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Complexity of Hypothesis Spaces

What is the trade-off between approximation error and estimation error?

Bigger F: better approximation but can overfit (need more samples)

Smaller F: less likely to overfit but can be farther from the true function

To control the “size” of F, we need some measure of its complexity:

Number of variables / features

Degree of polynomial
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General Approach to Control Complexity

1. Learn a sequence of models varying in complexity from the training data

F1 ⊂ F2 ⊂ Fn · · · ⊂ F

Example: Polynomial Functions
F = {all polynomial functions}

Fd = {all polynomials of degree 6 d}

2. Select one of these models based on a score (e.g. validation error)
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Feature Selection in Linear Regression

Nested sequence of hypothesis spaces: F1 ⊂ F2 ⊂ Fn · · · ⊂ F

F = {linear functions using all features}

Fd = {linear functions using fewer than d features}

Best subset selection:

Choose the subset of features that is best according to the score (e.g. validation error)
Example with two features: Train models using {}, {X1}, {X2}, {X1,X2}, respectively

Not an efficient search algorithm; iterating over all subsets becomes very expensive with a
large number of features
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Greedy Selection Methods

Forward selection:

1. Start with an empty set of features S

2. For each feature i not in S

Learn a model using features S ∪ i
Compute score of the model: αi

3. Find the candidate feature with the highest score: j = argmaxi αi

4. If αj improves the current best score, add feature j : S ← S ∪ j and go to step 2; return S
otherwise.

Backward Selection:

Start with all features; in each iteration, remove the worst feature
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Feature Selection: Discussion

Number of features as a measure of the complexity of a linear prediction function

General approach to feature selection:
Define a score that balances training error and complexity

Find the subset of features that maximizes the score

Forward & backward selection do not guarantee to find the best solution.

Forward & backward selection do not in general result in the same subset.
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`2 and `1 Regularization
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Complexity Penalty

An objective that balances number of features and prediction performance:

score(S) = training_loss(S)+λ|S | (1)

λ balances the training loss and the number of features used:

Adding an extra feature must be justified by at least λ improvement in training loss

Larger λ → complex models are penalized more heavily
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Complexity Penalty

Goal: Balance the complexity of the hypothesis space F and the training loss

Complexity measure: Ω : F→ [0,∞), e.g. number of features

Penalized ERM (Tikhonov regularization)

For complexity measure Ω : F→ [0,∞) and fixed λ> 0,

min
f∈F

1
n

n∑
i=1

`(f (xi ),yi )+λΩ(f )

As usual, we find λ using the validation data.

Number of features as complexity measure is hard to optimize—other measures?
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Weight Shrinkage: Intuition

Why would we prefer a regression line with smaller slope (unless the data strongly supports
a larger slope)?

More conservative: small change in the input does not cause large change in the output

If we push the estimated weights to be small, re-estimating them on a new dataset
wouldn’t cause the prediction function to change dramatically (less sensitive to noise in
data)
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Weight Shrinkage: Polynomial Regression

Large weights are needed to make the curve wiggle sufficiently to overfit the data

ŷ = 0.001x7+0.003x3+1 less likely to overfit than ŷ = 1000x7+500x3+1

(Adapated from Mark Schmidt’s slide)
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Linear Regression with `2 Regularization

We have a linear model

F =
{
f : Rd → R | f (x) = wT x for w ∈ Rd

}
Square loss: `(ŷ ,y) = (y − ŷ)2

Training data Dn = ((x1,y1), . . . ,(xn,yn))

Linear least squares regression is ERM for square loss over F:

ŵ = argmin
w∈Rd

1
n

n∑
i=1

(wT xi − yi )
2

This often overfits, especially when d is large compared to n (e.g. in NLP one can have
1M features for 10K documents).
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Linear Regression with L2 Regularization

Penalizes large weights:

ŵ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖22,

where ‖w‖22 = w2
1 + · · ·+w2

d is the square of the `2-norm.

Also known as ridge regression.

Equivalent to linear least square regression when λ= 0.

`2 regularization can be used for other models too (e.g. neural networks).
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`2 regularization reduces sensitivity to changes in input

f̂ (x) = ŵT x is Lipschitz continuous with Lipschitz constant L= ‖ŵ‖2: when moving
from x to x +h, f̂ changes no more than L‖h‖.

`2 regularization controls the maximum rate of change of f̂ .

Proof: ∣∣∣f̂ (x +h)− f̂ (x)
∣∣∣ = |ŵT (x +h)− ŵT x |=

∣∣ŵTh
∣∣

6 ‖ŵ‖2‖h‖2 (Cauchy-Schwarz inequality)

Other norms also provide a bound on L due to the equivalence of norms:
∃C > 0 s.t. ‖ŵ‖2 6 C‖ŵ‖p
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Linear Regression vs. Ridge Regression

Objective:
Linear: L(w) = 1

2‖Xw − y‖22
Ridge: L(w) = 1

2‖Xw − y‖22+ λ
2 ‖w‖

2
2

Gradient:
Linear: ∇L(w) = XT (Xw − y)

Ridge: ∇L(w) = XT (Xw − y)+λw

Also known as weight decay in neural networks

Closed-form solution:
Linear: XTXw = XT y

Ridge: (XTX +λI )w = XT y

(XTX +λI ) is always invertible
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Ridge Regression: Regularization Path

Modified from Hastie, Tibshirani, and Wainwright’s Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
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Lasso Regression

Penalize the `1 norm of the weights:

Lasso Regression (Tikhonov Form, soft penalty)

ŵ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖1,

where ‖w‖1 = |w1|+ · · ·+ |wd | is the `1-norm.

