Recitation 2 Gradient Descent and Stochastic Gradient Descent

Yanlai Yang

CDS

February 15, 2023

Agenda

- Gradient Descent
 - Adaptive Learning Rate
- Stochastic Gradient Descent
- Application
 - Linear Regression
 - Logistic Regression

Gradient Descent Recap

Gradient Descent

- Initialize x = 0
- Repeat:
 x ←

$$x \leftarrow x - \underbrace{\eta}_{\text{step size}} \nabla f(x)$$

• Until stopping criterion satisfied

Gradient Descent Recap

Gradient Descent

- Initialize x = 0
- Repeat:

$$x \leftarrow x - \underbrace{\eta}_{\text{sten size}} \nabla f(x)$$

• Until stopping criterion satisfied

- Choosing the step size is the key in gradient descent
- A fixed step size will work, eventually, as long as it's small enough

Gradient Descent Algorithm

- Goal: find $\theta^* = \arg \min_{\theta} J(\theta)$
- $\theta^0 := [initial condition]$
- *i* := 0
- while not [termination condition]:
 - compute $\nabla J(\theta_i)$
 - $\epsilon_i := [$ choose learning rate at iteration i]
 - $\theta^{i+1} := \theta^i \epsilon_i \nabla J(\theta_i)$
 - *i* = *i* + 1

• return θ^i

• How to initialize θ^0 ?

Gradient Descent

- How to initialize θ^0 ?
 - sample from some distribution
 - compose θ^0 using some heuristics

- How to initialize θ^0 ?
 - sample from some distribution
 - $\bullet \ {\rm compose} \ \theta^0 \ {\rm using} \ {\rm some} \ {\rm heuristics}$
- How to choose termination conditions?

- How to initialize θ^0 ?
 - sample from some distribution
 - compose θ^0 using some heuristics
- How to choose termination conditions?
 - run for a fixed number of iteration
 - the value of $f(\theta)$ stabilizes
 - θ^i converges

- How to initialize θ^0 ?
 - sample from some distribution
 - compose θ^0 using some heuristics
- How to choose termination conditions?
 - run for a fixed number of iteration
 - the value of $f(\theta)$ stabilizes
 - θ^i converges
- What is a good learning rate?

- How to initialize θ^0 ?
 - sample from some distribution
 - compose θ^0 using some heuristics
- How to choose termination conditions?
 - run for a fixed number of iteration
 - the value of $f(\theta)$ stabilizes
 - θ^i converges
- What is a good learning rate?

Learning Rate

Application

Suppose we would like to find $\theta^* \in \mathbb{R}$ that minimizes $f(\theta) = \theta^2 - 2\theta + 1$. The gradient (in this case, the derivative) $\nabla f(\theta) = 2\theta - 2$. We can easily see that $\theta^* = \operatorname{argmin}_{\theta} f(\theta) = 1$.

Learning Rate

- We applied gradient descent for 1000 iterations on $f(\theta) = \theta^2 2\theta + 1$ with varying learning rate $\epsilon \in \{1, 0.1, 0.01, 0.001, 0.0001\}$
- When the learning rate is too large $(\epsilon = 1)$, $f(\theta)$ does not decrease through iterations. The value of θ_i at each iteration significantly fluctuates.
- When the learning rate is too small ($\epsilon = 0.0001$), $f(\theta)$ decreases very slowly.

Adaptive Learning Rate

- Instead of using a fixed learning rate through all iterations, we can adjust our learning rate in each iteration using a simple algorithm.
- At each iteration i:

•
$$\tilde{\theta} := \theta_{i-1} - \epsilon_{i-1} \nabla f(\theta_{i-1})$$

•
$$\delta := f(\theta_{i-1}) - f(\theta)$$

- if $\delta \geq$ threshold:
 - we achieve a satisfactory reduction on $f(\theta)$
 - $\theta_i = \bar{\theta}$
 - maybe we can consider increasing the learning rate for next iteration $\epsilon_j := 2\epsilon_{i-1}$
- else:
 - the reduction is unsatisfactory
 - $\theta_i = \theta_{i-1}$
 - the learning rate is too large, so we reduce the learning rate
 - $\epsilon_i := \frac{1}{2}\epsilon_{i-1}$

Adaptive Learning Rate

Adaptive Learning Rate

How to decide a proper threshold for $f(\theta_{i-1}) - f(\tilde{\theta})$

Armijo rule

If learning rate ϵ satisfies

$$f(\theta_{i-1}) - f(\tilde{\theta}) \ge \frac{1}{2} \epsilon \|\nabla f(\theta_{i-1})\|^2$$

then $f(\theta)$ is guaranteed to converge to a (local) minimum under certain technical assumptions.

