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Complexity of Hypothesis Spaces

What is the trade-off between approximation error and estimation error?

o Bigger F: better approximation but can overfit (need more samples)

@ Smaller F: less likely to overfit but can be farther from the true function
To control the “size” of F, we need some measure of its complexity:

@ Number of variables / features

@ Degree of polynomial
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General Approach to Control Complexity

1. Learn a sequence of models varying in complexity from the training data
F1CFCFp---CT

Example: Polynomial Functions
o F ={all polynomial functions}

o F4 ={all polynomials of degree < d}

2. Select one of these models based on a score (e.g. validation error)
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Feature Selection in Linear Regression

Nested sequence of hypothesis spaces: F1 Cc Fr, C F,--- C F
e F ={linear functions using all features}
o F4 ={linear functions using fewer than d features}
Best subset selection:

@ Choose the subset of features that is best according to the score (e.g. validation error)
o Example with two features: Train models using {}, {X1}, {Xo}, {X1, X2}, respectively

@ Not an efficient search algorithm; iterating over all subsets becomes very expensive with a
large number of features
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Greedy Selection Methods

Forward selection:
1. Start with an empty set of features S

2. For each feature i not in S
o Learn a model using features SU/

o Compute score of the model: «;
3. Find the candidate feature with the highest score: j = argmax; «;

4. If «; improves the current best score, add feature j: S < SU, and go to step 2; return S
otherwise.

Backward Selection:

@ Start with all features; in each iteration, remove the worst feature
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Feature Selection: Discussion

@ Number of features as a measure of the complexity of a linear prediction function

General approach to feature selection:
o Define a score that balances training error and complexity

o Find the subset of features that maximizes the score
e Forward & backward selection do not guarantee to find the best solution.

o Forward & backward selection do not in general result in the same subset.
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€>» and £; Regularization J
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Complexity Penalty

An objective that balances number of features and prediction performance:

score(S) = training _loss(S) +AlS] (1)

A balances the training loss and the number of features used:
o Adding an extra feature must be justified by at least A improvement in training loss

@ Larger A — complex models are penalized more heavily
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Complexity Penalty

Goal: Balance the complexity of the hypothesis space I and the training loss
Complexity measure: Q:F — [0,00), e.g. number of features
Penalized ERM (Tikhonov regularization)
For complexity measure Q : F — [0,00) and fixed A >0,
1
min= Y (f(x),yi) +AQ(f)

feFn
i3

As usual, we find A using the validation data.

Number of features as complexity measure is hard to optimize—other measures?
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Weight Shrinkage: Intuition

@ Why would we prefer a regression line with smaller slope (unless the data strongly supports
a larger slope)?

@ More conservative: small change in the input does not cause large change in the output

o If we push the estimated weights to be small, re-estimating them on a new dataset
wouldn't cause the prediction function to change dramatically (less sensitive to noise in

data)
(CDS, NYU) DS-GA 1003 Feb 7, 2022 10/41



Weight Shrinkage: Polynomial Regression
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@ Large weights are needed to make the curve wiggle sufficiently to overfit the data
@ y=0.001x"4+0.003x3 41 less likely to overfit than y = 1000x" +500x3 +1
(Adapated from Mark Schmidt's slide)
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Linear Regression with > Regularization

@ We have a linear model
&":{f:Rd—>R|f(x):WTxfor WERd}

Square loss: £(y,y) = (y —9)?

Training data D, = ((x1,y1), ..., (Xn, ¥n))

@ Linear least squares regression is ERM for square loss over J:
n

N 1
W = argmin — E (w'x—yj)?
weRd n i=1

@ This often overfits, especially when d is large compared to n (e.g. in NLP one can have
1M features for 10K documents).
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Linear Regression with L2 Regularization

Penalizes large weights:

n

W = argmin EZ {WTXi—YI}Z‘H\HW’

2
21
werd M5

where ||w||3 = w2 +---+ w3 is the square of the {,-norm.

@ Also known as ridge regression.
o Equivalent to linear least square regression when A =0.

@ {5 regularization can be used for other models too (e.g. neural networks).
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> regularization reduces sensitivity to changes in input

o f(x) =wTx is Lipschitz continuous with Lipschitz constant L = ||W||»: when moving
from x to x+ h, f changes no more than L| hl|.

o {, regularization controls the maximum rate of change of .
@ Proof:

N

Fix+h)—f(x)| = W' (x+h) —w x| =|w"h|
< |Iw|l2llhll2 (Cauchy-Schwarz inequality)

@ Other norms also provide a bound on L due to the equivalence of norms:
AC >0 s.t. ||w]2 < C||W|p
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Linear Regression vs. Ridge Regression

Objective:

o Linear: L(w 2||XW }/”2

o Ridge: L(w QHXW )/H2 7\||WH§
Gradient:

o Linear: VL(w)=XT(Xw—y)
e Ridge: VL(w)=XT(Xw—y)+Aw

o Also known as weight decay in neural networks

Closed-form solution:
o Linear: X" Xw=XTy
e Ridge: (XTX+A)w=XTy
o (XTX+AI) is always invertible
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Ridge Regression: Regularization Path

Ridge Regression

n

! 1
o funding W, = argmin— Z (IUTCU«; - yi)2
lwli3<r2 ™ 527

W = s = Unconstrained ERM
o Sfelea
o college

e For r =0, ||w,]|2/|w]]2 = 0.
o e For r = oo, ||7~Dr||2/||7j’||2 =1

hs

00 02 04 06 08 1.0
[[dr ]2/l

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.

