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Motivation

Question
Consider applying SVM to the data set. What is the issue? J
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Motivation

Question
Consider applying SVM to the data set. What is the issue?

Solution

We want to allow for non-linear regression functions, but we would like to
reuse the same fitting procedures we have already developed. To do this we
will expand our feature set by adding non-linear functions of old features.
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Motivation

Solution

For the SVM we expand our feature vector from (1, x1, x2) to

(1, x1, %2, x1x2, X2, x3). Using w = (—1.875,2.5,-2.5,0,1,1) gives

—1.875+2.5x7 — 2.5x0 + xZ + x5 = (x1 + 1.25)2 + (xp — 1.25)> — 5 =0 as
our decision boundary.
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Recitation 5

Motivation

@ Linear model is clearly insufficient to represent these problems.
@ The most intuitive solution is to expand the input space

e Adding features
@ We can define a feature map function ¢(x) : X — H

o dim(H) > dim(X)

o For SVM example above, ¢(1, x1, %) = [1, x1, X2, X1 X2, X2, X3].

@ We then find a linear separator on the feature space H.
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Adding Features

@ Polynomials can approximate any function (Taylor's Theorem).
@ We can linearly model any problem perfectly if we add enough terms.
@ But adding features obviously comes with a cost.

@ The cost grows exponentially as we increase the degree.
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Adding Features

Question

Suppose we begin with d-dimensional inputs x = (x1,...,x4). We add all
features up to degree M. More precisely, all terms of the form

xgteoexh? pp>0and py 4o+ pg <M

How many features will we have in total?

o There will be (M*?) terms total. Grows very quickly!
o For example, if d = 40 and M = 8 we get (**®) = 377348994.
@ Both M and d impacts the cost of adding features.

o If we stick with polynomial features up to order M, it's takes
exponential time O(dM) to compute all features.

@ How do we make the computation feasible?
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Representer Theorem

Theorem

Suppose you have a loss function of the form

J(w) = LwT (), .., wo(xa)) + R([[wll2)
where
o x; e RY weRY p(x): RY— R
e L:R"™ — R is an arbitrary function (loss term).
e R:R>9 — R is increasing (regularization term).

Assume J has at least one minimizer. Then J has a minimizer w* of the

form w* = > ajp(x;) for some o € R". If R is strictly increasing, then
all minimizers have this form.

v
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Representer Theorem: Proof

Proof.
o Let w* € RY and let S = Span(p(x1), ..., (xn))-
@ Suppose w* is the optimal parameter, and it does not lie in S.

o Then we can write w* = u+ v where u € S and v € S*. (Here u is
the orthogonal projection of w* onto S, and S+ is the subspace of all
vectors orthogonal to S.)

o Then (w*)"p(xi) = (u+v)To(xi) = uTp(x) + v o(xi) = uTe(x).
So the prediction only depends on u” ¢(x;).

o But [|w*[3 = u+v[3 = [lul3+IvIZ+2uTv = [lul3+[Iv]3 > ||ul3.

e Thus R(||w*|]2) > R(J|ull2) showing J(w*) > J(u).

O

4
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Recitation 5

Representer Theorem

@ If your loss function only depends on w via its inner products with the
inputs, and the regularization is an increasing function of the £ norm,
then we can write w* as a linear combination of the training data.

@ This applies to ridge regression and SVM.
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Recitation 5

Representer Theorem: Ridge Regression

@ By adding features to ridge regression we had

J(w) = *Z(W o(xi) — yi)* + Al w3
= ;H‘DVT/—)’H%+/\VT/TV~V,

where ® € R"™*?" is the matrix with ¢(x;)7 as its ith row.
o Representer Theorem applies giving w = 37} ajp(x;j) = oTa.

@ Plugging in gives
J(a) = HCDCDTa y” +aaTooTa.

o Define K = o7
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Representer Theorem: Dual SVM

@ The dual SVM problem (with features) is given by

maximize,, Za, - = Z QoYY X:) o(x)

ij=1

subject to Za,-y,- =0

aj € [O,E} fori=1,...,n
n

@ We can immediately kernelize (no representer theorem needed) by
replacing () o(5) = k(. ).

@ Recall that we were able to derive the conclusion of the representer
theorem using strong duality for SVMs.
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The Kernel Function

Definition (Kernel)
Given a feautre map ¢(x) : X — Z, the kernel function corresponding to

o(x) is / /
k(x,x7) = {p(x), o(x )

where (-, ) is an inner product operator.

@ So a kernel function computes the inner product of applying the
feature map ¢(x) for two inputs x, x’ € X.
@ We only need to know the output of the kernel to find the parameters.

