Recitation 3

Lasso, Ridge, and Elastic Net: A Deeper Dive

DS-GA 1003 Machine Learning

Spring 2023

Feburary 8, 2023

Concept Check

 Explain why feature normalization is important if you are using L1 or L2 regularization.

Agenda

- Repeated Features
- Linearly Dependent Features
- Correlated Features
- The Case Against Sparsity
- Elastic Net
- Coding Exercise

Repeated Features

A Very Simple Model

- Suppose we have one feature $x_1 \in \mathbf{R}$.
- Response variable $y \in \mathbf{R}$.

A Very Simple Model

- Suppose we have one feature $x_1 \in \mathbf{R}$.
- Response variable $y \in \mathbf{R}$.
- Got some data and ran least squares linear regression.
- The ERM is

$$\hat{f}(x_1)=4x_1.$$

A Very Simple Model

- Suppose we have one feature $x_1 \in \mathbf{R}$.
- Response variable $y \in \mathbf{R}$.
- Got some data and ran least squares linear regression.
- The ERM is

$$\hat{f}(x_1)=4x_1.$$

- What happens if we get a new feature x_2 ,
 - but we always have $x_2 = x_1$?

Duplicate Features

• New feature x_2 gives no new information.

Duplicate Features

- New feature x_2 gives no new information.
- ERM is still

$$\hat{f}(x_1,x_2)=4x_1.$$

Now there are some more ERMs:

$$\hat{f}(x_1, x_2) = 2x_1 + 2x_2$$

 $\hat{f}(x_1, x_2) = x_1 + 3x_2$
 $\hat{f}(x_1, x_2) = 4x_2$

Duplicate Features

- New feature x_2 gives no new information.
- ERM is still

$$\hat{f}(x_1,x_2)=4x_1.$$

Now there are some more ERMs:

$$\hat{f}(x_1, x_2) = 2x_1 + 2x_2$$

 $\hat{f}(x_1, x_2) = x_1 + 3x_2$
 $\hat{f}(x_1, x_2) = 4x_2$

• What if we introduce ℓ_1 or ℓ_2 regularization?

Duplicate Features: ℓ_1 and ℓ_2 norms

• $\hat{f}(x_1, x_2) = w_1 x_1 + w_2 x_2$ is an ERM iff $w_1 + w_2 = 4$.

Duplicate Features: ℓ_1 and ℓ_2 norms

- $\hat{f}(x_1, x_2) = w_1 x_1 + w_2 x_2$ is an ERM iff $w_1 + w_2 = 4$.
- Consider the ℓ_1 and ℓ_2 norms of various solutions:

<i>w</i> ₁	<i>W</i> 2	$ w _1$	$ w _{2}^{2}$
4	0	4	16
2	2	4	8
1	3	4	10
-1	5	6	26

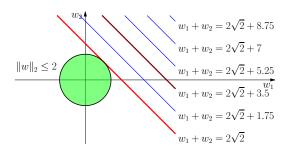
Duplicate Features: ℓ_1 and ℓ_2 norms

- $\hat{f}(x_1, x_2) = w_1 x_1 + w_2 x_2$ is an ERM iff $w_1 + w_2 = 4$.
- Consider the ℓ_1 and ℓ_2 norms of various solutions:

<i>w</i> ₁	W ₂	$\ w\ _1$	$ w _2^2$
4	0	4	16
2	2	4	8
1	3	4	10
-1	5	6	26

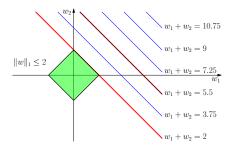
- $||w||_1$ doesn't discriminate, as long as all have same sign
- $||w||_2^2$ minimized when weight is spread equally
- Picture proof: Level sets of loss are lines of the form $w_1 + w_2 = 4...$

Equal Features, ℓ_2 Constraint



- Suppose the line $w_1 + w_2 = 2\sqrt{2} + 3.5$ corresponds to the empirical risk minimizers.
- Empirical risk increase as we move away from these parameter settings
- Intersection of $w_1 + w_2 = 2\sqrt{2}$ and the norm ball $||w||_2 \le 2$ is ridge solution.
- Note that $w_1 = w_2$ at the solution

Equal Features, ℓ_1 Constraint



- Suppose the line $w_1 + w_2 = 5.5$ corresponds to the empirical risk minimizers.
- Intersection of $w_1 + w_2 = 2$ and the norm ball $||w||_1 \le 2$ is lasso solution.
- Note that the solution set is $\{(w_1, w_2) : w_1 + w_2 = 2, w_1, w_2 \ge 0\}$.