(“Least Absolute Shrinkage and Selection Operator”)
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Ridge vs. Lasso: Regularization Paths

Lasso yields sparse weights:

Modified from Hastie, Tibshirani, and Wainwright’s Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
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The Benefits of Sparsity

The coefficient for a feature is 0 =⇒ the feature is not needed for prediction. Why is that
useful?

Faster to compute the features; cheaper to measure or annotate them

Less memory to store features (deployment on a mobile device)

Interpretability: identifies the important features

Prediction function may generalize better (model is less complex)
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Why does `1 Regularization Lead to Sparsity?
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Regularization as Constrained Empirical Risk Minimization

Constrained ERM (Ivanov regularization)

For complexity measure Ω : F→ [0,∞) and fixed r > 0,

min
f∈F

1
n

n∑
i=1

`(f (xi ),yi )

s.t.Ω(f )6 r

Lasso Regression (Ivanov Form, hard constraint)

The lasso regression solution for complexity parameter r > 0 is

ŵ = argmin
‖w‖16r

1
n

n∑
i=1

{
wT xi − yi

}2
.

r has the same role as λ in penalized ERM (Tikhonov).
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Ivanov vs. Tikhonov Regularization

Let L : F→ R be any performance measure of f
e.g. L(f ) could be the empirical risk of f

For many L and Ω, Ivanov and Tikhonov are equivalent:
Any solution f ∗ we can get from Ivanov, we can also get from Tikhonov.

Any solution f ∗ we can get from Tikhonov, we can also get from Ivanov.

The conditions for this equivalence can be derived from Lagrangian duality theory.

In practice, both approaches are effective: we will use whichever one is more convenient
for training or analysis.
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The `1 and `2 Norm Constraints

Let’s consider F = {f (x) = w1x1+w2x2} space)

We can represent each function in F as a point (w1,w2) ∈ R2.

Where in R2 are the functions that satisfy the Ivanov regularization constraint for `1 and
`2?

`2 contour:
w2

1 +w2
2 = r

`1 contour:
|w1|+ |w2|= r

Where are the sparse solutions?
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Visualizing Regularization

f ∗r = argminw∈R2
∑n

i=1
(
wT xi − yi

)2 subject to w2
1 +w2

2 6 r

Blue region: Area satisfying complexity constraint: w2
1 +w2

2 6 r

Red lines: contours of the empirical risk R̂n(w) =
∑n

i=1
(
wT xi − yi

)2.

KPM Fig. 13.3
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Why Does `1 Regularization Encourage Sparse Solutions?

f ∗r = argminw∈R2
1
n

∑n
i=1

(
wT xi − yi

)2 subject to |w1|+ |w2|6 r

Blue region: Area satisfying complexity constraint: |w1|+ |w2|6 r

Red lines: contours of the empirical risk R̂n(w) =
∑n

i=1
(
wT xi − yi

)2.

`1 solution tends to touch the corners.
KPM Fig. 13.3

(CDS, NYU) DS-GA 1003 Feb 7, 2022 25 / 41



Why Does `1 Regularization Encourage Sparse Solutions?

Geometric intuition: Projection onto diamond encourages solutions at corners.

ŵ in red/green regions are closest to corners in the `1 “ball”.

Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.6
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Why Does `1 Regularization Encourage Sparse Solutions?

Geometric intuition: Projection onto `2 sphere favors all directions equally.

Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.6
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Why does `2 Encourage Sparsity? Optimization Perspective

For `2 regularization,

As wi becomes smaller, there is less and less penalty
What is the `2 penalty for wi = 0.0001?

The gradient—which determines the pace of optimization—decreases as wi approaches
zero

Less incentive to make a small weight equal to exactly zero

For `1 regularization,

The gradient stays the same as the weights approach zero

This pushes the weights to be exactly zero even if they are already small
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(
`q
)
Regularization

We can generalize to `q : (‖w‖q)q = |w1|
q+ |w2|

q.

Note: ‖w‖q is only a norm if q > 1, but not for q ∈ (0,1)

When q < 1, the `q constraint is non-convex, so it is hard to optimize; lasso is good
enough in practice

`0 (‖w‖0) is defined as the number of non-zero weights, i.e. subset selection
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Minimizing the lasso objective
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Minimizing the lasso objective

The ridge regression objective is differentiable (and there is a closed form solution)

Lasso objective function:

min
w∈Rd

n∑
i=1

(
wT xi − yi

)2
+λ‖w‖1

‖w‖1 = |w1|+ . . .+ |wd | is not differentiable!