@ Predictor function is:

f(x*)= Z aik(xi, x™)
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Efficiency of Kernel

Consider the polynomial kernel k(x,y) = (¢(x), o(y)) = (1 + xTy)M
where x, y € RY. For example, if M = 2 we have

(1+xTy)? = 1+ 2xTy+xTyxTy
= 14250 xiyi + 200y Xivixiy,.
Option 1: First explicitly evaluate ¢(x) and ¢(y), and then compute
{p(x), p(¥))-
° p(x) =
(1,vV2x1, ..., V2xq, 52, . .. , X3, V2x1%0, V2x1X3, . . ., V/2Xd_1Xd)
o Takes O(d) times to evaluate (x) and ¢(y).
o Takes another O(d™) times to compute the inner product.
o Time complexity is O(d™).
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Efficiency of Kernel

Consider the polynomial kernel k(x,y) = (¢(x), o(y)) = (1 + xTy)M
where x, y € RY. This computes the inner product of all monomials up to
degree M in time O(d). For example, if M =2 we have

(1+xTy)? = 1+2xTy+xTyxTy
d d
= 142300 Xiyi + >0 i XiViXi ;-
Option 2: First calculate 1 + x "y, then calculate (14 xTy)M.
o Takes O(d) time to evaluate 1 + x"y.

o Takes O(1) time to calculate (1+ xy)M
e Time complexity is O(d)
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Recap on what we achieved

@ Start with a low dimensional model

e Due to limited input data size
o Number of parameters is d

e Want to increase the model capacity by adding features x; — ¢(x;)

o The cost is too high as we increase degrees
o Number of parameters is d’, d’ >> d

@ Realize the optimal parameter is a linear combination of ¢(x;)

o Representer Theorem
o Number of parameters becomes N, d’ >> N > d

@ Realize we only need the inner product of two ¢(x;), k(-, )

e There are more efficient methods to compute the inner product
o We don't need to explicitly compute ¢(-)

@ The rephrased problem becomes a linear problem
e But the solution still has high dimensional expressive power!
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Mercer's Theorem

e Not all function f(x, y) are valid kernels.

@ How can we know if k(x,y) is a valid kernel or not?

Theorem (Mercer's Theorem)

Fix a kernel k : X x X — R. There is a Hilbert space H and a feature
map ¢ : X — H such that k(x,y) = (¢(x),¢(y))n if and only if for any

X1,...,Xp € X the associated matrix K is positive semi-definite:
k(xi,x1) -+ k(x1,xn)
K=| =+
k(Xn,Xl) k(thXn)

Such a kernel k is called positive semi-definite.
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Positive Semi-Definite

Definition (Positive Semi-Definite)

A matrix A € R"*" is positive semi-definite if it is symmetric and

xTAx >0

for all x € R",

@ Equivalent to saying the matrix is symmetric with non-negative
eigenvalues.
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Kernel Examples

@ Dot Product

o k(xi,x;) = xx;
@ Mth Polynomial Kernels

o k(x,35) = (L4 xT )M
o RBF Kernels

o k(xi,x) = exp(—iHX";g”z)
@ Sigmoid kernel

o k(xi,x;) = tanh(ax x; + ¢)
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RBF Kernels

w — X 2
k(W7X) = exp <—||20_2H2> .

@ 2d RBF kernel looks like the following.

@ Let's say we fix w. The k(w, x) is high when x is very close to w.
The value decays as x is moving away from w.

@ o controls the spread of the kernel. The higher o is the wider / flatter

the landscape is for k(w, x).
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RBF Kernels

@ As we saw earlier for ridge regression and SVM classification, the
decision function has the form f,(x) = >°7_; a;ik(x;, x).

@ For ridge regression, this means that using the RBF kernel amounts to
approximating our data by a linear combination of Gaussian bumps.

e For SVM classification, each k(x;,x) = exp (—||x; — x||3/(202))
represents a exponentially decaying distance between x; and x. Thus
our decisions depend on our proximities to data points.
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Going to infinite dimension

e What is the polynomial expression of ¢(-) for RBF and Sigmoid
Kernel?

e There are no finite expression, they are sum of infinite polynomials

o 00 = &2 |1\ [box gty [ |

@ This implies we have essentially modeled the problem using a infinite
degree polynomial!

@ At this point, the factor limiting our model capacity is the amount of
training data.
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Finding Your Own Kernels

Let ki, ko : X x X — R be positive semi-definite kernels. Then so are the
following:
o k3(w,x) = ki(w,x) + ka(w, x)

) =
® ky ) = aki(w,x) for a >0
)
)

)

(w, x
o ks(w,x) = f(w)f(x) for any function f : ¥ — R
(w, x) = ki(w, x)ka(w, x)

Oks

)
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Remarks

With Representer Theorem, we can re-parameterize our prediction
function from f,(x) = wTp(x) to fo(x) = Y1, aik(x;, x).

@ The feature representation ((x) only appears in inner product form in
both the loss function and the prediction function.

@ Therefore, we just need to evaluate the kernel function k(x,y) and
never need to explicitly evaluate p(x). It's much easier to compute
the kernel k(x, y) than the inner product.

@ The kernel k(x,y), to some extent, represents a similarity score
between two data points.

@ We are almost guaranteed to overfit on training data, so
regularization is very important.
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