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Today's lecture:
@ Support Vector Machines: one of the most widely used classification model
e We will focus on linear SVM today (non-linear SVM next week!)

e Plan:

o Derive the SVM learning objective (in two ways)
o Solve the optimization problem

o Get insight from its dual problem

@ (Requires some background knowledge on convex optimization)
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Part |: Derive the SVM Objective

@ Start with the inductive bias: what makes a good linear decision boundary?

@ Start with the loss function and regularization
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Maximum Margin Classifier J
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Linearly Separable Data

Consider a linearly separable dataset D:

Find a separating hyperplane such that

o w'x; >0 for all x; where y; =+1

o w'x; <0 for all x; where y; =—1
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The Perceptron Algorithm

Initialize w <0

@ While not converged (exists misclassified examples)
o For (xj,y;) €D
o If y;wTx; < 0 (wrong prediction)
o Update w < w+y;x;

Intuition: move towards misclassified positive examples and away from negative examples

e Guarantees to find a zero-error classifier (if one exists) in finite steps

What is the loss function if we consider this as a SGD algorithm?
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Maximum-Margin Separating Hyperplane

For separable data, there are infinitely many zero-error classifiers.

Which one do we pick?

(Perceptron does not return a unique solution.)
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Maximum-Margin Separating Hyperplane

We prefer the classifier that is farthest from both classes of points

e Geometric margin: smallest distance between the hyperplane and the points

@ Maximum margin: /argest distance to the closest points
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Geometric Margin

We want to maximize the distance between the separating hyperplane and the closest points.
Let's formalize the problem.

Definition (separating hyperplane)

We say (x;,y;) for i=1,...,n are linearly separable if there is a w € RY and b € R such that
yi(wTxj+b) >0 for all i. The set {v € R?|w”v+b=0}is called a separating hyperplane.

Definition (geometric margin)

Let H be a hyperplane that separates the data (x;,y;) for i=1,...,n. The geometric margin
of this hyperplane is
mind(x;, H),
1

the distance from the hyperplane to the closest data point.
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Distance between a Point and a Hyperplane

@ Projection of v € R? onto w € RY: ”‘;’/T“’Z

@ Distance between x; and H:

T,. A Ty
) = [T ] Tt

[[wll2 [[wll2
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Maximize the Margin

We want to maximize the geometric margin:
maximize mind(x;, H).
1
Given separating hyperplane H = {v| wliv+b= O}, we have
. _ YilwTx +b)
maximize min ———
i [wl|2
Let's remove the inner minimization problem by

maximize M

subject to yilw?x+b) >M foralli

Twil2
Note that the solution is not unique (why?).
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Maximize the Margin

Let's fix the norm ||w||> to 1/M to obtain:

1

l[wll2

subject to  yj(w'x;4+b)>1 forall i

maximize

It's equivalent to solving the minimization problem

minimize 3| w|]3
subject to yj(w'xj+b) =1 forall i

Note that y;(wx; + b) is the (functional) margin.

In words, it finds the minimum norm solution which has a margin of at least 1 on all examples.
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Soft Margin SVM

What if the data is not linearly separable?

For any w, there will be points with a negative margin.

Introduce slack variables to penalize small margin:

minimize %HWH%+%ZLl &
subject to  yj(w'xj+b) >1—&; forall i
£, >0 foralli

o If £ =0Vi, it's reduced to hard SVM.
o What does &; > 0 mean?

o What does C control?
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Slack Variables

d(x;, H) = yilwTx+b) 1-¢&;

lwll2 = llwll2

margin:

@ &; =1: x; lies on the hyperplane

, thus &; measures the violation by multiples of the geometric

e &; =3: x; is past 2 margin width beyond the decision hyperplane
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Minimize the Hinge Loss J
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Perceptron Loss
7x)

U(x,y,w) =max(0,—yw ' x

4%

—
m< \AWT’X

If we do ERM with this loss function, what happens?
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Hinge Loss

e SVM/Hinge loss: £Hinge = max{l1—m,0} = (1—m)_

o Margin m = yf(x); “Positive part” (x), =x1(x > 0).