(CDS, NYU) DS-GA 1003 Feb 7, 2022 16 /41



Lasso Regression

Penalize the £; norm of the weights:

Lasso Regression (Tikhonov Form, soft penalty)

~ . 1 . 2
W:argmlan{WTX;fyi} +A||wll1,
weRd 1 i—1

where ||w||1 = lwi|+ -+ |wyl is the £1-norm.

(“Least Absolute Shrinkage and Selection Operator”)
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Ridge vs. Lasso: Regularization Paths

Lasso yields sparse weights:

Ridge Regression
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Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
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The Benefits of Sparsity

The coefficient for a feature is 0 = the feature is not needed for prediction. Why is that
useful?

@ Faster to compute the features; cheaper to measure or annotate them
@ Less memory to store features (deployment on a mobile device)
@ Interpretability: identifies the important features

e Prediction function may generalize better (model is less complex)
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Why does £; Regularization Lead to Sparsity? J
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Regularization as Constrained Empirical Risk Minimization

Constrained ERM (lvanov regularization)

For complexity measure Q) : F — [0, 00) and fixed r > 0,

- e 1 ]
iy 5 3.3
s.t. Q(f) <r

Lasso Regression (lvanov Form, hard constraint)

The lasso regression solution for complexity parameter r > 0 is

n
w :argminEZ{WTx,-—y,-}z.

Iwlla<r M55

r has the same role as A in penalized ERM (Tikhonov).
DS-GA 1003
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lvanov vs. Tikhonov Regularization

@ Let L:F — R be any performance measure of f
o e.g. L(f) could be the empirical risk of

@ For many L and Q, Ivanov and Tikhonov are equivalent:

o Any solution f* we can get from lvanov, we can also get from Tikhonov.

o Any solution f* we can get from Tikhonov, we can also get from lvanov.
@ The conditions for this equivalence can be derived from Lagrangian duality theory.

@ In practice, both approaches are effective: we will use whichever one is more convenient
for training or analysis.
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The £1 and €» Norm Constraints

o Let's consider F ={f(x) = wyx1 + waxp} space)
@ We can represent each function in F as a point (wy, ws) € R,
@ Where in R? are the functions that satisfy the Ivanov regularization constraint for £; and

Y

e {» contour: @ {1 contour:
w2+wi=r wal+Iwo| =r

@ Where are the sparse solutions?
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Visualizing Regularization

o f*=argmin,cre Y g (W xi— y,) subject to wZ + w3 < r

-/

@ Blue region: Area satisfying complexity constraint: W12+ w22 <r

o Red lines: contours of the empirical risk Ry(w) =Y 7_; (w'x — y,) .

KPM Fig. 13.3
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Why Does {1 Regularization Encourage Sparse Solutions?

o fr=argmin,ere 2> 7 (wlxi— y,) subject to|wy|+[wa| < r

(&

@ Blue region: Area satisfying complexity constraint: |wy|+|wa| < r

n

o Red lines: contours of the empirical risk Ry(w) =Y 7_; (wTx — y,) .

@ {7 solution tends to touch the corners.

KPM Fig. 13.3
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Why Does {1 Regularization Encourage Sparse Solutions?

Geometric intuition: Projection onto diamond encourages solutions at corners.

@ W in red/green regions are closest to corners in the ¢; “ball”.

£1-ball of1]

lell < p

Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.6

(CDS, NYU) DS-GA 1003 Feb 7, 2022 26 /41


https://arxiv.org/abs/1411.3230

Why Does {1 Regularization Encourage Sparse Solutions?

Geometric intuition: Projection onto {» sphere favors all directions equally.

af?]

afl]

Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.6
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https://arxiv.org/abs/1411.3230

Why does £, Encourage Sparsity? Optimization Perspective

For {> regularization,

@ As w; becomes smaller, there is less and less penalty
o What is the £, penalty for w; =0.00017

@ The gradient—which determines the pace of optimization—decreases as w; approaches
zero

@ Less incentive to make a small weight equal to exactly zero
For {1 regularization,
@ The gradient stays the same as the weights approach zero

@ This pushes the weights to be exactly zero even if they are already small
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(ﬁq) Regularization

e We can generalize to £y : (||wlq)? = wa|?+ wa|.

o
o
|

o=

[

g=4 qg=2 g=1 g=0.
‘ ‘ ; I
| | |

@ Note: ||wl|q is only a norm if g > 1, but not for g € (0,1)

e When g < 1, the {,; constraint is non-convex, so it is hard to optimize; lasso is good
enough in practice

