Recitation 11 Gradient Boosting

DS-GA 1003 Machine Learning

Spring 2023

April 12, 2023

Recitation 11

Motivation

- We started with linear models (regression, classification)
- We introduced feature transformation to incorporate non-linearity
- We covered decision trees: a non-linear, non-parametric model
- Another idea: Ensemble (Combining small models to tackle complex problems)

Additive Models

1 Additive models over a base hypothesis space \mathcal{H} take the form

$$\mathcal{F} = \left\{ f(x) = \sum_{m=1}^{M} \nu_m h_m(x) \mid h_m \in \mathcal{H}, \nu_m \in \mathbb{R}
ight\}.$$

- ② Since we are taking linear combinations, we assume the h_m functions take values in ℝ or some other vector space.
- ${f 0}$ Empirical risk minimization over ${\cal F}$ tries to find

$$\underset{f\in\mathcal{F}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)).$$

This in general is a difficult task, as the number of base hypotheses *M* is unknown, and each base hypothesis h_m ranges over all of *H*.

Forward Stagewise Additive Modeling (FSAM)

The FSAM method fits additive models using the following (greedy) algorithmic structure:

- Initialize $f_0 \equiv 0$.
- **2** For stage $m = 1, \ldots, M$:
 - $\bullet \quad \mathsf{Choose} \ h_m \in \mathcal{H} \ \mathsf{and} \ \nu_m \in \mathbb{R} \ \mathsf{so that}$

$$f_m = f_{m-1} + \nu_m h_m$$

has the minimum empirical risk.

2 The function f_m has the form

$$f_m = \nu_1 h_1 + \cdots + \nu_m h_m.$$

• When choosing h_m, ν_m during stage m, we must solve the minimization

$$(\nu_m, h_m) = \operatorname*{arg\,min}_{\nu \in \mathbb{R}, h \in \mathcal{H}} \sum_{i=1}^n \ell(y_i, f_{m-1}(x_i) + \nu h(x_i)).$$

Gradient Boosting

Can we simplify the following minimization problem:

$$(\nu_m, h_m) = \operatorname*{arg\,min}_{\nu \in \mathbb{R}, h \in \mathcal{H}} \sum_{i=1}^n \ell(y_i, f_{m-1}(x_i) + \nu h(x_i)).$$

- I how about just take a step along the steepest descent direction?
- Issue 1: h is a function instead of a vector
- Solution 1: Treat h as a vector of the size of the training set (h(x₁),..., h(x_n)) rather than a function.
- Solution Issue 2: h must lies in \mathcal{H} , the base hypothesis space,
- Solution 2: Compute unconstrained steepest descent direction, and then find the closest choices in *H*.

Gradient Boosting Machine

- **1** Initialize $f_0 \equiv 0$.
- **2** For stage $m = 1, \ldots, M$:
 - O Compute the steepest descent direction (also called *pseudoresiduals*):

$$r_m = -\left(\frac{\partial}{\partial f_{m-1}(x_1)}\ell(y_1, f_{m-1}(x_1)), \ldots, \frac{\partial}{\partial f_{m-1}(x_n)}\ell(y_n, f_{m-1}(x_n))\right).$$

Ø Find the closest base hypothesis (using Euclidean distance):

$$h_m = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n ((r_m)_i - h(x_i))^2.$$

③ Choose fixed step size $\nu_m \in (0, 1]$ or line search:

$$u_m = \operatorname*{arg\,min}_{\nu \ge 0} \sum_{i=1}^n \ell(y_i, f_{m-1}(x_i) + \nu h_m(x_i)).$$

Take the step:

$$f_m(x) = f_{m-1}(x) + \nu_m h_m(x).$$

DS-GA 1003 Machine Learning (Spring 2023

Recitation 11

April 12, 2023

Gradient Boosting Machine

Each stage we need to solve the following step:

$$h_m = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n ((r_m)_i - h(x_i))^2.$$

How do we do this?

② This is a standard least squares regression task on the "mock" dataset

$$\mathcal{D}^{(m)} = \{(x_1, (r_m)_1), \dots, (x_n, (r_m)_n)\}.$$

We assume that we have a learner that (approximately) solves least squares regression over *H*.

< □ > < 同 > < 三 > < 三 >

Gradient Boosting Comments

- The algorithm above is sometimes called AnyBoost or Functional Gradient Descent.
- The most commonly used base hypothesis space is small regression trees (between 4 and 8 leaves).

- 4 回 ト 4 ヨ ト 4 ヨ ト

Practice With Different Loss Functions

Question

Explain how to perform gradient boosting with the following loss functions:

3 Square loss:
$$\ell(y, a) = (y - a)^2/2$$
.

3 Absolute loss:
$$\ell(y,a) = |y - a|$$
.

③ Exponential margin loss:
$$\ell(y, a) = e^{-ya}$$
.

