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Our Setup from Statistical Learning Theory

The Spaces

X: input space Y: outcome space A: action space

Prediction Function (or “decision function”)

A prediction function (or decision function) gets input x ∈X and produces an action a ∈A :

f : X → A

x 7→ f (x)

Loss Function
A loss function evaluates an action in the context of the outcome y .

` : A×Y → R
(a,y) 7→ `(a,y)
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Risk and the Bayes Prediction Function

Definition
The risk of a prediction function f : X→A is

R(f ) = E`(f (x),y).

In words, it’s the expected loss of f on a new example (x ,y) drawn randomly from PX×Y.

Definition
A Bayes prediction function f ∗ : X→A is a function that achieves the minimal risk among
all possible functions:

f ∗ ∈ argmin
f

R(f ),

where the minimum is taken over all functions from X to A.

The risk of a Bayes prediction function is called the Bayes risk.
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The Empirical Risk

Let Dn = ((x1,y1), . . . ,(xn,yn)) be drawn i.i.d. from PX×Y.

Definition
The empirical risk of f : X→A with respect to Dn is

R̂n(f ) =
1
n

n∑
i=1

`(f (xi ),yi ).

The unconstrained empirical risk minimizer can overfit.
i.e. if we minimize R̂n(f ) over all functions, we overfit.
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Constrained Empirical Risk Minimization

Definition
A hypothesis space F is a set of functions mapping X→A.

This is the collection of prediction functions we are choosing from.

An empirical risk minimizer (ERM) in F is

f̂n ∈ argmin
f∈F

1
n

n∑
i=1

`(f (xi ),yi ).

From now on “ERM” always means “constrained ERM”.

So we should always specify the hypothesis space when we’re doing ERM.
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Example: Linear Least Squares Regression

Setup

Input space X= Rd

Output space Y= R

Action space Y= R

Loss: `(ŷ ,y) = (y − ŷ)2

Hypothesis space: F =
{
f : Rd → R | f (x) = wT x , w ∈ Rd

}
Given a data set Dn = {(x1,y1), . . . ,(xn,yn)},

Our goal is to find the ERM f̂ ∈ F.
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Example: Linear Least Squares Regression

Objective Function: Empirical Risk

We want to find the function in F, parametrized by w ∈ Rd , that minimizes the empirical risk:

R̂n(w) =
1
n

n∑
i=1

(
wT xi − yi

)2
How do we solve this optimization problem?

min
w∈Rd

R̂n(w)

(For OLS there’s a closed form solution, but in general there isn’t.)
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Gradient Descent
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Unconstrained Optimization

Setting

We assume that the objective function f : Rd → R is differentiable.
We want to find

x∗ = arg min
x∈Rd

f (x)
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The Gradient

Let f : Rd → R be differentiable at x0 ∈ Rd .

The gradient of f at the point x0, denoted ∇x f (x0), is the direction in which f (x)
increases fastest, if we start from x0.

Figure A.111 from Newtonian Dynamics, by Richard Fitzpatrick.
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Gradient Descent

To reach a local minimum as fast as possible, we want to go in the opposite direction from
the gradient.

Gradient Descent
Initialize x ← 0.

Repeat:
x ← x −η∇f (x)

until the stopping criterion is satisfied.

The “step size” η is not the amount by which we update x!
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Gradient Descent Path

Ravid Shwartz Ziv (CDS, NYU) DS-GA 1003 Jan 31, 2023 13 / 47



Gradient Descent: Step Size

A fixed step size will work, eventually, as long as it’s small enough (roughly — details to
come)

If η is too large, the optimization process might diverge

In practice, it often makes sense to try several fixed step sizes

Intuition on when to take big steps and when to take small steps?
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Convergence Theorem for Fixed Step Size

Theorem

Suppose f : Rd → R is convex and differentiable, and ∇f is Lipschitz continuous with
constant L> 0, i.e.

‖∇f (x)−∇f (x ′)‖6 L‖x − x ′‖

for any x ,x ′ ∈ Rd . Then gradient descent with fixed step size η6 1/L converges. In particular,

f (x(k))− f (x∗)6
‖x(0)− x∗‖2

2ηk
.

This says that gradient descent is guaranteed to converge and that it converges with rate
O(1/k).
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Gradient Descent: When to Stop?

Wait until ‖∇f (x)‖2 6 ε, for some ε of your choosing.
(Recall ∇f (x) = 0 at a local minimum.)

