’s sufficient to minimize J(w) for w of the form
∑n

i=1αixi .

Plugging this form into J(w), we see we can just minimize

J0(α) = R

(∥∥∥∥∥
n∑

i=1

αixi

∥∥∥∥∥
)
+L

(
s

(
n∑

i=1

αixi

))

over α= (α1, . . . ,αn)
T ∈ Rn×1.

With some new notation, we can substantially simplify
the norm piece ‖w‖= ‖

∑n
i=1αixi‖, and

the score piece s(w) = s (
∑n

i=1αixi ).
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Simplifying the Reparameterized Norm

For the norm piece ‖w‖= ‖
∑n

i=1αixi‖, we have

‖w‖2 = 〈w ,w〉

=

〈
n∑

i=1

αixi ,
n∑

j=1

αjxj

〉

=

n∑
i ,j=1

αiαj 〈xi ,xj〉 .

This expression involves the n2 inner products between all pairs of input vectors.

We often put those values together into a matrix (Gram/Kernel matrix).
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Example: Gram Matrix for the Dot Product

Consider x1, . . . ,xn ∈ Rd×1 with the standard inner product 〈x ,x ′〉= xT x ′.

Let X ∈ Rn×d be the design matrix, which has each input vector as a row:

X =

−xT1 −
...

−xTn −

 .

Then the Gram matrix is

K =

xT1 x1 · · · xT1 xn
...

. . . · · ·
xTn x1 · · · xTn xn

=

−xT1 −
...

−xTn −


 | · · · |

x1 · · · xn
| · · · |


= XXT
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Simplifying the Reparametrized Norm

With w =
∑n

i=1αixi , we have

‖w‖2 = 〈w ,w〉

=

〈
n∑

i=1

αixi ,
n∑

j=1

αjxj

〉

=

n∑
i ,j=1

αiαj 〈xi ,xj〉

= αTKα.
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Simplifying the Training Score Vector

The score for xj for w =
∑n

i=1αixi is

〈w ,xj〉 =

〈
n∑

i=1

αixi ,xj

〉
=

n∑
i=1

αi 〈xi ,xj〉

The training score vector is

s

(
n∑

i=1

αixi

)
=


∑n

i=1αi 〈xi ,x1〉
...∑n

i=1αi 〈xi ,xn〉

=

α1 〈x1,x1〉+ · · ·+αn 〈xn,x1〉
...

α1 〈x1,xn〉+ · · ·+αn 〈xn,xn〉


=

〈x1,x1〉 · · · 〈x1,xn〉
...

. . . · · ·
〈xn,x1〉 · · · 〈xn,xn〉


α1

...
αn


= Kα
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Reparameterized Objective

Putting it all together, our reparameterized objective function can be written as

J0(α) = R

(∥∥∥∥∥
n∑

i=1

αixi

∥∥∥∥∥
)
+L

(
s

(
n∑

i=1

αixi

))
= R

(√
αTKα

)
+L(Kα) ,

which we minimize over α ∈ Rn.

All information needed about x1, . . . ,xn is summarized in the Gram matrix K .

We’re now minimizing over Rn rather than Rd .

If d � n, this can be a big win computationally (at least once K is computed).
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Reparameterizing Predictions

Suppose we’ve found
α∗ ∈ argmin

α∈Rn
R
(√
αTKα

)
+L(Kα) .

Then we know w∗ =
∑n

i=1α
∗xi is a solution to

argmin
w∈H

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉) .

The prediction on a new point x ∈H is

f̂ (x) = 〈w∗,x〉=
n∑

i=1

α∗i 〈xi ,x〉 .

To make a new prediction, we may need to touch all the training inputs x1, . . . ,xn.
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More Notation

It will be convenient to define the following column vector for any x ∈H:

kx =

〈x1,x〉
...

〈xn,x〉


Then we can write our predictions on a new point x as

f̂ (x) = kTx α
∗
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Summary So Far

Original plan:
Find w∗ ∈ argminw∈HR (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉)
Predict with f̂ (x) = 〈w∗,x〉.

We showed that the following is equivalent:

Find α∗ ∈ argminα∈Rn R
(√
αTKα

)
+L(Kα)

Predict with f̂ (x) = kTx α
∗, where

K =

〈x1,x1〉 · · · 〈x1,xn〉
...

. . . · · ·
〈xn,x1〉 · · · 〈xn,xn〉

 and kx =

〈x1,x〉
...

〈xn,x〉


Every element x ∈H occurs inside an inner products with a training input xi ∈H.
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Kernelization

Definition
A method is kernelized if every feature vector ψ(x) only appears inside an inner product with
another feature vector ψ(x ′). This applies to both the optimization problem and the prediction
function.

Here we are using ψ(x) = x . Thus finding

α∗ ∈ argmin
α∈Rn

R
(√
αTKα

)
+L(Kα)

and making predictions with f̂ (x) = kTx α
∗ is a kernelization of finding

w∗ ∈ argmin
w∈H

R (‖w‖)+L(〈w ,x1〉 , . . . ,〈w ,xn〉)

and making predictions with f̂ (x) = 〈w∗,x〉.
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Summary

We used duality for SVM and bare hands for ridge regression to find their kernelized
version.

Many other algorithms can be kernelized.

Our principled tool for kernelization is reparameterization by the representer theorem.

Representer theorem says that all norm-regularized linear models can be kernelized.

Once kernelized, we can apply the kernel trick: doesn’t need to represent φ(x) explicitly.
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