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Motivation

Question

Consider applying SVM to the data set. What is the issue?

x2

x1
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Recitation 5

Motivation

Question

Consider applying SVM to the data set. What is the issue?

Solution

We want to allow for non-linear regression functions, but we would like to
reuse the same fitting procedures we have already developed. To do this we
will expand our feature set by adding non-linear functions of old features.
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Motivation

Solution

For the SVM we expand our feature vector from (1, x1, x2) to
(1, x1, x2, x1x2, x

2
1 , x

2
2 ). Using w = (−1.875, 2.5,−2.5, 0, 1, 1) gives

−1.875+ 2.5x1 − 2.5x2 + x21 + x22 = (x1 +1.25)2 + (x2 − 1.25)2 − 5 = 0 as
our decision boundary.

x2

x1
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Motivation

Linear model is clearly insufficient to represent these problems.

The most intuitive solution is to expand the input space
Adding features

We can define a feature map function φ(x) : X 7→ H
dim(H) > dim(X )
For SVM example above, φ(1, x1, x2) = [1, x1, x2, x1x2, x

2
1 , x

2
2 ].

We then find a linear separator on the feature space H.
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Adding Features

Polynomials can approximate any function (Taylor’s Theorem).

We can linearly model any problem perfectly if we add enough terms.

But adding features obviously comes with a cost.

The cost grows exponentially as we increase the degree.
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Adding Features

Question

Suppose we begin with d-dimensional inputs x = (x1, . . . , xd). We add all
features up to degree M. More precisely, all terms of the form

xp11 · · · xpdd pi ≥ 0 and p1 + · · ·+ pd ≤ M

How many features will we have in total?

There will be
(M+d

M

)
terms total. Grows very quickly!

For example, if d = 40 and M = 8 we get
(
40+8
8

)
= 377348994.

Both M and d impacts the cost of adding features.

If we stick with polynomial features up to order M, it’s takes
exponential time O(dM) to compute all features.

How do we make the computation feasible?
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Representer Theorem

Theorem

Suppose you have a loss function of the form

J(w) = L(wTφ(x1), . . . ,w
Tφ(xn)) + R(∥w∥2)

where

xi ∈ Rd ,w ∈ Rd ′
, φ(x) : Rd 7→ Rd ′

.

L : Rn → R is an arbitrary function (loss term).

R : R≥0 → R is increasing (regularization term).

Assume J has at least one minimizer. Then J has a minimizer w∗ of the
form w∗ =

∑n
i=1 αiφ(xi ) for some α ∈ Rn. If R is strictly increasing, then

all minimizers have this form.
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Representer Theorem: Proof

Proof.

Let w∗ ∈ Rd ′
and let S = Span(φ(x1), . . . , φ(xn)).

Suppose w∗ is the optimal parameter, and it does not lie in S .

Then we can write w∗ = u + v where u ∈ S and v ∈ S⊥. (Here u is
the orthogonal projection of w∗ onto S , and S⊥ is the subspace of all
vectors orthogonal to S .)

Then (w∗)Tφ(xi ) = (u + v)Tφ(xi ) = uTφ(xi ) + vTφ(xi ) = uTφ(xi ).
So the prediction only depends on uTφ(xi ).

But ∥w∗∥22 = ∥u+ v∥22 = ∥u∥22+∥v∥22+2uT v = ∥u∥22+∥v∥22 ≥ ∥u∥22.
Thus R(∥w∗∥2) ≥ R(∥u∥2) showing J(w∗) ≥ J(u).
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Representer Theorem

If your loss function only depends on w via its inner products with the
inputs, and the regularization is an increasing function of the ℓ2 norm,
then we can write w∗ as a linear combination of the training data.

This applies to ridge regression and SVM.
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Representer Theorem: Ridge Regression

By adding features to ridge regression we had

J(w̃) =
1

n

n∑
i=1

(w̃Tφ(xi )− yi )
2 + λ∥w̃∥22

=
1

n
∥Φw̃ − y∥22 + λw̃T w̃ ,

where Φ ∈ Rn×d ′
is the matrix with φ(xi )

T as its ith row.

Representer Theorem applies giving w̃ =
∑n

j=1 αjφ(xj) = ΦTα.

Plugging in gives

J(α) =
1

n

∥∥∥ΦΦTα− y
∥∥∥2
2
+ λαTΦΦTα.

Define K = ΦΦT
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Representer Theorem: Dual SVM

The dual SVM problem (with features) is given by

maximizeα

n∑
i=1

αi −
1

2

n∑
i ,j=1

αiαjyiyjφ(xi )
Tφ(xj)

subject to
n∑

i=1

αiyi = 0

αi ∈
[
0,

c

n

]
for i = 1, . . . , n.

We can immediately kernelize (no representer theorem needed) by
replacing φ(xi )

Tφ(xj) = k(xi , xj).

Recall that we were able to derive the conclusion of the representer
theorem using strong duality for SVMs.
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The Kernel Function

Definition (Kernel)

Given a feautre map φ(x) : X 7→ Z, the kernel function corresponding to
φ(x) is

k(x , x
′
) = ⟨φ(x), φ(x ′

)⟩

where ⟨·, ·⟩ is an inner product operator.

So a kernel function computes the inner product of applying the
feature map φ(x) for two inputs x , x ′ ∈ X .

We only need to know the output of the kernel to find the parameters.