Loss

== Zero_One
== Hinge

Loss(m)

0
Margin m=yf(x)

Hinge is a convex, upper bound on 0—1 loss. Not differentiable at m = 1.
We have a “margin error” when m < 1.
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Support Vector Machine

Using ERM:
o Hypothesis space = {f(x) =w'x+b|w eR? beR}.
e {5 regularization (Tikhonov style)

e Hinge loss {(m) = max{1—m,0} = (1—m)_

The SVM prediction function is the solution to

N TR - T s
Weg]dl,T)EREHWH +n;max(0,1—y, [w'xi+b]).

Not differentiable because of the max
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SVM as a Constrained Optimization Problem

@ The SVM optimization problem is equivalent to
minimize 1|| ||2+Ci5,
z —~[|w - ;
2 n 4 !
i=1
subjectto  &; = max (0,1—y; [WTXi+b]) fori=1,...,n.

@ Which is equivalent to
1 ¢ o
C e 2 )
minimize EHWH + . E 1 &
i

subject to &
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Summary

Two ways to derive the SVM optimization problem:
e Maximize the (geometric) margin
@ Minimize the hinge loss with £, regularization
Both leads to the minimum norm solution satisfying certain margin constraints.
e Hard-margin SVM: all points must be correctly classified with the margin constraints

@ Soft-margin SVM: allow for margin constraint violation with some penalty
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Part Il: Subgradient Descent for SVM

Now that we have the objective, can we do SGD on it?

Subgradient: generalize gradient for non-differentiable convex functions
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SVM Optimization Problem (no intercept)

@ SVM objective function:
J(w) = 1 i max (0 1 —y'WTX') + Allwl?
n — 1 1 1 -
=
o Not differentiable... but let's think about gradient descent anyway.

@ Hinge loss: £(m) =max(0,1—m)

Vwllw) = V, (iZf(y,-WTx,')—i-?\HWw)

i=1

= EZVWB (y,-WTX,') +2Aw
n i=1
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“Gradient” of SVM Objective

@ Derivative of hinge loss {(m) = max(0,1—m):

0 m>1
U'(m)=<¢—-1 m<1

undefined m=1

@ By chain rule, we have

Vil (y,‘WTX,') = € y,W x, ViXi
y,'WTX,' >1
= —YiXi }/iWTXi <1

undefined yjw'x =1
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“Gradient” of SVM Objective

0 y,-WTx,- >1
Vil (y,-WTx,-) = —YiX; yiwTx; <1
undefined yiw'x; =1

So
_ EZH wTx 2
Vuwd(w) = V, (ni-lﬂ(y,w x,)+7\||w|| )

= %ZVW(’, (y,-WTxi) +2Aw

i=1
_ %Z,-:yiwerl(—y;X,-)—i-Z?\W all yiwTx; #1
undefined otherwise
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Gradient Descent on SVM Objective?

@ The gradient of the SVM objective is

Vadw)== 3 (—y) +2Aw

ityiwTx; <1

S

when y;wTx; # 1 for all i, and otherwise is undefined.

Potential arguments for why we shouldn’t care about the points of nondifferentiability:

o If we start with a random w, will we ever hit exactly y;w’x; =17
o If we did, could we perturb the step size by € to miss such a point?
o Does it even make sense to check y;w ' x; = 1 with floating point numbers?

However, would gradient descent work if the objective is not differentiable?
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Subgradient J
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First-Order Condition for Convex, Differentiable Function

@ Suppose f :R? — R is convex and differentiable Then for any x,y € RY

Fly) = f(x)+VF(x) (y—x)

@ The linear approximation to f at x is a global underestimator of f:
(W)
fl@) + Vf(z)"(y—2)

@ This implies that if Vf(x) =0 then x is a global minimizer of f.

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3
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Subgradients

Definition

A vector g € RY is a subgradient of a convex function f : R? — R at x if for all z,

f(z) > f(x)+g" (z—x).

\/

Blue is a graph of f(x).
Each red line x — f(xg) +g " (x—xp) is a global lower bound on f(x).
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Properties

Definitions

@ The set of all subgradients at x is called the subdifferential: 9f(x)
o f is subdifferentiable at x if 3 at least one subgradient at x.

For convex functions:

o f is differentiable at x iff 0f (x) ={Vf(x)}.

e Subdifferential is always non-empty (0f(x) =0 = f is not convex)

@ x is the global optimum iff 0 € 9f(x).

