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Recitation 9

Motivation

We started with linear models (regression, classification)

We introduced feature transformation to incorporate non-linearity

We covered decision trees: a non-linear, non-parametric model

Another idea: Ensemble (Combining small models to tackle complex
problems)
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Recitation 9

Additive Models

1 Additive models over a base hypothesis space H take the form

F =

{
f (x) =

M∑
m=1

νmhm(x) | hm ∈ H, νm ∈ R

}
.

2 Since we are taking linear combinations, we assume the hm functions
take values in R or some other vector space.

3 Empirical risk minimization over F tries to find

argmin
f ∈F

1

n

n∑
i=1

ℓ(yi , f (xi )).

4 This in general is a difficult task, as the number of base hypotheses
M is unknown, and each base hypothesis hm ranges over all of H.
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Recitation 9

Forward Stagewise Additive Modeling (FSAM)

The FSAM method fits additive models using the following (greedy)
algorithmic structure:

1 Initialize f0 ≡ 0.
2 For stage m = 1, . . . ,M:

1 Choose hm ∈ H and νm ∈ R so that

fm = fm−1 + νmhm

has the minimum empirical risk.
2 The function fm has the form

fm = ν1h1 + · · ·+ νmhm.

When choosing hm, νm during stage m, we must solve the
minimization

(νm, hm) = argmin
ν∈R,h∈H

n∑
i=1

ℓ(yi , fm−1(xi ) + νh(xi )).
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Recitation 9 Gradient Boosting

Gradient Boosting

1 Can we simplify the following minimization problem:

(νm, hm) = argmin
ν∈R,h∈H

n∑
i=1

ℓ(yi , fm−1(xi ) + νh(xi )).

2 How about just take a step along the steepest descent direction?

3 Issue 1: h is a function instead of a vector

4 Solution 1: Treat h as a vector of the size of the training set
(h(x1), . . . , h(xn)) rather than a function.

5 Issue 2: h must lies in H, the base hypothesis space,

6 Solution 2: Compute unconstrained steepest descent direction, and
then find the closest choices in H.
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Recitation 9 Gradient Boosting

Gradient Boosting Machine

1 Initialize f0 ≡ 0.
2 For stage m = 1, . . . ,M:

1 Compute the steepest descent direction (also called pseudoresiduals):

rm = −
(

∂

∂fm−1(x1)
ℓ(y1, fm−1(x1)), . . . ,

∂

∂fm−1(xn)
ℓ(yn, fm−1(xn))

)
.

2 Find the closest base hypothesis (using Euclidean distance):

hm = argmin
h∈H

n∑
i=1

((rm)i − h(xi ))
2.

3 Choose fixed step size νm ∈ (0, 1] or line search:

νm = argmin
ν≥0

n∑
i=1

ℓ(yi , fm−1(xi ) + νhm(xi )).

4 Take the step:
fm(x) = fm−1(x) + νmhm(x).
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Recitation 9 Gradient Boosting

Gradient Boosting Machine

1 Each stage we need to solve the following step:

hm = argmin
h∈H

n∑
i=1

((rm)i − h(xi ))
2.

How do we do this?

2 This is a standard least squares regression task on the “mock” dataset

D(m) = {(x1, (rm)1), . . . , (xn, (rm)n)}.

3 We assume that we have a learner that (approximately) solves least
squares regression over H.
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Gradient Boosting Comments

1 The algorithm above is sometimes called AnyBoost or Functional
Gradient Descent.

2 The most commonly used base hypothesis space is small regression
trees (between 4 and 8 leaves).
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Recitation 9 Gradient Boosting

Practice With Different Loss Functions

Question

Explain how to perform gradient boosting with the following loss
functions:

1 Square loss: ℓ(y , a) = (y − a)2/2.

2 Absolute loss: ℓ(y , a) = |y − a|.
3 Exponential margin loss: ℓ(y , a) = e−ya.
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Solution: Square loss

Using ℓ(y , a) = (y − a)2/2
To compute an arbitrary pseudoresidual we first note that

∂ℓ

∂a
= −(y − a)

giving

− ∂ℓ

∂fm−1(xi )
= (yi − fm−1(xi )).

In words, for the square loss, the pseudoresiduals are simply the residuals
from the previous stage’s fit. Thus, in stage m our step direction hm is
given by solving

hm := argmin
h∈H

n∑
i=1

((yi − fm−1(xi ))− h(xi ))
2.

DS-GA 1003 Machine Learning (Spring 2023) Recitation 11 April 12, 2023 10 / 16



Recitation 9 Gradient Boosting

Solution: Absolute Loss

Using ℓ(y , a) = |y − a|
Note that

∂ℓ

∂a
= − sgn(y − a)

giving

− ∂ℓ

∂fm−1(xi )
= sgn(yi − fm−1(xi )).

The absolute loss only cares about the sign of the residual from the
previous stage’s fit. Thus, in stage m our step direction hm is given by
solving

hm := argmin
h∈H

n∑
i=1

(sgn(yi − fm−1(xi ))− h(xi ))
2.
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Solution: Exponential Loss

Using ℓ(y , a) = e−ya

Note that
∂ℓ

∂a
= −ye−ya

giving

− ∂ℓ

∂fm−1(xi )
= yie

−yi fm−1(xi ).

Thus, in stage m our step direction hm is given by solving

hm := argmin
h∈H

n∑
i=1

(yie
−yi fm−1(xi ) − h(xi ))

2.
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Exponential Loss and Adaboost

If we have learners which produce classification functions that minimize a
weighted 0− 1 loss, we can use them with GBM and the exponential loss
to recover the AdaBoost algorithm. Let

r⃗ =
(
yie

−yi fm−1(xi )
)n

i=1
and h⃗ = (h(xi ))

n
i=1.

Then we have

hm = argmin
h∈H

∥r⃗ − h⃗∥22 = ∥r⃗∥22 + ∥h⃗∥22 − 2⟨r⃗ , h⃗⟩.

Note that h⃗ ∈ {−1, 1}n so ∥h⃗∥22 = n, i.e., a constant. Thus this
minimization is equivalent to

hm = argmax
h∈H

⟨r⃗ , h⃗⟩ = argmax
h∈H

n∑
i=1

h(xi )yie
−yi fm−1(xi ).
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Exponential Loss and Adaboost continued

Note that
h(xi )yi = 1− 2 · 1(h(xi ) ̸= yi )

so

hm = argmax
h∈H

n∑
i=1

e−yi fm−1(xi ) − 2
n∑

i=1

e−yi fm−1(xi ) 1(h(xi ) ̸= yi )

= argmin
h∈H

n∑
i=1

e−yi fm−1(xi ) 1(h(xi ) ̸= yi ).

Thus we see that hm minimizes a weighted 0− 1 loss. The weights are

e−yi fm−1(xi ) = e−yi (
∑m−1

i=1 νihi (xi )) =
m−1∏
i=1

e−yiνihi (xi ) =
m−1∏
i=1

e−νi (1−2 1(hi (xi )̸=yi )).
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Python Demo

Next we apply GBM to square loss and absolute loss on a simple 1-d
data set.

We use decision stumps as our base hypothesis space.

Run gbm.py to see the output.
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Review

Boosting is a sequential ensemble method (combine weak learners to
produce a strong learner).

Boosting greedily fits a (simple) additive model.

Intuitively, we can think of gradient boosting as ”gradient descent in
the function space”.
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