Predictor function is:

f (x∗) =
∑
i

αik(xi , x
∗)
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Efficiency of Kernel

Consider the polynomial kernel k(x , y) = ⟨φ(x), φ(y)⟩ = (1 + xT y)M

where x , y ∈ Rd . For example, if M = 2 we have

(1 + xT y)2 = 1 + 2xT y + xT yxT y

= 1 + 2
∑d

i=1 xiyi +
∑d

i ,j=1 xiyixjyj .

Option 1: First explicitly evaluate φ(x) and φ(y), and then compute
⟨φ(x), φ(y)⟩.

φ(x) =
(1,

√
2x1, . . . ,

√
2xd , x

2
1 , . . . , x

2
d ,
√
2x1x2,

√
2x1x3, . . . ,

√
2xd−1xd)

Takes O(dM) times to evaluate φ(x) and φ(y).

Takes another O(dM) times to compute the inner product.

Time complexity is O(dM).
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Efficiency of Kernel

Consider the polynomial kernel k(x , y) = ⟨φ(x), φ(y)⟩ = (1 + xT y)M

where x , y ∈ Rd . This computes the inner product of all monomials up to
degree M in time O(d). For example, if M = 2 we have

(1 + xT y)2 = 1 + 2xT y + xT yxT y

= 1 + 2
∑d

i=1 xiyi +
∑d

i ,j=1 xiyixjyj .

Option 2: First calculate 1 + xT y , then calculate (1 + xT y)M .

Takes O(d) time to evaluate 1 + xT y .

Takes O(1) time to calculate (1 + xT y)M

Time complexity is O(d)
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Recap on what we achieved

Start with a low dimensional model

Due to limited input data size
Number of parameters is d

Want to increase the model capacity by adding features xi → φ(xi )

The cost is too high as we increase degrees
Number of parameters is d ′, d ′ >> d

Realize the optimal parameter is a linear combination of φ(xi )

Representer Theorem
Number of parameters becomes N, d ′ >> N > d

Realize we only need the inner product of two φ(xi ), k(·, ·)
There are more efficient methods to compute the inner product
We don’t need to explicitly compute φ(·)

The rephrased problem becomes a linear problem

But the solution still has high dimensional expressive power!

DS-GA 1003 Machine Learning (CDS) Recitation 5 February 22, 2023 17 / 26



Recitation 5

Mercer’s Theorem

Not all function f (x , y) are valid kernels.

How can we know if k(x , y) is a valid kernel or not?

Theorem (Mercer’s Theorem)

Fix a kernel k : X × X → R. There is a Hilbert space H and a feature
map φ : X → H such that k(x , y) = ⟨φ(x), φ(y)⟩H if and only if for any
x1, . . . , xn ∈ X the associated matrix K is positive semi-definite:

K =

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)

 .

Such a kernel k is called positive semi-definite.
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Positive Semi-Definite

Definition (Positive Semi-Definite)

A matrix A ∈ Rn×n is positive semi-definite if it is symmetric and

xTAx ≥ 0

for all x ∈ Rn.

Equivalent to saying the matrix is symmetric with non-negative
eigenvalues.
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Kernel Examples

Dot Product

k(xi , xj) = xTi xj

Mth Polynomial Kernels

k(xi , xj) = (1 + xTi xj)
M

RBF Kernels

k(xi , xj) = exp(− ||xi−xj ||2
2σ2 )

Sigmoid kernel

k(xi , xj) = tanh(αxTi xj + c)
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RBF Kernels

k(w , x) = exp

(
−∥w − x∥22

2σ2

)
.

2d RBF kernel looks like the following.

Let’s say we fix w . The k(w , x) is high when x is very close to w .
The value decays as x is moving away from w .

σ controls the spread of the kernel. The higher σ is the wider / flatter
the landscape is for k(w , x).
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RBF Kernels

As we saw earlier for ridge regression and SVM classification, the
decision function has the form fα(x) =

∑n
i=1 αik(xi , x).

For ridge regression, this means that using the RBF kernel amounts to
approximating our data by a linear combination of Gaussian bumps.

For SVM classification, each k(xi , x) = exp
(
−∥xi − x∥22/(2σ2)

)
represents a exponentially decaying distance between xi and x . Thus
our decisions depend on our proximities to data points.
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Going to infinite dimension

What is the polynomial expression of φ(·) for RBF and Sigmoid
Kernel?

There are no finite expression, they are sum of infinite polynomials

φ(x) = e−x2/2σ2
[
1,
√

1
1!σ2 x ,

√
1

2!σ4 x
2,
√

1
3!σ6 x

3, . . .
]

This implies we have essentially modeled the problem using a infinite
degree polynomial!

At this point, the factor limiting our model capacity is the amount of
training data.
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Finding Your Own Kernels

Let k1, k2 : X × X → R be positive semi-definite kernels. Then so are the
following:

k3(w , x) = k1(w , x) + k2(w , x)

k4(w , x) = αk1(w , x) for α ≥ 0

k5(w , x) = f (w)f (x) for any function f : X → R
k6(w , x) = k1(w , x)k2(w , x)
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Remarks

With Representer Theorem, we can re-parameterize our prediction
function from fw (x) = wTφ(x) to fα(x) =

∑n
i=1 αik(xi , x).

The feature representation φ(x) only appears in inner product form in
both the loss function and the prediction function.

Therefore, we just need to evaluate the kernel function k(x , y) and
never need to explicitly evaluate φ(x). It’s much easier to compute
the kernel k(x , y) than the inner product.

The kernel k(x , y), to some extent, represents a similarity score
between two data points.

We are almost guaranteed to overfit on training data, so
regularization is very important.
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