You can find more details at this link

Stochastic Gradient Descent

Stochastic Gradient Descent

- Initialize w = 0
- Repeat:
 - randomly choose training point $(x_i, y_i) \in \mathcal{D}_n$

•
$$w \leftarrow w - \eta \nabla_{w} \ell (f_{w}(x_{i}), y_{i})$$

Grad(Loss on i'th example)

- Until stopping criterion satisfied
- Equivalent to Minibatch Gradient Descent with batch size N = 1.
- Use a single randomly chosen point to determine step direction.

Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size N)

- Initialize w = 0
- Repeat:
 - randomly choose N points $\{(x_i, y_i)\}_{i=1}^N \subset \mathcal{D}_n$

•
$$w \leftarrow w - \eta \left[\frac{1}{N} \sum_{i=1}^{N} \nabla_{w} \ell \left(f_{w} \left(x_{i} \right), y_{i} \right) \right]$$

- Until stopping criterion satisfied
- Minibatch gradient is an unbiased estimate of full-batch gradient: $\mathbb{E}\left[\nabla \hat{R}_{N}(w)\right] = \nabla \hat{R}_{n}(w)$
- Use a random subset of size N to determine step direction
 - Bigger N: Better estimate of the gradient, but slower (more data to touch)
 - Smaller N: Worse estimate of the gradient, but faster

Gradient Descent for Linear Regression

Linear Least Squares Regression Setup

• **Data**: Inputs are feature vectors of dimension d. Outputs are continuous scalars.

$$\mathcal{D} = \left\{ \mathbf{x}^{(i)}, y^{(i)}
ight\}_{i=1}^n$$
 where $\mathbf{x} \in \mathbb{R}^d$ and $y \in \mathbb{R}$

- Hypothesis Space: $\mathcal{F} = \{ f : \mathbf{R}^d \to \mathbf{R} \mid f(x) = \theta^T x, \theta \in \mathbf{R}^d \}$
- Action: Our prediction is a linear function of the inputs

$$\hat{y} = f_{\theta}(\mathbf{x}) = \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_d x_d$$
 (We assume x_1 is 1)

$$\hat{y} = f_{\theta}(\mathbf{x}) = \boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}$$

• Loss:
$$\ell(\hat{y}, y) = (y - \hat{y})^2$$

Gradient Descent for Linear Regression

• Goal: Finding the set of parameters that minimize the empirical risk:

$$\hat{R}_n(\theta) = \frac{1}{n} \sum_{i=1}^n \left(\theta^T x^{(i)} - y^{(i)} \right)^2$$

where $\theta \in R^d$ parameterizes the hypothesis space \mathcal{F} • Set our cost function:

$$J(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i=1}^{n} \left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)} \right)^{2}$$

Three Approach to solving $\theta^* = \underset{\theta}{\operatorname{argmin}} J(\theta)$

- Approach 1: Closed Form Solution (set derivatives equal to zero and solve for parameters)
 - pros: one shot algorithm!
 - cons: does not scale to large datasets (matrix inverse is bottleneck)
- Approach 2: Gradient Descent (take larger, more certain steps toward the negative gradient)
 - pros: conceptually simple, guaranteed convergence
 - cons: batch, often slow to converge
- **Approach 3**: Stochastic Gradient Descent (take many small, quick steps opposite the gradient)
 - pros: memory efficient, fast convergence, less prone to local optima
 - cons: convergence in practice requires tuning and fancier variants

Approach 1: Close-Form Solution

• Transform the cost function in matrix form

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(\mathbf{x}_{i}^{T} \theta - y_{i} \right)^{2}$$
$$= \frac{1}{2} (X\theta - \bar{y})^{T} (X\theta - \bar{y}) = \frac{1}{2} \|X\theta - y\|_{2}^{2}$$

• To minimize $J(\theta)$, take derivative and set to zero:

$$\nabla J(\theta) = \left(X^T X \theta - X^T y\right) = X^T (X \theta - y) = 0$$
$$\Rightarrow \hat{\theta} = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

- Ensure invertibility of $\mathbf{X}^{\top}\mathbf{X}$
- What if X has less than full column rank?