@ {o (]lwlo) is defined as the number of non-zero weights, i.e. subset selection

(CDS, NYU) DS-GA 1003 Feb 7, 2022 29 /41



Minimizing the lasso objective J
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Minimizing the lasso objective

@ The ridge regression objective is differentiable (and there is a closed form solution)

@ Lasso objective function:
n

i, > ()

o ||w|1=Iwal+...4+|wyl is not differentiable!

o We will briefly review three approaches for finding the minimum:
o Quadratic programming

o Projected SGD

o Coordinate descent
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Rewriting the Absolute Value

e Consider any number a € R.
@ Let the positive part of a be

at =al(a>0).
o Let the negative part of a be

a =-al(a<0).
o Is it always the case that a* >0 and a— > 0?
@ How do you write a in terms of a* and a=?

@ How do you write |a| in terms of a* and a= 7
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The Lasso as a Quadratic Program

+

Substituting w = w'™ —w™ and |w|=w™ +w results in an equivalent problem:

min i ((W+ — Wi)TXi—yl')z-i-}\lT (w+ + w*)

W+VW .
i=1

subject to w;" >0foralli and w; >0 forallj,

This objective is differentiable (in fact, convex and quadratic)

@ How many variables does the new objective have?

This is a quadratic program: a convex quadratic objective with linear constraints.

Quadratic programming is a very well understood problem; we can plug this into a generic
QP solver.
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Are we missing some constraints?

We have claimed that the following objective is equivalent to the lasso problem:
n T 5
WT,iv?* Zl ((W+ — W_) X;—y;) +A17 (W+ + W_)
=

subject to WI-+ >0 for all i w; >0 for all /,

@ When we plug this optimization problem into a QP solver,
o it just sees 2d variables and 2d constraints.

o Doesn't know we want w:" and w;~ to be positive and negative parts of w;.
@ Turns out that these constraints will be satisfied anyway!

@ To make it clear that the solver isn't aware of the constraints of W,-+ and w; ", let's denote
them a; and b;
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The Lasso as a Quadratic Program

(Trivially) reformulating the lasso problem:
: T 2 T
min n;’w ;((a—b) x;—y;) +A1' (a+b)
subject to a; > 0 for all b; >0 for all /,
a—b=w

a+b=|w|

Claim: Don't need the constraint a-++b = |w]|.

Exercise: Prove by showing that the optimal solutions a* and b* satisfies min(a*, b*) =0,
hence a* + b* = |w|.
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The Lasso as a Quadratic Program

n

2 T
min m|n ( -—y,-) +A1l' (a+b)
v i=1
subject to a; >0 for all / b; >0 for all /,

a—b=w

Claim: Can remove min,, and the constraint a— b = w.

Exercise: Prove by switching the order of the minimization.
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Projected SGD

@ Now that we have a differentiable objective, we could also use gradient descent
@ But how do we handle the constraints?

min

wt,w— ERd Py

2
W*)Tx,-—y,-) +A17 (W+ + W*)

subject to w;"

>0 for all i
>0

w; >0 forall /

@ Projected SGD is just like SGD, but after each step
o We project w and w™ into the constraint set.

o In other words, if any component of wt or w™ becomes negative, we set it back to 0.
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Coordinate Descent Method

Goal: Minimize L(w) = L(wa, ..., wy) over w = (wy,...,wy) € RY.
@ In gradient descent or SGD, each step potentially changes all entries of w.

@ In coordinate descent, each step adjusts only a single coordinate w;.

NEW

; =argminL(wy,...,Wj_1,Wj, Wjs1,..., Wq)

Wi

@ Solving the argmin for a particular coordinate may itself be an iterative process.

e Coordinate descent is an effective method when it's easy (or easier) to minimize w.r.t. one
coordinate at a time
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Coordinate Descent Method

Goal: Minimize L(w) = L(wy,...wq) over w = (wq,..., wy) € RY.

o Initialize w(® =0

@ while not converged:
o Choose a coordinate j €{1,...,d}

o anew < argmin,,, L(Wl(t), o Wj(i)l,Wj, Wj(i)l, o W‘St))
o Wj(t+1) “ aneW e e ()
o t+—t+1

@ Random coordinate choice == stochastic coordinate descent

@ Cyclic coordinate choice = cyclic coordinate descent
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Coordinate Descent Method for Lasso
The lasso objective coordinate minimization has a closed form! If

n

VT/j:argminZ(W Xj — y,) +Alwl,
wiER g

Then
( 7\)/3] if ¢ < —A
W =40 if ¢; € [-AN
( —)\)/aj if ¢ > A

n

L 2

aJ—2E X7 cj—2E xijlyi—w_ x,,J)
i=1

where w_; is w without the j-th component, and x; _; is x; without the j-th component.
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Coordinate Descent in General

@ In general, coordinate descent is not competitive with gradient descent: its convergence
rate is slower and the iteration cost is similar

@ But it works very well for certain problems
@ Very simple and easy to implement

e Example applications: lasso regression, SVMs
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