Linearly Dependent Features

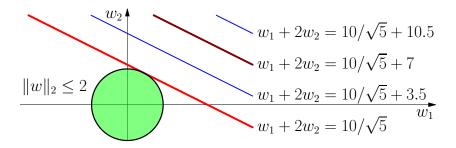
- Linear prediction functions: $f(x) = w_1x_2 + w_2x_2$
- Same setup, now suppose $x_2 = 2x_1$.

- Linear prediction functions: $f(x) = w_1x_2 + w_2x_2$
- Same setup, now suppose $x_2 = 2x_1$.
- Then all functions with $w_1 + 2w_2 = k$ are the same.
 - give same predictions and have same empirical risk

- Linear prediction functions: $f(x) = w_1x_2 + w_2x_2$
- Same setup, now suppose $x_2 = 2x_1$.
- Then all functions with $w_1 + 2w_2 = k$ are the same.
 - give same predictions and have same empirical risk
- What function will we select if we do ERM with ℓ_1 or ℓ_2 constraint?

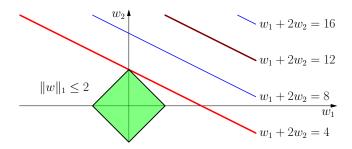
- Linear prediction functions: $f(x) = w_1x_2 + w_2x_2$
- Same setup, now suppose $x_2 = 2x_1$.
- Then all functions with $w_1 + 2w_2 = k$ are the same.
 - give same predictions and have same empirical risk
- What function will we select if we do ERM with ℓ_1 or ℓ_2 constraint?
- Compare a solution that just uses w_1 to a solution that just uses w_2 ...

Linearly Related Features, ℓ_2 Constraint



- $w_1 + 2w_2 = 10/\sqrt{5} + 7$ corresponds to the empirical risk minimizers.
- Intersection of $w_1 + 2w_2 = 10\sqrt{5}$ and the norm ball $||w||_2 \le 2$ is ridge solution.
- At solution, $w_2 = 2w_1$.

Linearly Related Features, ℓ_1 Constraint



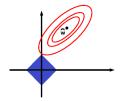
- Intersection of $w_1 + 2w_2 = 4$ and the norm ball $||w||_1 \le 2$ is lasso solution.
- ullet Solution is now a corner of the ℓ_1 ball, corresponding to a sparse solution.

Linearly Dependent Features: Take Away

- For identical features
 - ℓ_1 regularization spreads weight arbitrarily (all weights same sign)
 - ℓ_2 regularization spreads weight evenly
- Linearly related features
 - ullet ℓ_1 regularization chooses variable with larger scale, 0 weight to others
 - ℓ_2 prefers variables with larger scale spreads weight proportional to scale

Empirical Risk for Square Loss and Linear Predictors

- Recall our discussion of linear predictors $f(x) = w^T x$ and square loss.
- Sets of w giving same empirical risk (i.e. level sets) formed ellipsoids around the ERM.



- With x_1 and x_2 linearly related, X^TX has a 0 eigenvalue.
- So the level set $\left\{ w \mid \left(w \hat{w} \right)^T X^T X \left(w \hat{w} \right) = nc \right\}$ is no longer an ellipsoid.
- It's a degenerate ellipsoid that's why level sets were pairs of lines in this case

KPM Fig. 13.3

Correlated Features

Correlated Features – Same Scale

- Suppose x_1 and x_2 are highly correlated and the same scale.
- This is quite typical in real data, after normalizing data.

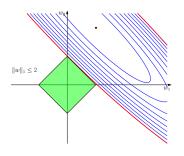
Correlated Features – Same Scale

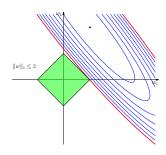
- Suppose x_1 and x_2 are highly correlated and the same scale.
- This is quite typical in real data, after normalizing data.
- Nothing degenerate here, so level sets are ellipsoids.