Yanlai Yang (CDS)

Approach 2: Iterative Method GD

Gradient Descent Algorithm

- $\theta^0 := [initial condition]$
- *i* := 0
- while not [termination condition]:

•
$$\theta^{i+1} := \theta^i - \epsilon_i \nabla_{\theta} J(\theta)$$

•
$$i = i + 1$$

• return θ^i

Recall:

$$abla_{oldsymbol{ heta}} J(oldsymbol{ heta}) = \left[egin{array}{c} rac{d}{d heta_1} J(oldsymbol{ heta}) \ rac{d}{d heta_2} J(oldsymbol{ heta}) \ dots \ rac{d}{d heta_d} J(oldsymbol{ heta}) \end{array}
ight]$$

Approach 3: Iterative Method SGD

Stochastic Gradient Descent Algorithm

- $\theta^0 := [initial condition]$
- *i* := 0
- while not [termination condition]:
 - For each training pair (x^j, y^j) (in random order)

•
$$\theta^{i+1} := \theta^i - \epsilon_i \nabla_{\boldsymbol{\theta}} J^{(j)}(\boldsymbol{\theta}) \quad \{ \text{with} \quad J^{(j)}(\boldsymbol{\theta}) = \frac{1}{2} \left(\boldsymbol{\theta}^T \mathbf{x}^{(j)} - y^{(j)} \right)^2 \}$$

• $i = i+1$

• return θ^i

Gradient Descent for Logistic Regression

Binary Classification Setup for Logistic Regression

- **Data**: Inputs are feature vectors of dimension *d*. Targets are class labels. $\mathcal{D} = \left\{ \mathbf{x}^{(i)}, y^{(i)} \right\}_{i=1}^{n}$ where $\mathbf{x} \in \mathbb{R}^{d}$ and $y \in \{0, 1\}$
- Action: Our prediction is the probability of class label given linear signals

$$h_{\theta}(x) = g\left(\theta^{T}x\right) = \frac{1}{1+e^{-\theta^{T}x}}$$
 with $g(z) = \frac{1}{1+e^{-z}}$

• Sigmoid Function g(z): takes a real-valued number and maps it into the range [0,1] (Probability Interpretation)

Assume

$$\begin{cases} P(y=1 \mid x; \theta) = h_{\theta}(x) \\ P(y=0 \mid x; \theta) = 1 - h_{\theta}(x) \end{cases}$$

• More Compactly: $p(y | x; \theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{1-y}$

Logistic Regression

- Assumption: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ are independently generated
- **Likelihood**: The probability of getting the $y_1 \dots, y_n$ in \mathcal{D} from the corresponding x_1, \dots, x_n

$$P(y_1, \dots, y_n \mid \mathbf{x}_1, \dots, \mathbf{x}_n) = \prod_{i=1}^n p(y^{(i)} \mid x^{(i)}; \theta)$$

= $\prod_{i=1}^n (h_{\theta}(x^{(i)}))^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1-y^{(i)}}$

• Goal: maximize the log likelihood (Easier)

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

• Equivalent to minimize the objective function with logistic loss: $J(\theta) = \sum_{i=1}^{n} \ell \left(h_{\theta} \left(x^{(i)} \right), y^{(i)} \right)$ where $\ell \left(h(x), y \right) = -y \log \left(h_{\theta}(x) \right) - (1-y) \log \left(1 - h_{\theta}(x) \right)$

Logistic Regression

- Analytic solution won't work
- Find optimum using iterative methods: Gradient Ascent or Stochastic Gradient Ascent
 - Gradient ascent rule: $\theta := \theta + \alpha \nabla_{\theta} \ell(\theta)$
 - Stochastic gradient ascent rule: θ := θ + α∇_θℓ⁽ⁱ⁾(θ) for random training pair (xⁱ, yⁱ)

 For one training example (x, y), the partial derivative of log likelihood ℓ(θ):

$$= (y \frac{1}{g(\theta^T x)} - (1 - y) \frac{1}{1 - g(\theta^T x)}) \frac{\partial}{\partial \theta_j} g(\theta^T x)$$

$$= (y \frac{1}{g(\theta^T x)} - (1 - y) \frac{1}{1 - g(\theta^T x)}) g(\theta^T x) (1 - g(\theta^T x)) \frac{\partial}{\partial \theta_j} \theta^T x$$

$$= (y(1 - g(\theta^T x)) - (1 - y)g(\theta^T x)) x_j$$

$$= (y - h_{\theta}(x)) \cdot x_j$$

Logistic Regression

References

- DS-GA 1003 Machine Learning Spring 2021 & 2022
- Stanford CS229 Note1
- CMU 10-701 Linear Regression Slide