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Brief Recap: Bayesian Methods

Prior represents belief about ✓ before observing data D.

Posterior represents the rationally “updated” beliefs after seeing D.

All inferences and action-taking are based on the posterior distribution.

In the Bayesian approach,

No issue of “choosing a procedure” or justifying an estimator.
Only choices are

family of distributions, indexed by ⇥, and the
prior distribution on ⇥

For decision making, need a loss function.
Everything after that is computation.

Ying WANG (CDS, NYU) DS-GA 1003 May 3, 2023 3 / 25



Brief Recap: Bayesian Methods

1 Define the model:

Choose a parametric family of densities:

{p(D | ✓) | ✓ 2⇥} .

Choose a distribution p(✓) on ⇥, called the prior distribution.
2 After observing D, compute the posterior distribution p(✓ | D).

p(✓ | D) / p(D | ✓)p(✓)

= LD(✓)| {z }
likelihood

p(✓)|{z}
prior

3 Choose action based on p(✓ | D).
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Brief Recap: Multi-class classification

Problem: Multiclass classification Y= {1, . . . ,k}

Solution 1: One-vs-All

Train k models: h1(x), . . . ,hk(x) : X! R.
Predict with argmaxy2Y hy (x).
Gave simple example where this fails for linear classifiers

Solution 2: Multiclass loss

Train one model: h(x ,y) : X⇥Y! R.
h(x ,y) gives compatibility score between input x and output y

Prediction involves solving argmaxy2Y h(x ,y).

F = {x 7! argmax
y2Y

h(x ,y) | h 2H}

Final prediction function is a f 2 F
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Brief Recap: Multi-class classification

A structured prediction problem is a multiclass problem in which Y is very large, but has

(or we assume it has) a certain structure.

For POS tagging, Y grows exponentially in the length of the sentence.

Typical structure assumption: The POS labels form a Markov chain.

i.e. yn+1 | yn,yn-1,...,,y0 is the same as yn+1 | yn
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Brief Recap: Decision Tree, Random Forest and Adaboost
Decision Trees:

Decision Trees Setup

Goal Find a tree that minimize the task loss (squared loss) within a given

complexity.

Problem Finding the optimal binary tree is computationally intractable.

Solution Greedy algorithm.

Find the best split (according to some criteria) for a non-terminal node
(initially the root)
Add two children nodes
Repeat until a stopping criterion is reached (max depth)

Properties of Decision Trees

Non-linear classifier that recursively partitions the input space
Non-metric: make no use of geometry, i.e. no inner-product or distances
Non-parametric: make no assumption of the data distribution
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Brief Recap: Decision Tree, Random Forest and Adaboost
Ensemble methods:

Ensemble methods:

Combine outputs from multiple models.

Same learner on different datasets: ensemble + bootstrap = bagging.
Different learners on one dataset: they may make similar errors.

Parallel ensemble: models are built independently, bagging

Reduce variance of a low bias, high variance estimator by ensembling many estimators
trained in parallel.

Sequential ensemble: models are built sequentially, boosting

Reduce the error rate of a high bias estimator by ensembling many estimators trained in
sequential.
Try to add new learners that do well where previous learners lack
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Brief Recap: Decision Tree, Random Forest and Adaboost
Random Forest:

Key idea of Random Forest: Use bagged decision trees, but modify the tree-growing

procedure to reduce the dependence between trees.

Build a collection of trees independently (in parallel).

When constructing each tree node, restrict choice of splitting variable to a randomly

chosen subset of features of size m.

Avoid dominance by strong features.

Typically choose m ⇡pp, where p is the number of features.

Can choose m using cross validation.
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Brief Recap: Decision Tree, Random Forest and Adaboost
Adaboost Algorithm:

Training set D= {(x1,y1) , . . . ,(xn,yn)}.

Start with equal weight on all training points w1 = · · ·= wn = 1.

Repeat for m = 1, . . . ,M:

Base learner fits weighted training data and returns Gm(x)
Increase weight on the points Gm(x) misclassifies

Final prediction G (x) = sign
hPM

m=1↵mGm(x)
i
. (recall Gm(x) 2 {-1,1})

What are desirable ↵m’s?

nonnegative
larger when Gm fits its weighted D well
smaller when Gm fits weighted D less well
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Brief Recap: Forward stagewise additive modeling, Gradient Boosting

FSAM: a method used in boosting, greedily fit one function at a time without adjusting

previous functions.

Learning with FSAM: Optimizing one basis function each step and add it to the target

function.

Optimization: find the best basis function each step, uses gradient-based method.

(details next slide.)

Practice GBM with loss functions we discussed.

Note: using exponential loss, GBM is the same as Adaboost.
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Brief Recap: Forward stagewise additive modeling, Gradient Boosting

GBM in computing basis function: for each step

compute the unconstrained gradient considering all training samples, i.e.

g =rf J(f) = (@f1`(y1, f1) , . . . ,@fn`(yn, fn))

then, compute the basis function parameter within hypothesis space that has smallest

Euclidean distance to the gradient, i.e.

h = argmin
h2H

nX

i=1

(-gi -h (xi ))
2

The step size can be predefined or learnt using line search. Finally, we have

fm fm-1+ vmhm
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Brief Recap: Neural Networks

Intuition: Learning intermediate features.

Optimization: backpropagation, based on chain rule.

for final: look at partial derivative of affine transformation and activation/transfer functions
sigmoid, ReLU (subgradient), tanh, softmax

Note: Revising the XOR example could be helpful!