Early stopping:
evalute loss on validation data after each iteration;

stop when the loss does not improve (or gets worse).
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Gradient Descent for Empirical Risk - Scaling Issues
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Quick recap: Gradient Descent for ERM

We have a hypothesis space of functions F =
{
fw : X→A | w ∈ Rd

}
Parameterized by w ∈ Rd .

Finding an empirical risk minimizer entails finding a w that minimizes

R̂n(w) =
1
n

n∑
i=1

`(fw (xi ),yi )

Suppose `(fw (xi ),yi ) is differentiable as a function of w .

Then we can do gradient descent on R̂n(w)
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Gradient Descent: Scalability

At every iteration, we compute the gradient at the current w :

∇R̂n(w) =
1
n

n∑
i=1

∇w `(fw (xi ),yi )

How does this scale with n?

We have to iterate over all n training points to take a single step. [O(n)]

Will not scale to “big data”!

Can we make progress without looking at all the data before updating w?
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Stochastic Gradient Descent
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“Noisy” Gradient Descent

Instead of using the gradient, we use a noisy estimate of the gradient.

Turns out this can work just fine!

Intuition:
Gradient descent is an iterative procedure anyway.

At every step, we have a chance to recover from previous missteps.
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Minibatch Gradient

The full gradient is

∇R̂n(w) =
1
n

n∑
i=1

∇w `(fw (xi ),yi )

It’s an average over the full batch of data Dn = {(x1,y1), . . . ,(xn,yn)}.

Let’s take a random subsample of size N (called a minibatch):

(xm1 ,ym1), . . . ,(xmN
,ymN

)

The minibatch gradient is

∇R̂N(w) =
1
N

N∑
i=1

∇w `(fw (xmi ),ymi )
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Batch vs Stochastic Methods

Rule of thumb for stochastic methods:
Stochastic methods work well far from the optimum

But struggle close the the optimum

(Slide adapted from Ryan Tibshirani)
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Minibatch Gradient Properties

The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does
that mean?

E
[
∇R̂N(w)

]
=∇R̂n(w)

The bigger the minibatch, the better the estimate.

1
N
Var
[
∇R̂1(w)

]
= Var

[
∇R̂N(w)

]

Tradeoffs of minibatch size:
Bigger N =⇒ Better estimate of gradient, but slower (more data to process)

Smaller N =⇒Worse estimate of gradient, but can be quite fast

Because of vectorization, we can often get minibatches of certain sizes for free
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Convergence of SGD

For convergence guarantee, use diminishing step sizes, e.g. ηk = 1/k

Theoretically, GD is much faster than SGD in terms of convergence rate:
much faster to add a digit of accuracy.

but most of that advantage comes into play once we’re already pretty close to the
minimum.

However, in many ML problems we don’t care about optimizing to high accuracy
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Step Sizes in Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size N)

initialize w = 0

repeat
randomly choose N points {(xi ,yi )}

N
i=1 ⊂Dn

w ← w −η
[

1
N

∑N
i=1∇w `(fw (xi ),yi )

]
For SGD, fixed step size can work well in practice.

Typical approach: Fixed step size reduced by constant factor whenever validation
performance stops improving.

Other tricks: Bottou (2012), “Stochastic gradient descent tricks”
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Summary

Gradient descent or “full-batch” gradient descent
Use full data set of size n to determine step direction

Minibatch gradient descent
Use a random subset of size N to determine step direction

Stochastic gradient descent
Minibatch with N = 1.

Use a single randomly chosen point to determine step direction.

These days terminology isn’t used so consistently, so always clarify the [mini]batch size.

SGD is much more efficient in time and memory cost and has been quite successful in
large-scale ML.
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Example: Logistic regression with `2 regularization

Batch methods converge faster :

(Example from Ryan Tibshirani)
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Example: Logistic regression with `2 regularization

Stochastic methods are computationally more efficient:

(Example from Ryan Tibshirani)
Ravid Shwartz Ziv (CDS, NYU) DS-GA 1003 Jan 31, 2023 29 / 47



Example: Logistic regression with `2 regularization

Batch methods are much faster close to the optimum:

(Example from Ryan Tibshirani)
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Loss Functions: Regression
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Regression Problems

Examples:
Predicting the stock price given history prices

Predicting medical cost of given age, sex, region, BMI etc.

Predicting the age of a person based on their photos

Spaces:
Input space X= Rd

Action space A= R

Outcome space Y= R.

Notation:
ŷ is the predicted value (the action)

y is the actual observed value (the outcome)
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Loss Functions for Regression

A loss function in general:
(ŷ ,y) 7→ `(ŷ ,y) ∈ R

Regression losses usually only depend on the residual r = y − ŷ .
what you have to add to your prediction to get the correct answer.