Correlated Features – Same Scale

- Suppose x_1 and x_2 are highly correlated and the same scale.
- This is quite typical in real data, after normalizing data.
- Nothing degenerate here, so level sets are ellipsoids.
- But, the higher the correlation, the closer to degenerate we get.
- That is, ellipsoids keep stretching out, getting closer to two parallel lines.

Correlated Features, ℓ_1 Regularization





- Intersection could be anywhere on the top right edge.
- Minor perturbations (in data) can drastically change intersection point – very unstable solution.
- Makes division of weight among highly correlated features (of same scale) seem arbitrary.
 - If $x_1 \approx 2x_2$, ellipse changes orientation and we hit a corner. (Which one?)

• Suppose there's some unknown value $\theta \in \mathbb{R}$.

- Suppose there's some unknown value $\theta \in \mathbb{R}$.
- We get 3 noisy observations of θ :

$$x_1, x_2, x_3 \sim \mathcal{N}(\theta, 1)$$
 (i.i.d)

- Suppose there's some unknown value $\theta \in \mathbb{R}$.
- We get 3 noisy observations of θ :

$$x_1, x_2, x_3 \sim \mathcal{N}(\theta, 1)$$
 (i.i.d)

• What's a good estimator $\hat{\theta}$ for θ ?

- Suppose there's some unknown value $\theta \in \mathbb{R}$.
- We get 3 noisy observations of θ :

$$x_1, x_2, x_3 \sim \mathcal{N}\left(\theta, 1\right)$$
 (i.i.d)

- What's a good estimator $\hat{\theta}$ for θ ?
- Would you prefer $\hat{\theta} = x_1$ or $\hat{\theta} = \frac{1}{3}(x_1 + x_2 + x_3)$?

Estimator Performance Analysis

• $\operatorname{Exp}[x_1] = \theta$ and $\operatorname{Exp}\left[\frac{1}{3}(x_1 + x_2 + x_3)\right] = \theta$. So both unbiased.

Estimator Performance Analysis

- $\operatorname{Exp}[x_1] = \theta$ and $\operatorname{Exp}\left[\frac{1}{3}(x_1 + x_2 + x_3)\right] = \theta$. So both unbiased.
- $Var[x_1] =$

Estimator Performance Analysis

- $\operatorname{Exp}[x_1] = \theta$ and $\operatorname{Exp}\left[\frac{1}{3}(x_1 + x_2 + x_3)\right] = \theta$. So both unbiased.
- $Var[x_1] = 1$.

- $\operatorname{Exp}[x_1] = \theta$ and $\operatorname{Exp}\left[\frac{1}{3}(x_1 + x_2 + x_3)\right] = \theta$. So both unbiased.
- $Var[x_1] = 1$.
- $\operatorname{Var}\left[\frac{1}{3}(x_1 + x_2 + x_3)\right] =$

- $\operatorname{Exp}[x_1] = \theta$ and $\operatorname{Exp}\left[\frac{1}{3}(x_1 + x_2 + x_3)\right] = \theta$. So both unbiased.
- $Var[x_1] = 1$.
- $\operatorname{Var}\left[\frac{1}{3}(x_1 + x_2 + x_3)\right] = \frac{1}{9}(1 + 1 + 1) = \frac{1}{3}$.

- $\operatorname{Exp}[x_1] = \theta$ and $\operatorname{Exp}\left[\frac{1}{3}(x_1 + x_2 + x_3)\right] = \theta$. So both unbiased.
- $Var[x_1] = 1$.
- Var $\left[\frac{1}{3}(x_1+x_2+x_3)\right]=\frac{1}{9}(1+1+1)=\frac{1}{3}$.
- Average has a smaller variance the independent errors cancel each other out.

- $\operatorname{Exp}[x_1] = \theta$ and $\operatorname{Exp}\left[\frac{1}{3}(x_1 + x_2 + x_3)\right] = \theta$. So both unbiased.
- $Var[x_1] = 1$.
- Var $\left[\frac{1}{3}(x_1+x_2+x_3)\right]=\frac{1}{9}(1+1+1)=\frac{1}{3}$.
- Average has a smaller variance the independent errors cancel each other out.
- Similar thing happens in regression with correlated features:
 - e.g. If 3 features are correlated, we could keep just one of them.
 - But we can potentially do better by using all 3.