For non-convex functions:

@ The subdifferential may be an empty set (no global underestimator).
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Subdifferential of Absolute Value

o Consider f(x) = x|

f(z) = |z| 0f(z)

@ Plot on right shows {(x,g) | x € R, g € 0f(x)}

Boyd EE364b: Subgradients Slides
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Subgradients of f(x1,x2) = |x1| + 2|xo]

o Let's find the subdifferential of
f(x1,x2) = |x1]+2|x| at (3,0).

o First coordinate of subgradient must be 1, from |xy]
part (at x; = 3).

@ Second coordinate of subgradient can be anything in
[—2,2].

@ So graph of h(xy,x0) =f(3,0)+g" (x1 —3,x —0)
is a global underestimate of f(xy1,x2), for any
g = (g1,82), where gy =1 and g € [-2,2].
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Subdifferential on Contour Plot

0f(3,0)={(1,0)" |be [-2,2]}

2

W

<

Contour plot of f(x1,x2) = |x1|+2|xo|, with set of subgradients at (3,0). .

Plot courtesy of Brett Bernstein.
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Basic Rules for Calculating Subdifferential

@ Non-negative scaling: dof (x) = x0f(x) for (x> 0)

Summation: 9(f(x)+ h(x)) =dy+d> for any dy € 0fy and d» € 0f,
e Composing with affine functions: 0f (Ax+b) = AT0f(z) where z=Ax+b

@ max: convex combinations of argmax gradients

Vf(x) >
omax(fi(x), 2(x)) =< Vh(x) if A1(x) < fH(x),
VOfi(x)+(1-0)h(x) if A(x) = f(x),

where 0 € [0, 1].
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Subgradient Descent J
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Gradient orthogonal to level sets

We know that gradient points to the fastest ascent direction. What about subgradients?

Plot courtesy of Brett Bernstein.
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Contour Lines and Subgradients

A hyperplane H supports a set S if H intersects S and all of S lies one one side of H.

Claim: If f:R? — R has subgradient g at xo, then the hyperplane H orthogonal to g at xg
must support the level set S = {x € RY|f(x) = f(xo)}.

Proof:
@ For any y, we have f(y) > f(x0) +g ' (y —xo). (def of subgradient)

@ If y is strictly on side of H that g points in,
o then g™ (y—xp) > 0.

o So f(y) > f(xo).
e So y is not in the level set S.

o .. All elements of S must be on H or on the —g side of H.
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Subgradient of f(x1,x2) = |x1| 4+ 2|xo|

9 (y-v) <0 i

@) 2 f@) +9"(—v) > f(v)
e Points on g side of H have larger f-values than f(xp). (from proof)

@ But points on —g side may not have smaller f-values.

@ So —g may not be a descent direction. (shown in figure)

Plot courtesy of Brett Bernstein.
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Subgradient Descent

@ Move along the negative subgradient:

xtT =xt—ng where g € f(x!) and >0
@ This can increase the objective but gets us closer to the minimizer if f is convex and 7 is
small enough:

t+1

I = x| < Jlx" =]

@ Subgradients don't necessarily converge to zero as we get closer to x*, so we need
decreasing step sizes, e.g. O(1/t) or O(1//1).

@ Subgradient methods are slower than gradient descent, e.g. O(1/€?) vs O(1/€) for
convex functions.

Based on https://www.cs.ubc.ca/"schmidtm/Courses/5XX-520/S4.pdf
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https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S20/S4.pdf

Subgradient descent for SVM (HW3)

SVM objective function:

J(w) = %Z max (0,1—y;w " x;) +Allw|?.
i—1

Pegasos: stochastic subgradient descent with step size 1 = 1/(tA)

Input: A > 0. Choose w; =0,t =0
While termination condition not met

For j =1,...,n (assumes data is randomly permuted)
t=t+1
ne =1/ (tA);

If yj’thCL‘j <1

Wip1 = (1 = meA)ws + ey
Else

wiy1 = (1 —neA)wy
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Summary

@ Subgradient: generalize gradient for non-differentiable convex functions

@ Subgradient “descent’:
o General method for non-smooth functions
o Simple to implement

o Slow to converge
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Part Ill: The Dual Problem

In addition to subgradient descent, we can directly solve the optimization problem using a QP
solver.

