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Recitation 2 Gradient Descent

Gradient Descent Recap

Gradient Descent

Initialize x = 0

Repeat:

x ← x − η︸︷︷︸
step size

∇f (x)

Until stopping criterion satisfied

Choosing the step size is the key in gradient descent

A fixed step size will work, eventually, as long as it’s small enough
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Recitation 2 Gradient Descent

Gradient Descent

Gradient Descent Algorithm

Goal: find θ∗ = argminθ J(θ)

θ0 := [initial condition]

i := 0

while not [termination condition]:

compute ∇J (θi )
ϵi := [ choose learning rate at iteration i ]
θi+1 := θi − ϵi∇J (θi )
i = i + 1

return θi
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Recitation 2 Gradient Descent

Gradient Descent

How to initialize θ0?
sample from some distribution
compose θ0 using some heuristics

How to choose termination conditions?
run for a fixed number of iteration
the value of f (θ) stabilizes
θi converges

What is a good learning rate?
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Recitation 2 Adaptive Learning Rate

Learning Rate

Application

Suppose we would like to find θ∗ ∈ R that minimizes f (θ) = θ2 − 2θ + 1.
The gradient (in this case, the derivative) ∇f (θ) = 2θ − 2. We can easily
see that θ∗ = argminθ f (θ) = 1.
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Recitation 2 Adaptive Learning Rate

Learning Rate

We applied gradient descent for 1000 iterations on f (θ) = θ2 − 2θ+ 1
with varying learning rate ϵ ∈ {1, 0.1, 0.01, 0.001, 0.0001}
When the learning rate is too large (ϵ = 1), f (θ) does not decrease
through iterations. The value of θi at each iteration significantly
fluctuates.

When the learning rate is too small (ϵ = 0.0001), f (θ) decreases very
slowly.
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Recitation 2 Adaptive Learning Rate

Adaptive Learning Rate

Instead of using a fixed learning rate through all iterations, we can
adjust our learning rate in each iteration using a simple algorithm.

At each iteration i:

θ̃ := θi−1 − ϵi−1∇f (θi−1)
δ := f (θi−1)− f (θ̃)
if δ ≥ threshold:

we achieve a satisfactory reduction on f (θ)
θi = θ̄
maybe we can consider increasing the learning rate for next iteration
ϵj := 2ϵi−1

else:

the reduction is unsatisfactory
θi = θi−1

the learning rate is too large, so we reduce the learning rate
ϵi :=

1
2
ϵi−1
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Recitation 2 Adaptive Learning Rate

Adaptive Learning Rate

How to decide a proper threshold for f (θi−1)− f (θ̃)

Armijo rule

If learning rate ϵ satisfies

f (θi−1)− f (θ̃) ≥ 1

2
ϵ ∥∇f (θi−1)∥2

then f (θ) is guaranteed to converge to a (local) minimum under certain
technical assumptions.

You can find more details at this link
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Recitation 2 Stochastic Gradient Descent

Stochastic Gradient Descent

Stochastic Gradient Descent

Initialize w = 0

Repeat:

randomly choose training point (xi , yi ) ∈ Dn

w ← w − η∇w ℓ (fw (xi ) , yi )︸ ︷︷ ︸
Grad(Loss on i’th example)

Until stopping criterion satisfied

Equivalent to Minibatch Gradient Descent with batch size N = 1.

Use a single randomly chosen point to determine step direction.
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Recitation 2 Stochastic Gradient Descent

Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size N)

Initialize w = 0

Repeat:

randomly choose N points {(xi , yi )}Ni=1 ⊂ Dn

w ← w − η
[
1
N

∑N
i=1∇w ℓ (fw (xi ) , yi )

]
Until stopping criterion satisfied

Minibatch gradient is an unbiased estimate of full-batch gradient:

E
[
∇R̂N(w)

]
= ∇R̂n(w)

Use a random subset of size N to determine step direction

Bigger N: Better estimate of the gradient, but slower (more data to
touch)
Smaller N: Worse estimate of the gradient, but faster
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Recitation 2 Application on Linear Regression

Gradient Descent for Linear Regression

Linear Least Squares Regression Setup

Data: Inputs are feature vectors of dimension d. Outputs are
continuous scalars.