- Model in words:
 - y is some unknown linear combination of z_1 and z_2 .
 - But we don't observe z_1 and z_2 directly.

- Model in words:
 - y is some unknown linear combination of z_1 and z_2 .
 - But we don't observe z_1 and z_2 directly.
 - We get 3 noisy observations of z_1 , call them x_1, x_2, x_3 .
 - We get 3 noisy observations of z_2 , call them x_4, x_5, x_6 .

- Model in words:
 - y is some unknown linear combination of z_1 and z_2 .
 - But we don't observe z_1 and z_2 directly.
 - We get 3 noisy observations of z_1 , call them x_1, x_2, x_3 .
 - We get 3 noisy observations of z_2 , call them x_4, x_5, x_6 .
- We want to predict y from our noisy observations.

- Model in words:
 - y is some unknown linear combination of z_1 and z_2 .
 - But we don't observe z_1 and z_2 directly.
 - We get 3 noisy observations of z_1 , call them x_1, x_2, x_3 .
 - We get 3 noisy observations of z_2 , call them x_4, x_5, x_6 .
- We want to predict *y* from our noisy observations.
- That is, we want an estimator $\hat{y} = f(x_1, x_2, x_3, x_4, x_5, x_6)$ for estimating y.

$$z_1, z_2 \sim \mathcal{N}(0,1)$$
 (independent) $\epsilon_0, \epsilon_1, \ldots, \epsilon_6 \sim \mathcal{N}(0,1)$ (independent)

$$z_1, z_2 \sim \mathcal{N}(0,1)$$
 (independent) $\epsilon_0, \epsilon_1, \ldots, \epsilon_6 \sim \mathcal{N}(0,1)$ (independent) $y = 3z_1 - 1.5z_2 + 2\epsilon_0$

$$z_1, z_2 \sim \mathcal{N}(0,1)$$
 (independent) $\epsilon_0, \epsilon_1, \dots, \epsilon_6 \sim \mathcal{N}(0,1)$ (independent) $y = 3z_1 - 1.5z_2 + 2\epsilon_0$ $x_j = \begin{cases} z_1 + \epsilon_j/5 & \text{for } j = 1, 2, 3 \\ z_2 + \epsilon_j/5 & \text{for } j = 4, 5, 6 \end{cases}$

• Suppose (x, y) generated as follows:

$$z_1, z_2 \sim \mathcal{N}(0,1)$$
 (independent) $\epsilon_0, \epsilon_1, \dots, \epsilon_6 \sim \mathcal{N}(0,1)$ (independent) $y = 3z_1 - 1.5z_2 + 2\epsilon_0$ $x_j = \begin{cases} z_1 + \epsilon_j/5 & \text{for } j = 1, 2, 3 \\ z_2 + \epsilon_j/5 & \text{for } j = 4, 5, 6 \end{cases}$

• Generated a sample of $((x_1, \ldots, x_6), y)$ pairs of size n = 100.

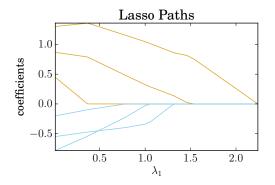
$$z_1, z_2 \sim \mathcal{N}(0,1)$$
 (independent) $\epsilon_0, \epsilon_1, \dots, \epsilon_6 \sim \mathcal{N}(0,1)$ (independent) $y = 3z_1 - 1.5z_2 + 2\epsilon_0$ $x_j = \begin{cases} z_1 + \epsilon_j/5 & \text{for } j = 1, 2, 3 \\ z_2 + \epsilon_j/5 & \text{for } j = 4, 5, 6 \end{cases}$

- Generated a sample of $((x_1, \ldots, x_6), y)$ pairs of size n = 100.
- That is, we want an estimator $\hat{y} = f(x_1, x_2, x_3, x_4, x_5, x_6)$ that is good for estimating y.

$$z_1, z_2 \sim \mathcal{N}(0,1)$$
 (independent) $\epsilon_0, \epsilon_1, \dots, \epsilon_6 \sim \mathcal{N}(0,1)$ (independent) $y = 3z_1 - 1.5z_2 + 2\epsilon_0$ $x_j = \begin{cases} z_1 + \epsilon_j/5 & \text{for } j = 1, 2, 3 \\ z_2 + \epsilon_j/5 & \text{for } j = 4, 5, 6 \end{cases}$

- Generated a sample of $((x_1, \ldots, x_6), y)$ pairs of size n = 100.
- That is, we want an estimator $\hat{y} = f(x_1, x_2, x_3, x_4, x_5, x_6)$ that is good for estimating y.
- **High feature correlation**: Correlations within the groups of *x*'s is around 0.97.