We will briefly review three approaches for finding the minimum:
Quadratic programming

Projected SGD

Coordinate descent
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Rewriting the Absolute Value

Consider any number a ∈ R.

Let the positive part of a be
a+ = a1(a> 0).

Let the negative part of a be
a− =−a1(a6 0).

Is it always the case that a+ > 0 and a− > 0?

How do you write a in terms of a+ and a−?

How do you write |a| in terms of a+ and a−?
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The Lasso as a Quadratic Program

Substituting w = w+−w− and |w |= w++w− results in an equivalent problem:

min
w+,w−

n∑
i=1

((
w+−w−

)T
xi − yi

)2
+λ1T

(
w++w−

)
subject to w+

i > 0 for all i and w−
i > 0 for all i ,

This objective is differentiable (in fact, convex and quadratic)

How many variables does the new objective have?

This is a quadratic program: a convex quadratic objective with linear constraints.

Quadratic programming is a very well understood problem; we can plug this into a generic
QP solver.
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Are we missing some constraints?

We have claimed that the following objective is equivalent to the lasso problem:

min
w+,w−

n∑
i=1

((
w+−w−

)T
xi − yi

)2
+λ1T

(
w++w−

)
subject to w+

i > 0 for all i w−
i > 0 for all i ,

When we plug this optimization problem into a QP solver,
it just sees 2d variables and 2d constraints.

Doesn’t know we want w+
i and w−

i to be positive and negative parts of wi .

Turns out that these constraints will be satisfied anyway!

To make it clear that the solver isn’t aware of the constraints of w+
i and w−

i , let’s denote
them ai and bi
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The Lasso as a Quadratic Program

(Trivially) reformulating the lasso problem:

min
w

min
a,b

n∑
i=1

(
(a−b)T xi − yi

)2
+λ1T (a+b)

subject to ai > 0 for all i bi > 0 for all i ,
a−b = w

a+b = |w |

Claim: Don’t need the constraint a+b = |w |.

Exercise: Prove by showing that the optimal solutions a∗ and b∗ satisfies min(a∗,b∗) = 0,
hence a∗+b∗ = |w |.
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The Lasso as a Quadratic Program

min
w

min
a,b

n∑
i=1

(
(a−b)T xi − yi

)2
+λ1T (a+b)

subject to ai > 0 for all i bi > 0 for all i ,
a−b = w

Claim: Can remove minw and the constraint a−b = w .

Exercise: Prove by switching the order of the minimization.
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Projected SGD

Now that we have a differentiable objective, we could also use gradient descent

But how do we handle the constraints?

min
w+,w−∈Rd

n∑
i=1

((
w+−w−

)T
xi − yi

)2
+λ1T

(
w++w−

)
subject to w+

i > 0 for all i
w−
i > 0 for all i

Projected SGD is just like SGD, but after each step
We project w+ and w− into the constraint set.

In other words, if any component of w+ or w− becomes negative, we set it back to 0.
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Coordinate Descent Method

Goal: Minimize L(w) = L(w1, . . . ,wd) over w = (w1, . . . ,wd) ∈ Rd .

In gradient descent or SGD, each step potentially changes all entries of w .

In coordinate descent, each step adjusts only a single coordinate wi .

wnew
i = argmin

wi

L(w1, . . . ,wi−1,wi,wi+1, . . . ,wd)

Solving the argmin for a particular coordinate may itself be an iterative process.

Coordinate descent is an effective method when it’s easy (or easier) to minimize w.r.t. one
coordinate at a time
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Coordinate Descent Method

Goal: Minimize L(w) = L(w1, . . .wd) over w = (w1, . . . ,wd) ∈ Rd .
Initialize w (0) = 0

while not converged:
Choose a coordinate j ∈ {1, . . . ,d}

wnew
j ← argminwj

L(w
(t)
1 , . . . ,w

(t)
j−1,wj,w

(t)
j+1, . . . ,w

(t)
d )

w
(t+1)
j ← wnew

j and w (t+1)← w (t)

t← t+1

Random coordinate choice =⇒ stochastic coordinate descent

Cyclic coordinate choice =⇒ cyclic coordinate descent
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Coordinate Descent Method for Lasso

The lasso objective coordinate minimization has a closed form! If

ŵj = argmin
wj∈R

n∑
i=1

(
wT xi − yi

)2
+λ |w |1

Then

ŵj =


(cj +λ)/aj if cj <−λ

0 if cj ∈ [−λ,λ]

(cj −λ)/aj if cj > λ

aj = 2
n∑

i=1

x2
i ,j cj = 2

n∑
i=1

xi ,j(yi −wT
−jxi ,−j)

where w−j is w without the j-th component, and xi ,−j is xi without the j-th component.
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Coordinate Descent in General

In general, coordinate descent is not competitive with gradient descent: its convergence
rate is slower and the iteration cost is similar

But it works very well for certain problems

Very simple and easy to implement

Example applications: lasso regression, SVMs
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