Controling Complexity: Feature Selection and Regularization

CDS, NYU

Feb 7, 2022

Complexity of Hypothesis Spaces

What is the trade-off between approximation error and estimation error?

- Bigger \mathcal{F} : better approximation but can overfit (need more samples)
- Smaller \mathcal{F} : less likely to overfit but can be farther from the true function

To control the "size" of \mathcal{F} , we need some measure of its complexity:

- Number of variables / features
- Degree of polynomial

1. Learn a sequence of models varying in complexity from the training data

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_n \cdots \subset \mathcal{F}$$

Example: Polynomial Functions

- $\mathcal{F} = \{ all polynomial functions \}$
- $\mathfrak{F}_d = \{ \text{all polynomials of degree } \leqslant d \}$
- 2. Select one of these models based on a score (e.g. validation error)

Feature Selection in Linear Regression

Nested sequence of hypothesis spaces: $\mathfrak{F}_1 \subset \mathfrak{F}_2 \subset \mathfrak{F}_n \dots \subset \mathfrak{F}$

- $\mathcal{F} = \{$ linear functions using all features $\}$
- $\mathcal{F}_d = \{ \text{linear functions using fewer than } d \text{ features} \}$

Best subset selection:

- Choose the subset of features that is best according to the score (e.g. validation error)
 Example with two features: Train models using {}, {X₁}, {X₂}, {X₁, X₂}, respectively
- Not an efficient search algorithm; iterating over all subsets becomes very expensive with a large number of features

Greedy Selection Methods

Forward selection:

- 1. Start with an empty set of features S
- 2. For each feature i not in S
 - Learn a model using features $S \cup i$
 - Compute score of the model: α_i
- 3. Find the candidate feature with the highest score: $j = \arg \max_i \alpha_i$
- 4. If α_j improves the current best score, add feature $j: S \leftarrow S \cup j$ and go to step 2; return S otherwise.

Backward Selection:

• Start with all features; in each iteration, remove the worst feature

- Number of features as a measure of the complexity of a linear prediction function
- General approach to feature selection:
 - Define a score that balances training error and complexity
 - Find the subset of features that maximizes the score
- Forward & backward selection do not guarantee to find the best solution.
- Forward & backward selection do not in general result in the same subset.

$\ell_2 \text{ and } \ell_1 \text{ Regularization}$

Complexity Penalty

An objective that balances number of features and prediction performance:

$$score(S) = training [loss(S) + \lambda |S|$$
 (1)

 $\boldsymbol{\lambda}$ balances the training loss and the number of features used:

- \bullet Adding an extra feature must be justified by at least λ improvement in training loss
- Larger $\lambda \rightarrow$ complex models are penalized more heavily

Complexity Penalty

Goal: Balance the complexity of the hypothesis space \mathcal{F} and the training loss Complexity measure: $\Omega : \mathcal{F} \to [0, \infty)$, e.g. number of features

Penalized ERM (Tikhonov regularization)

For complexity measure $\Omega : \mathfrak{F} \to [0, \infty)$ and fixed $\lambda \ge 0$,

$$\min_{f\in\mathcal{F}}\frac{1}{n}\sum_{i=1}^{n}\ell(f(x_i),y_i)+\lambda\Omega(f)$$

As usual, we find $\boldsymbol{\lambda}$ using the validation data.

Number of features as complexity measure is hard to optimize-other measures?

Weight Shrinkage: Intuition

- Why would we prefer a regression line with smaller slope (unless the data strongly supports a larger slope)?
- More conservative: small change in the input does not cause large change in the output
- If we push the estimated weights to be small, re-estimating them on a new dataset wouldn't cause the prediction function to change dramatically (less sensitive to noise in data)

Weight Shrinkage: Polynomial Regression

• Large weights are needed to make the curve wiggle sufficiently to overfit the data

• $\hat{y} = 0.001x^7 + 0.003x^3 + 1$ less likely to overfit than $\hat{y} = 1000x^7 + 500x^3 + 1$

(Adapated from Mark Schmidt's slide)

Linear Regression with ℓ_2 Regularization

• We have a linear model

$$\mathcal{F} = \left\{ f : \mathsf{R}^d \to \mathsf{R} \mid f(x) = w^T x \text{ for } w \in \mathsf{R}^d \right\}$$

• Square loss: $\ell(\hat{y}, y) = (y - \hat{y})^2$

• Training data
$$\mathcal{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$$

• Linear least squares regression is ERM for square loss over \mathcal{F} :

$$\hat{w} = \operatorname*{arg\,min}_{w \in \mathsf{R}^d} \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2$$

• This often overfits, especially when *d* is large compared to *n* (e.g. in NLP one can have 1M features for 10K documents).