9/16

・ 何 ト ・ ヨ ト ・ ヨ ト

Solution: Square loss

Using $\ell(y, a) = (y - a)^2/2$

To compute an arbitrary pseudoresidual we first note that

$$\frac{\partial \ell}{\partial a} = -(y - a)$$

giving

$$-\frac{\partial\ell}{\partial f_{m-1}(x_i)}=(y_i-f_{m-1}(x_i)).$$

In words, for the square loss, the pseudoresiduals are simply the residuals from the previous stage's fit. Thus, in stage m our step direction h_m is given by solving

$$h_m := \underset{h \in \mathcal{H}}{\arg\min} \sum_{i=1}^n ((y_i - f_{m-1}(x_i)) - h(x_i))^2.$$

~ ~

Solution: Absolute Loss

Using
$$\ell(y, a) = |y - a|$$

Note that

$$\frac{\partial \ell}{\partial a} = -\operatorname{sgn}(y - a)$$

giving

$$-\frac{\partial \ell}{\partial f_{m-1}(x_i)} = \operatorname{sgn}(y_i - f_{m-1}(x_i)).$$

The absolute loss only cares about the sign of the residual from the previous stage's fit. Thus, in stage m our step direction h_m is given by solving

$$h_m := \operatorname*{arg\,min}_{h \in \mathcal{H}} \sum_{i=1}^n (\operatorname{sgn}(y_i - f_{m-1}(x_i)) - h(x_i))^2.$$

< □ > < □ > < □ > < □ > < □ > < □ >

Solution: Exponential Loss

Using
$$\ell(y, a) = e^{-ya}$$

Note that

$$\frac{\partial \ell}{\partial a} = -y e^{-ya}$$

giving

$$-\frac{\partial \ell}{\partial f_{m-1}(x_i)}=y_ie^{-y_if_{m-1}(x_i)}.$$

Thus, in stage m our step direction h_m is given by solving

$$h_m := \underset{h \in \mathcal{H}}{\arg\min} \sum_{i=1}^n (y_i e^{-y_i f_{m-1}(x_i)} - h(x_i))^2.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

Exponential Loss and Adaboost

If we have learners which produce classification functions that minimize a weighted 0-1 loss, we can use them with GBM and the exponential loss to recover the AdaBoost algorithm. Let

$$\vec{r} = \left(y_i e^{-y_i f_{m-1}(x_i)}\right)_{i=1}^n$$
 and $\vec{h} = (h(x_i))_{i=1}^n$.

Then we have

$$h_m = \arg\min_{h \in \mathcal{H}} \|\vec{r} - \vec{h}\|_2^2 = \|\vec{r}\|_2^2 + \|\vec{h}\|_2^2 - 2\langle \vec{r}, \vec{h} \rangle.$$

Note that $\vec{h} \in \{-1, 1\}^n$ so $\|\vec{h}\|_2^2 = n$, i.e., a constant. Thus this minimization is equivalent to

$$h_m = \underset{h \in \mathcal{H}}{\arg \max} \langle \vec{r}, \vec{h} \rangle = \underset{h \in \mathcal{H}}{\arg \max} \sum_{i=1}^n h(x_i) y_i e^{-y_i f_{m-1}(x_i)}.$$

Exponential Loss and Adaboost continued

Note that

$$h(x_i)y_i = 1 - 2 \cdot \mathbf{1}(h(x_i) \neq y_i)$$

SO

$$h_m = \arg \max_{h \in \mathcal{H}} \sum_{i=1}^n e^{-y_i f_{m-1}(x_i)} - 2 \sum_{i=1}^n e^{-y_i f_{m-1}(x_i)} \mathbf{1}(h(x_i) \neq y_i)$$

=
$$\arg \min_{h \in \mathcal{H}} \sum_{i=1}^n e^{-y_i f_{m-1}(x_i)} \mathbf{1}(h(x_i) \neq y_i).$$

Thus we see that h_m minimizes a weighted 0 - 1 loss. The weights are

$$e^{-y_i f_{m-1}(x_i)} = e^{-y_i(\sum_{i=1}^{m-1} \nu_i h_i(x_i))} = \prod_{i=1}^{m-1} e^{-y_i \nu_i h_i(x_i)} = \prod_{i=1}^{m-1} e^{-\nu_i (1-21(h_i(x_i)\neq y_i))}.$$

< □ > < □ > < □ > < □ > < □ > < □ >

Python Demo

- Next we apply GBM to square loss and absolute loss on a simple 1-d data set.
- We use decision stumps as our base hypothesis space.
- Run gbm.py to see the output.

< □ > < □ > < □ > < □ > < □ > < □ >

Review

- Boosting is a sequential ensemble method (combine weak learners to produce a strong learner).
- Boosting greedily fits a (simple) additive model.
- Intuitively, we can think of gradient boosting as "gradient descent in the function space".