Let's study its dual problem to gain addition insights (which will be useful for next week!)
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SVM as a Quadratic Program

@ The SVM optimization problem is equivalent to

n
minimize ;||W||2+E;E.i
subject to —&; <0 fo:izl,...,n
(l—y,- [WTXi+b])—E,; <0 fori=1,...,n
@ Differentiable objective function
@ n+d+1 unknowns and 2n affine constraints.
e A quadratic program that can be solved by any off-the-shelf QP solver.

@ Let's learn more by examining the dual.
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Why Do We Care About the Dual? J
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The Lagrangian
The general [inequality-constrained| optimization problem is:
minimize fo(x)

subject to fi(x)<0, i=1,....m

Definition
The Lagrangian for this optimization problem is

L(x,\) = fo(x +Z)\f

@ A;'s are called Lagrange multipliers (also called the dual variables).
@ Weighted sum of the objective and constraint functions

o Hard constraints — soft constraints
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Lagrange Dual Function

Definition

The Lagrange dual function is

g(\) = infL(x,\) = inf <f0(x) —l—Z?x;f;(x))

i=1

@ g(A) is concave

e Lower bound property: if A =0, g(A) < p* where p* is the optimal value of the
optimization problem.

@ g(A) can be —oco (uninformative lower bound)
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The Primal and the Dual

@ For any primal form optimization problem,

minimize fo(x)
subject to fi(x) <0, i=1,....m,

there is a recipe for constructing a corresponding Lagrangian dual problem:

maximize g(A)

subject to A =0, i=1,...,m,
@ The dual problem is always a convex optimization problem.
@ The dual variables often have interesting and relevant interpretations.
@ The dual variables provide certificates for optimality.
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Weak Duality

We always have weak duality: p* > d*.

Jfo gh
fo(z)

Plot courtesy of Brett Bernstein.
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Strong Duality

For some problems, we have strong duality: p* = d*.

foll
fo(z)

For convex problems, strong duality is fairly typical.

Plot courtesy of Brett Bernstein.
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Complementary Slackness

@ Assume strong duality. Let x* be primal optimal and A* be dual optimal. Then:

fo(x*) = g(A")=inf L(x,A\*) (strong duality and definition)

< L(x*,A")

= flx*)+ ) AFfi(x)
i=1

< folx®).

Each term in sum }_;_; A'fi(x*) must actually be 0. That is
Ai>0=— £(x*)=0 and fi(x")<0=— A, =0 Vi

This condition is known as complementary slackness.
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The SVM Dual Problem J
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SVM Lagrange Multipliers

. 1 c o
minimize *||W||2+*ZE,,'
2 n—

subject to —&, <0 fo:izl,...,n
(1*)0 [WTX;+b])—E;<0 fori=1,...,n

Lagrange Multiplier \ Constraint ‘
Ai &£ <0
o (1—y,- [WTX;+b])—E,i<0

L(w,b,& o) = f||w||2+ Za,+Zoc, (1—yi[wxi+b] - +ZA

i=1

Dual optimum value: d* =supy a=qinfw beLl(w,b, & o, A)
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Strong Duality by Slater's Constraint Qualification

The SVM optimization problem:

o 1, 5 €
minimize §||W|| + - Zl &i
=
subject to —&; <0fori=1,...,n
(1—y,~ [WTX;+b])—£,- <0fori=1,...,n
Slater's constraint qualification:
@ Convex problem + affine constraints = strong duality iff problem is feasible
@ Do we have a feasible point?

@ For SVM, we have strong duality.
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SVM Dual Function: First Order Conditions

Lagrange dual function is the inf over primal variables of L:

glo,A) = WizfgL(w, b, &, o, N\)

n n
= inf linw+;£; (%—oci—7\i> -l—ZOCi (1—y; [wTxi+b])

b,
wib.& i—1

n n
oyl=0 <~— W—ZOC,’}/,‘X,‘:O <~ W:Z(Xi)/ixi
i=1 i=1

n n
pL=0 <= —) ay=0 <= | oy =0
i=1 i=1

0g,L=0 <= %—oc,-—)\,-:O = 0(i+7\i=%
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SVM Dual Function

@ Substituting these conditions back into L, the second term disappears.