Linear Regression with L2 Regularization

Penalizes large weights:

$$\hat{w} = \operatorname*{arg\,min}_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda \|w\|_2^2,$$

where $||w||_2^2 = w_1^2 + \cdots + w_d^2$ is the square of the ℓ_2 -norm.

- Also known as ridge regression.
- Equivalent to linear least square regression when $\lambda = 0$.
- l_2 regularization can be used for other models too (e.g. neural networks).

 ℓ_2 regularization reduces sensitivity to changes in input

- *f̂*(x) = ŵ^Tx is Lipschitz continuous with Lipschitz constant L = ||ŵ||₂: when moving from x to x + h, *f̂* changes no more than L||h||.
- ℓ_2 regularization controls the maximum rate of change of \hat{f} .
- Proof:

$$\begin{aligned} \left| \hat{f}(x+h) - \hat{f}(x) \right| &= |\hat{w}^{T}(x+h) - \hat{w}^{T}x| = \left| \hat{w}^{T}h \right| \\ &\leqslant \|\hat{w}\|_{2} \|h\|_{2} \quad \text{(Cauchy-Schwarz inequality)} \end{aligned}$$

• Other norms also provide a bound on *L* due to the equivalence of norms: $\exists C > 0 \text{ s.t. } \|\hat{w}\|_2 \leq C \|\hat{w}\|_p$

Linear Regression vs. Ridge Regression

Objective:

- Linear: $L(w) = \frac{1}{2} ||Xw y||_2^2$
- Ridge: $L(w) = \frac{1}{2} ||Xw y||_2^2 + \frac{\lambda}{2} ||w||_2^2$

Gradient:

- Linear: $\nabla L(w) = X^T (Xw y)$
- Ridge: $\nabla L(w) = X^T (Xw y) + \lambda w$
 - Also known as weight decay in neural networks

Closed-form solution:

- Linear: $X^T X w = X^T y$
- Ridge: $(X^T X + \lambda I) w = X^T y$
 - $(X^T X + \lambda I)$ is always invertible

Ridge Regression: Regularization Path

$$\hat{w}_r = \underset{\|w\|_2 \le r^2}{\arg\min} \frac{1}{n} \sum_{i=1}^n \left(w^T x_i - y_i \right)^2$$

$$\hat{w} = \hat{w}_{\infty} = \text{Unconstrained ERM}$$

• For
$$r = 0$$
, $\|\hat{w}_r\|_2 / \|\hat{w}\|_2 = 0$.

• For
$$r = \infty$$
, $\|\hat{w}_r\|_2 / \|\hat{w}\|_2 = 1$

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.

Penalize the ℓ_1 norm of the weights:

Lasso Regression (Tikhonov Form, soft penalty)

$$\hat{w} = \operatorname*{arg\,min}_{w \in \mathsf{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda \|w\|_1$$

where $||w||_1 = |w_1| + \cdots + |w_d|$ is the ℓ_1 -norm.

("Least Absolute Shrinkage and Selection Operator")

Ridge vs. Lasso: Regularization Paths

Lasso yields sparse weights:

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.

(CDS, NYU)

The coefficient for a feature is 0 \implies the feature is not needed for prediction. Why is that useful?

- Faster to compute the features; cheaper to measure or annotate them
- Less memory to store features (deployment on a mobile device)
- Interpretability: identifies the important features
- Prediction function may generalize better (model is less complex)

Why does ℓ_1 Regularization Lead to Sparsity?

Regularization as Constrained Empirical Risk Minimization

Constrained ERM (Ivanov regularization)

For complexity measure $\Omega: \mathfrak{F} \to [0,\infty)$ and fixed $r \ge 0$,

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$

s.t. $\Omega(f) \leq r$

Lasso Regression (Ivanov Form, hard constraint)

The lasso regression solution for complexity parameter $r \ge 0$ is

$$\hat{w} = \operatorname*{arg\,min}_{\|w\|_{1} \leqslant r} \frac{1}{n} \sum_{i=1}^{n} \left\{ w^{T} x_{i} - y_{i} \right\}^{2}.$$

r has the same role as λ in penalized ERM (Tikhonov).

(CDS, NYU)

Ivanov vs. Tikhonov Regularization

- Let $L: \mathcal{F} \to \mathsf{R}$ be any performance measure of f
 - e.g. L(f) could be the empirical risk of f
- For many L and Ω , Ivanov and Tikhonov are equivalent:
 - Any solution f^* we can get from Ivanov, we can also get from Tikhonov.
 - Any solution f^* we can get from Tikhonov, we can also get from Ivanov.
- The conditions for this equivalence can be derived from Lagrangian duality theory.
- In practice, both approaches are effective: we will use whichever one is more convenient for training or analysis.