D =
{
x(i), y (i)

}n

i=1
where x ∈ Rd and y ∈ R

Hypothesis Space: F =
{
f : Rd → R | f (x) = θT x , θ ∈ Rd

}
Action: Our prediction is a linear function of the inputs

ŷ = fθ(x) = θ1x1 + θ2x2 + . . .+ θdxd
ŷ = fθ(x) = θTx

(We assume x1is 1 )

Loss: ℓ(ŷ , y) = (y − ŷ)2
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Recitation 2 Application on Linear Regression

Gradient Descent for Linear Regression

Goal: Finding the set of parameters that minimize the empirical risk:

R̂n(θ) =
1

n

n∑
i=1

(
θT x (i) − y (i)

)2

where θ ∈ Rd parameterizes the hypothesis space F
Set our cost function:

J(θ) =
1

2

n∑
i=1

(
θTx(i) − y (i)

)2
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Recitation 2 Application on Linear Regression

Three Approach to solving θ∗ = argmin
θ

J(θ)

Approach 1: Closed Form Solution (set derivatives equal to zero and
solve for parameters)

pros: one shot algorithm!
cons: does not scale to large datasets (matrix inverse is bottleneck)

Approach 2: Gradient Descent (take larger, more certain steps
toward the negative gradient)

pros: conceptually simple, guaranteed convergence
cons: batch, often slow to converge

Approach 3: Stochastic Gradient Descent (take many small, quick
steps opposite the gradient)

pros: memory efficient, fast convergence, less prone to local optima
cons: convergence in practice requires tuning and fancier variants
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Recitation 2 Application on Linear Regression

Approach 1: Close-Form Solution

Transform the cost function in matrix form

J(θ) =
1

2

n∑
i=1

(
xTi θ − yi

)2

=
1

2
(Xθ − ȳ)T (Xθ − ȳ) =

1

2
∥Xθ − y∥22

To minimize J(θ), take derivative and set to zero:

∇J(θ) =
(
XTXθ − XT y

)
= XT (Xθ − y) = 0

⇒ θ̂ =
(
X⊤X

)−1
XTy

Ensure invertibility of X⊤X
What if X has less than full column rank?
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Recitation 2 Application on Linear Regression

Approach 2: Iterative Method GD

Gradient Descent Algorithm

θ0 := [initial condition]

i := 0

while not [termination condition]:

θi+1 := θi − ϵi∇θJ(θ)
i = i + 1

return θi

Recall:

∇θJ(θ) =


d
dθ1

J(θ)
d
dθ2

J(θ)
...

d
dθd

J(θ)


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Recitation 2 Application on Linear Regression

Approach 3: Iterative Method SGD

Stochastic Gradient Descent Algorithm

θ0 := [initial condition]

i := 0

while not [termination condition]:

For each training pair (x j , y j) (in random order)

θi+1 := θi − ϵi∇θJ
(j)(θ) {with J(j)(θ) = 1

2

(
θTx(j) − y (j)

)2

}
i = i + 1

return θi
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Recitation 2 Application on Linear Regression

Gradient Descent for Logistic Regression

Binary Classification Setup for Logistic Regression

Data: Inputs are feature vectors of dimension d . Targets are class
labels. D =

{
x(i), y (i)

}n

i=1
where x ∈ Rd and y ∈ {0, 1}

Action: Our prediction is the probability of class label given linear
signals

hθ(x) = g
(
θT x

)
= 1

1+e−θT x
with g(z) = 1

1+e−z

Sigmoid Function g(z): takes a real-valued number and maps it into
the range [0,1] (Probability Interpretation)

Assume {
P(y = 1 | x ; θ) = hθ(x)
P(y = 0 | x ; θ) = 1− hθ(x)

More Compactly: p(y | x ; θ) = (hθ(x))
y (1− hθ(x))

1−y
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Recitation 2 Application on Linear Regression

Logistic Regression

Assumption: (x1, y1) , . . . , (xn, yn) are independently generated

Likelihood: The probability of getting the y1 . . . . . . , yn in D from the
corresponding x1, . . . , xn

P (y1, . . . , yn | x1, . . . , xn) =
n∏

i=1

p(y (i) | x (i); θ)

=
n∏

i=1

(hθ(x
(i)))y

(i)
(1− hθ(x

(i)))1−y (i)

Goal: maximize the log likelihood (Easier)

ℓ(θ) = log L(θ) =
n∑

i=1

y (i) log hθ(x
(i)) + (1− y (i)) log(1− hθ(x

(i)))

Equivalent to minimize the objective function with logistic loss:
J(θ) =

∑n
i=1 ℓ

(
hθ

(
x (i)

)
, y (i)

)
where ℓ (h (x) , y) = −y log (hθ(x))− (1− y) log (1− hθ(x))
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Recitation 2 Application on Linear Regression

Logistic Regression

Analytic solution won’t work

Find optimum using iterative methods: Gradient Ascent or Stochastic
Gradient Ascent

Gradient ascent rule: θ := θ + α∇θℓ(θ)
Stochastic gradient ascent rule: θ := θ + α∇θℓ

(i)(θ) for random
training pair (x i , y i )

For one training example (x , y), the partial derivative of log likelihood
ℓ(θ):

= (y
1

g(θT x)
− (1− y)

1

1− g(θT x)
)
∂

∂θj
g(θT x)

= (y
1

g(θT x)
− (1− y)

1

1− g(θT x)
)g(θT x)(1− g(θT x))

∂

∂θj
θT x

= (y(1− g(θT x))− (1− y)g(θT x))xj

= (y − hθ(x)) · xj
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Recitation 2 Application on Linear Regression

Logistic Regression
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