A loss `(ŷ ,y) is called distance-based if:
1 It only depends on the residual:

`(ŷ ,y) =ψ(y − ŷ) for some ψ:R→ R

2 It is zero when the residual is 0:
ψ(0) = 0
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(ŷ ,y) 7→ `(ŷ ,y) ∈ R
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Distance-Based Losses are Translation Invariant

Distance-based losses are translation-invariant. That is,

`(ŷ +b,y +b) = `(ŷ ,y) ∀b ∈ R.

When might you not want to use a translation-invariant loss?

Sometimes the relative error ŷ−y
y is a more natural loss (but not translation-invariant)

Often you can transform response y so it’s translation-invariant (e.g. log transform)
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When might you not want to use a translation-invariant loss?

Sometimes the relative error ŷ−y
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Some Losses for Regression

Residual: r = y − ŷ

Square or `2 Loss: `(r) = r2

Absolute or Laplace or `1 Loss: `(r) = |r |

y ŷ |r |= |y − ŷ | r2 = (y − ŷ)2

1 0 1 1
5 0 5 25
10 0 10 100
50 0 50 2500

Outliers typically have large residuals. (What is an outlier?)

Square loss much more affected by outliers than absolute loss.
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Loss Function Robustness

Robustness refers to how affected a learning algorithm is by outliers.
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Some Losses for Regression

Square or `2 Loss: `(r) = r2 (not robust)

Absolute or Laplace Loss: `(r) = |r | (not differentiable)
gives median regression

Huber Loss: Quadratic for |r |6 δ and linear for |r |> δ (robust and differentiable)
Equal values and slopes at r = δ
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Classification Loss Functions
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The Classification Problem

Examples:
Predict whether the image contains a cat

Predict whether the email is SPAM

Classification spaces:
Input space Rd

Outcome space Y= {−1,1}

Action space A= R (easier to work with than A= {−1,1})

Inference:

f (x)> 0 =⇒ Predict 1
f (x)< 0 =⇒ Predict −1
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The Score Function

Action space A= R Output space Y= {−1,1}

Real-valued prediction function f : X→ R

Definition
The value f (x) is called the score for the input x .

In this context, f may be called a score function.

The magnitude of the score can be interpreted as our confidence of our prediction.
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The Margin

Definition
The margin (or functional margin) for a predicted score ŷ and the true class y ∈ {−1,1} is y ŷ .

The margin is often written as yf (x), where f (x) is our score function.

The margin is a measure of how correct we are:
If y and ŷ are the same sign, prediction is correct and margin is positive.

If y and ŷ have different sign, prediction is incorrect and margin is negative.

We want to maximize the margin

Most classification losses depend only on the margin (they are margin-based losses).
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Classification Losses: 0−1 Loss

If f̃ is the inference function (1 if f (x)> 0 and −1 otherwise), then

The 0-1 loss for f : X→ {−1,1}:

`(f (x),y) = 1(f̃ (x) 6= y)

Empirical risk for 0−1 loss:

R̂n(f ) =
1
n

n∑
i=1

1(yi f (xi )6 0)

Minimizing empirical 0−1 risk not computationally feasible

R̂n(f ) is non-convex, not differentiable (in fact, discontinuous!).
Optimization is NP-Hard.
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Classification Losses

Zero-One loss: `0-1 = 1(m 6 0)

x-axis is margin: m > 0 ⇐⇒ correct classification
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Classification Losses

SVM/Hinge loss: `Hinge =max(1−m,0)

Hinge is a convex, upper bound on 0−1 loss. Not differentiable at m = 1.
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Classification Losses

Logistic/Log loss: `Logistic = log (1+ e−m)

Logistic loss is differentiable. Logistic loss always rewards a larger margin (the loss is never 0).
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What About Square Loss for Classification?

Action space A= R Output space Y= {−1,1}

Loss `(f (x),y) = (f (x)− y)2.

Turns out, can write this in terms of margin m = f (x)y :

`(f (x),y) = (f (x)− y)2 = (1− f (x)y)2 = (1−m)2

Prove using fact that y2 = 1, since y ∈ {−1,1}.
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What About Square Loss for Classification?

Heavily penalizes outliers (e.g. mislabeled examples).

May have higher sample complexity (i.e. needs more data) than hinge & logistic1.
1Rosasco et al’s “Are Loss Functions All the Same?” http://web.mit.edu/lrosasco/www/publications/loss.pdf
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