The ℓ_1 and ℓ_2 Norm Constraints

- Let's consider $\mathcal{F} = \{f(x) = w_1x_1 + w_2x_2\}$ space)
- We can represent each function in \mathcal{F} as a point $(w_1, w_2) \in \mathsf{R}^2$.
- \bullet Where in R^2 are the functions that satisfy the Ivanov regularization constraint for ℓ_1 and $\ell_2?$

• Where are the sparse solutions?

(CDS, NYU)

Visualizing Regularization

•
$$f_r^* = \operatorname{arg\,min}_{w \in \mathbb{R}^2} \sum_{i=1}^n (w^T x_i - y_i)^2$$
 subject to $w_1^2 + w_2^2 \leq r$

- Blue region: Area satisfying complexity constraint: $w_1^2 + w_2^2 \leqslant r$
- Red lines: contours of the empirical risk $\hat{R}_n(w) = \sum_{i=1}^n (w^T x_i y_i)^2$.

KPM Fig. 13.3

Why Does ℓ_1 Regularization Encourage Sparse Solutions?

•
$$f_r^* = \operatorname{arg\,min}_{w \in \mathbb{R}^2} \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2$$
 subject to $|w_1| + |w_2| \leq r$

- Blue region: Area satisfying complexity constraint: $|w_1| + |w_2| \leqslant r$
- Red lines: contours of the empirical risk $\hat{R}_n(w) = \sum_{i=1}^n (w^T x_i y_i)^2$.
- ℓ_1 solution tends to touch the corners.

KPM Fig. 13.3

Why Does ℓ_1 Regularization Encourage Sparse Solutions?

Geometric intuition: Projection onto diamond encourages solutions at corners.

• \hat{w} in red/green regions are closest to corners in the ℓ_1 "ball".

Fig from Mairal et al.'s Sparse Modeling for Image and Vision Processing Fig 1.6

Why Does ℓ_1 Regularization Encourage Sparse Solutions?

Geometric intuition: Projection onto ℓ_2 sphere favors all directions equally.

Fig from Mairal et al.'s Sparse Modeling for Image and Vision Processing Fig 1.6

Why does ℓ_2 Encourage Sparsity? Optimization Perspective

For ℓ_2 regularization,

- As w_i becomes smaller, there is less and less penalty
 - What is the ℓ_2 penalty for $w_i = 0.0001$?
- The gradient—which determines the pace of optimization—decreases as *w_i* approaches zero
- Less incentive to make a small weight equal to exactly zero

For ℓ_1 regularization,

- The gradient stays the same as the weights approach zero
- This pushes the weights to be exactly zero even if they are already small

$\left(\ell_{q} ight)$ Regularization

• We can generalize to ℓ_q : $(||w||_q)^q = |w_1|^q + |w_2|^q$.

- Note: $||w||_q$ is only a norm if $q \ge 1$, but not for $q \in (0,1)$
- When q < 1, the ℓ_q constraint is non-convex, so it is hard to optimize; lasso is good enough in practice
- ℓ_0 ($\|w\|_0$) is defined as the number of non-zero weights, i.e. subset selection

Minimizing the lasso objective

Minimizing the lasso objective

- The ridge regression objective is differentiable (and there is a closed form solution)
- Lasso objective function:

$$\min_{w \in \mathsf{R}^d} \sum_{i=1}^n \left(w^T x_i - y_i \right)^2 + \lambda \|w\|_1$$

- $\|w\|_1 = |w_1| + \ldots + |w_d|$ is not differentiable!
- We will briefly review three approaches for finding the minimum:
 - Quadratic programming
 - Projected SGD
 - Coordinate descent

Rewriting the Absolute Value

- Consider any number $a \in R$.
- Let the **positive part** of *a* be

$$a^+ = a\mathbf{1}(a \ge 0).$$

• Let the **negative part** of *a* be

$$a^{-}=-a1(a\leqslant 0).$$

- Is it always the case that $a^+ \ge 0$ and $a^- \ge 0$?
- How do you write a in terms of a^+ and a^- ?
- How do you write |a| in terms of a^+ and a^- ?

The Lasso as a Quadratic Program

Substituting $w = w^+ - w^-$ and $|w| = w^+ + w^-$ results in an equivalent problem:

$$\min_{w^+,w^-} \quad \sum_{i=1}^n \left(\left(w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda \mathbf{1}^T \left(w^+ + w^- \right)$$

subject to $w_i^+ \ge 0$ for all i and $w_i^- \ge 0$ for all i ,

- This objective is differentiable (in fact, convex and quadratic)
- How many variables does the new objective have?
- This is a quadratic program: a convex quadratic objective with linear constraints.
- Quadratic programming is a very well understood problem; we can plug this into a generic QP solver.

Are we missing some constraints?