(optional) problem on NN optimization : risk of gradient exploding/vanishing.
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Brief Recap: k-Means, GMM, Expectation Maximization

Differences K-Means v.s. GMM:

Hard v.s. soft clustering (utilizes the density in Gaussian).
"circular" v.s. "oval-shaped" clusters

Optimization in GMM: Expectation Maximization

Idea from Latent Variable Model:

we want to compute p(x)
we start from p(z)p(x |z), where p(x |z) is modeled with parameters ✓
we do not know p(z), so we use another distribution q(z) to approximate p(z)
try to get L(q,✓)-KL(q(z)kp(z | x ;✓))+ logp(x ;✓) by yourself!
we will test LVM in the final!

Expectation Maximization:

E-step: we update q(z) (GMM: the �, you can think that ⇡ is defined by the �)
M-step: we update parameters p(x |z) of, i.e. ✓. (GMM: µ, ⌃)
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Question 1: Bayesian

Bayesian Bernoulli Model

Suppose we have a coin with unknown probability of heads ✓ 2 (0,1). We flip the coin n times

and get a sequence of coin flips with nh heads and nt tails.

Recall the following: A Beta (↵,�) distribution, for shape parameters ↵,�> 0, is a distribution

supported on the interval (0, 1) with PDF given by

f (x ;↵,�)/ x↵-1(1- x)�-1

The mean of a Beta (↵,�) is
↵

↵+� . The mode is
↵-1

↵+�-2 assuming ↵,�> 1 and ↵+�> 2. If

↵= �= 1, then every value in (0, 1) is a mode.
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Question 1 Continued

1 Give an expression for the likelihood function LD(✓) for this sequence of flips.

2 Suppose we have a Beta (↵,�) prior on ✓, for some ↵,�> 0. Derive the posterior

distribution on ✓ and, if it is a Beta distribution, give its parameters.

3 If your posterior distribution on ✓ is Beta(3, 6), what is your MAP estimate of ✓?
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Question 1 Solution

1 LD(✓) = ✓nh(1-✓)nt

2

p(✓ | D)/ p(✓)L(✓)

/ ✓↵-1(1-✓)�-1✓nh(1-✓)nt

/ ✓nh+↵-1(1-✓)nt+�-1

3 Based on information box above, the mode of the beta distribution is
↵-1

↵+�-2 for ↵,�> 1.

So the MAP estimate is
2
7 .
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Question 2: Boostrap

1 What is the probability of not picking one datapoint while creating a bootstrap sample?

2 Suppose the dataset is fairly large. In an expected sense, what fraction of our bootstrap

sample will be unique?
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Question 2 Solution

1
�
1- 1

n

�n

2 As n!1,
�
1- 1

n

�n! 1
e . So 1- 1

e unique samples.
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Question 3: Random Forest and Boosting

Indicate whether each of the statements (about random forests and gradient boosting) is true

or false.

1 True or False: If your gradient boosting model is overfitting, taking additional steps is

likely to help

2 True or False: In gradient boosting, if you reduce your step size, you should expect to need

fewer rounds of boosting (i.e. fewer steps) to achieve the same training set loss.

3 True or False: Fitting a random forest model is extremely easy to parallelize.

4 True or False: Fitting a gradient boosting model is extremely easy to parallelize, for any

base regression algorithm.

5 True or False: Suppose we apply gradient boosting with absolute loss to a regression

problem. If we use linear ridge regression as our base regression algorithm, the final

prediction function from gradient boosting always will be an affine function of the input.
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Question 3 Solution

False, False, True, False, True

Ying WANG (CDS, NYU) DS-GA 1003 May 3, 2023 21 / 25



Question 4: Neural Networks

1 True or False: Consider a hypothesis space H of prediction functions f :Rd !R given by

a multilayer perceptron (MLP) with 3 hidden layers, each consisting of m nodes, for which

the activation function is �(x) = cx , for some fixed c 2 R. Then this hypothesis space is

strictly larger than the set of all affine functions mapping Rd
to R.

2 True or False: Let g : [0,1]d ! R be any continuous function on the compact set [0,1]d .

Then for any "> 0, there exists m 2 {1,2,3, . . .},

a = (a1, . . . ,am) 2 R
m

,b = (b1, . . . ,bm) 2 R
m

, and W =

0

B@
- wT

1 -
.
.
.

.

.

.
.
.
.

- wT
m -

1

CA 2 Rm⇥d
for which

the function f : [0,1]d ! R given by

f (x) =
mX

i=1

ai max(0,wT
i x +bi )

satisfies |f (x)-g(x)|< ✏ for all x 2 [0,1]d .
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Question 4 Solutions

False, True
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Question 5: Mixture Models

Suppose we have a latent variable z 2 {1,2,3} and an observed variable x 2 (0,1) generated as

follows:

z ⇠ Categorical(⇡1,⇡2,⇡3)

x | z ⇠ Gamma(2,�z),

where (�1,�2,�3) 2 (0,1)3, and Gamma(2,�) is supported on (0,1) and has density

p(x) = �2xe-�x
. Suppose we know that �1 = 1,�2 = 2,�3 = 4. Give an explicit expression for

p(z = 1|x = 1) in terms of the unknown parameters ⇡1,⇡2,⇡3.
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Question 5 Solutions

p(z = 1|x = 1)/ p(x = 1|z = 1)p(z = 1) = ⇡1e
-1

p(z = 2|x = 1)/ p(x = 1|z = 2)p(z = 2) = ⇡24e
-2

p(z = 3|x = 1)/ p(x = 1|x = 3)p(z = 3) = ⇡316e-4

p(z = 1|x = 1) =
⇡1e-1

⇡1e-1+⇡24e-2+⇡316e-4
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