Lasso regularization paths:



- Lines with the same color correspond to features with essentially the same information
- Distribution of weight among them seems almost arbitrary

Hedge Bets When Variables Highly Correlated

- When variables are highly correlated (and same scale assume we've standardized features),
 - we want to give them roughly the same weight.

Hedge Bets When Variables Highly Correlated

- When variables are highly correlated (and same scale assume we've standardized features),
 - we want to give them roughly the same weight.
- Why?
 - Let their errors cancel out

Hedge Bets When Variables Highly Correlated

- When variables are highly correlated (and same scale assume we've standardized features),
 - we want to give them roughly the same weight.
- Why?
 - Let their errors cancel out
- How can we get the weight spread more evenly?

Elastic Net

Elastic Net

• The elastic net combines lasso and ridge penalties:

$$\hat{w} = \arg\min_{w \in d} \frac{1}{n} \sum_{i=1}^{n} \left\{ w^{T} x_{i} - y_{i} \right\}^{2} + \lambda_{1} \|w\|_{1} + \lambda_{2} \|w\|_{2}^{2}$$

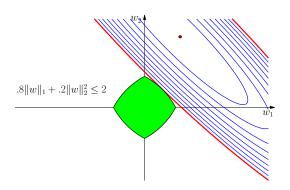
Elastic Net

• The elastic net combines lasso and ridge penalties:

$$\hat{w} = \arg\min_{w \in d} \frac{1}{n} \sum_{i=1}^{n} \left\{ w^{T} x_{i} - y_{i} \right\}^{2} + \lambda_{1} \|w\|_{1} + \lambda_{2} \|w\|_{2}^{2}$$

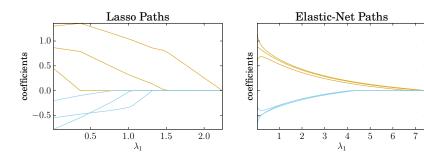
• We expect correlated random variables to have similar coefficients.

Highly Correlated Features, Elastic Net Constraint



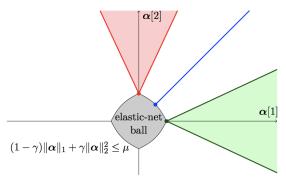
• Elastic net solution is closer to $w_2 = w_1$ line, despite high correlation.

Elastic Net Results on Model



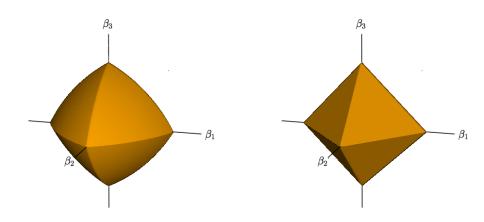
- Lasso on left; Elastic net on right.
- Ratio of ℓ_2 to ℓ_1 regularization roughly 2 : 1.

Elastic Net - "Sparse Regions"



- Suppose design matrix X is orthogonal, so $X^TX = I$, and contours are circles (and features uncorrelated)
- Then OLS solution in green or red regions implies elastic-net constrained solution will be at corner

Elastic Net vs Lasso Norm Ball



$\ell_{1.2}$ vs Elastic Net

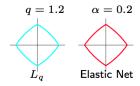


FIGURE 3.13. Contours of constant value of $\sum_{j} |\beta_{j}|^{q}$ for q = 1.2 (left plot), and the elastic-net penalty $\sum_{j} (\alpha \beta_{j}^{2} + (1 - \alpha)|\beta_{j}|)$ for $\alpha = 0.2$ (right plot). Although visually very similar, the elastic-net has sharp (non-differentiable) corners, while the q = 1.2 penalty does not.

References

• DS-GA 1003 Machine Learning Spring 2019