We have claimed that the following objective is equivalent to the lasso problem:

$$\min_{w^+,w^-} \sum_{i=1}^n \left(\left(w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda \mathbf{1}^T \left(w^+ + w^- \right)$$

subject to $w_i^+ \ge 0$ for all i $w_i^- \ge 0$ for all i ,

- When we plug this optimization problem into a QP solver,
 - it just sees 2*d* variables and 2*d* constraints.
 - Doesn't know we want w_i^+ and w_i^- to be positive and negative parts of w_i .
- Turns out that these constraints will be satisfied anyway!
- To make it clear that the solver isn't aware of the constraints of w_i^+ and w_i^- , let's denote them a_i and b_i

The Lasso as a Quadratic Program

(Trivially) reformulating the lasso problem:

$$\min_{w} \min_{a,b} \sum_{i=1}^{n} \left((a-b)^{T} x_{i} - y_{i} \right)^{2} + \lambda 1^{T} (a+b)$$

subject to $a_{i} \ge 0$ for all i $b_{i} \ge 0$ for all i ,
 $a-b=w$
 $a+b=|w|$

Claim: Don't need the constraint a + b = |w|.

Exercise: Prove by showing that the optimal solutions a^* and b^* satisfies $\min(a^*, b^*) = 0$, hence $a^* + b^* = |w|$.

The Lasso as a Quadratic Program

$$\min_{w} \min_{a,b} \sum_{i=1}^{n} \left((a-b)^{T} x_{i} - y_{i} \right)^{2} + \lambda 1^{T} (a+b)$$
subject to $a_{i} \ge 0$ for all i $b_{i} \ge 0$ for all i , $a-b=w$

Claim: Can remove min_w and the constraint a - b = w. Exercise: Prove by switching the order of the minimization.

Projected SGD

- Now that we have a differentiable objective, we could also use gradient descent
- But how do we handle the constraints?

$$\min_{w^+,w^- \in \mathsf{R}^d} \sum_{i=1}^n \left(\left(w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda \mathbf{1}^T \left(w^+ + w^- \right)$$

subject to $w_i^+ \ge 0$ for all i
 $w_i^- \ge 0$ for all i

- Projected SGD is just like SGD, but after each step
 - We project w^+ and w^- into the constraint set.
 - In other words, if any component of w^+ or w^- becomes negative, we set it back to 0.

Coordinate Descent Method

Goal: Minimize $L(w) = L(w_1, \ldots, w_d)$ over $w = (w_1, \ldots, w_d) \in \mathbb{R}^d$.

- In gradient descent or SGD, each step potentially changes all entries of w.
- In coordinate descent, each step adjusts only a single coordinate w_i.

$$w_i^{\text{new}} = \underset{w_i}{\arg\min} L(w_1, \dots, w_{i-1}, w_i, w_{i+1}, \dots, w_d)$$

- Solving the argmin for a particular coordinate may itself be an iterative process.
- Coordinate descent is an effective method when it's easy (or easier) to minimize w.r.t. one coordinate at a time

Coordinate Descent Method

Goal: Minimize $L(w) = L(w_1, \dots, w_d)$ over $w = (w_1, \dots, w_d) \in \mathbb{R}^d$. • Initialize $w^{(0)} = 0$

- while not converged:
 - Choose a coordinate $j \in \{1, \dots, d\}$

•
$$w_j^{\text{new}} \leftarrow \arg\min_{w_j} L(w_1^{(t)}, \dots, w_{j-1}^{(t)}, w_j, w_{j+1}^{(t)}, \dots, w_d^{(t)})$$

• $w_j^{(t+1)} \leftarrow w_j^{\text{new}}$ and $w^{(t+1)} \leftarrow w^{(t)}$
• $t \leftarrow t+1$

- Random coordinate choice \implies stochastic coordinate descent
- \bullet Cyclic coordinate choice \implies cyclic coordinate descent

Coordinate Descent Method for Lasso

The lasso objective coordinate minimization has a closed form! If

$$\hat{w}_{j} = \underset{w_{j} \in \mathsf{R}}{\operatorname{arg\,min}} \sum_{i=1}^{n} \left(w^{T} x_{i} - y_{i} \right)^{2} + \lambda |w|_{1}$$

Then

$$\hat{w}_j = egin{cases} (c_j+\lambda)/a_j & ext{if } c_j < -\lambda \ 0 & ext{if } c_j \in [-\lambda,\lambda] \ (c_j-\lambda)/a_j & ext{if } c_j > \lambda \end{cases}$$

$$a_j = 2\sum_{i=1}^n x_{i,j}^2$$
 $c_j = 2\sum_{i=1}^n x_{i,j}(y_i - w_{-j}^T x_{i,-j})$

where w_{-j} is w without the *j*-th component, and $x_{i,-j}$ is x_i without the *j*-th component.

(CDS, NYU)

Feb 7, 2022 40 / 41

- In general, coordinate descent is not competitive with gradient descent: its convergence rate is slower and the iteration cost is similar
- But it works very well for certain problems
- Very simple and easy to implement
- Example applications: lasso regression, SVMs