@ First and third terms become

1 T 1 ¢ -
EW w = 5 Z Xi&jyiyiX; Xj
ij=1
n n n n
ZOL;(l—y,' [WTX,'—i-b]) = ZO(,'— Z oc,-ocjy,-ijij,-—bZ oG Y.
i=1 i=1 ij=1 i=1
0
o Putting it together, the dual function is
n .15 n vy Ty > i1 xiyi=0
o) = 4 =1 T2 Zaj SOV X o e all
—00 otherwise.
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SVM Dual Problem

@ The dual function is

gla,A) =

n
n 1y o Ty, iz %iyi=0
2105 D GYIYX Xi (Tl

—00 otherwise.

e The dual problem is sup, -og(a,A):

n n
1 T
sup E Xi—3 E XiljyiyjXj Xi
oA .7 2 S

i=1 ij=1

n
s.t. Z oiyi=0
i=1

C .
x+Ai=— o ,Ai=0,i=1,...
n
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Insights from the Dual Problem J
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KKT Conditions

For convex problems, if Slater's condition is satisfied, then KKT conditions provide necessary
and sufficient conditions for the optimal solution.

@ Primal feasibility: f;(x) <0 Vi

@ Dual feasibility: A =0

o Complementary slackness: A;f;(x) =0
e First-order condition:

—L(x,A\)=0
0x ()
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The SVM Dual Solution

o We found the SVM dual problem can be written as:

sup
x

s.t.

n n
1 T
E &%= E XiX;YiyjXj Xi
i=1 ij=1

n
Z a;y; =0
i—1

oc,-E[O,E} i=1...n
n

e Given solution o* to dual, primal solution is w* =Y 7 | ofyix;.

@ The solution is in the space spanned by the inputs.

e Note o € [0, ¢]. So ¢ controls max weight on each example. (Robustness!)

o What's the relation between ¢ and regularization?

(CDS, NYU)
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Complementary Slackness Conditions

@ Recall our primal constraints and Lagrange multipliers:

’ Lagrange Multiplier ‘ Constraint ‘
)\i 'E»i X
Xi (1 Yi ( I)) E»/ X

@ Recall first order condition V¢, L =0 gave us A7 = < — o}

@ By strong duality, we must have complementary slackness:
of (L=yif*(x)— &) =0
NEr=(S-ag) g =0
n
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Consequences of Complementary Slackness

By strong duality, we must have complementary slackness.
of (L=yif*(x)—&) =0

c * *
(5-o)ei=0

Recall “slack variable” &F = max (0,1 —y;f*(x;)) is the hinge loss on (x;, ;).
o If y;f*(x;) > 1 then the margin loss is £ =0, and we get ocf =0.
o If y;f*(x;) <1 then the margin loss is £; >0, so of = 7.

o If af =0, then &F =0, which implies no loss, so y;f*(x) > 1.

o If af € (0,€), then £F =0, which implies 1—y;f*(x;) =0.
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Complementary Slackness Results: Summary

If o* is a solution to the dual problem, then primal solution is

n
c
w = 'Zloc}ky,-x; wherea € [0, ;]
=

Relation between margin and example weights («;'s):

o =0 = yf(xg)>1
C
aie(05) = yifflx) =1
(x;'k:% = ylf*(Xl)<1
* * c
y,-f (X,')<1 —— X; :;
C
yif*(x)=1 = o € [0,;]
y,-f*(x,-)>1 — 067:0
Bl () el 1), 205
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Support Vectors

o If o* is a solution to the dual problem, then primal solution is

n

* *

w :E X YiXi
i=1

with off € [0, £].
@ The x;'s corresponding to «} > 0 are called support vectors.

@ Few margin errors or “on the margin” examples = sparsity in input examples.
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Teaser for Kernelization J
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Dual Problem: Dependence on x through inner products

@ SVM Dual Problem:

n n
1
sup Z =5 Z OCiOCj}/iyJ'XjTXi
x i=1 ij=1
n
s.t. Z ojyi =0
i=1

X € [0,£:| i=1,...,n.
n

o Note that all dependence on inputs x; and x; is through their inner product: (x;, x;) :ijx,-.

@ We can replace ijx,- by other products...

@ This is a "kernelized" objective function.
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