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Brief Recap: Bayesian Methods

@ Prior represents belief about 0 before observing data D.
o Posterior represents the rationally “updated” beliefs after seeing D.

@ All inferences and action-taking are based on the posterior distribution.
@ In the Bayesian approach,

e No issue of “choosing a procedure” or justifying an estimator.
e Only choices are
o family of distributions, indexed by ©, and the
@ prior distribution on ©
For decision making, need a loss function.
Everything after that is computation.
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Brief Recap: Bayesian Methods

@ Define the model:

o Choose a parametric family of densities:
{p(D6)6 €O}

o Choose a distribution p(0) on ©, called the prior distribution.
@ After observing D, compute the posterior distribution p(0 | D).

pO[D) o p(D|6)p(6)
)

p(0)
—~—
likelihood prior

= Lp(0

{5

© Choose action based on p(6 | D).
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Brief Recap: Multi-class classification

@ Problem: Multiclass classification Y ={1,..., k}

@ Solution 1: One-vs-All
e Train k models: hi(x),..., he(x): X —R.
o Predict with argmax, cy hy (x).
o Gave simple example where this fails for linear classifiers

@ Solution 2: Multiclass loss
e Train one model: h(x,y): X xY —R.
@ h(x,y) gives compatibility score between input x and output y
o Prediction involves solving argmax, cy h(x, y).
o

F ={x > argmaxh(x,y) | h € H}
y€eY

o Final prediction functionisa f € F
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Brief Recap: Multi-class classification

@ A structured prediction problem is a multiclass problem in which Y is very large, but has
(or we assume it has) a certain structure.

@ For POS tagging, Y grows exponentially in the length of the sentence.
@ Typical structure assumption: The POS labels form a Markov chain.

o i€ Ynt1lYn Yn—1.. Yo is the same as yni1|yn
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Brief Recap: Decision Tree, Random Forest and Adaboost

Decision Trees:

@ Decision Trees Setup

Goal Find a tree that minimize the task loss (squared loss) within a given
complexity.

Problem Finding the optimal binary tree is computationally intractable.

Solution Greedy algorithm.
o Find the best split (according to some criteria) for a non-terminal node

(initially the root)
e Add two children nodes
o Repeat until a stopping criterion is reached (max depth)
@ Properties of Decision Trees

o Non-linear classifier that recursively partitions the input space
o Non-metric: make no use of geometry, i.e. no inner-product or distances
o Non-parametric: make no assumption of the data distribution
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Brief Recap: Decision Tree, Random Forest and Adaboost

Ensemble methods:

Ensemble methods:
@ Combine outputs from multiple models.

o Same learner on different datasets: ensemble + bootstrap = bagging.
o Different learners on one dataset: they may make similar errors.

@ Parallel ensemble: models are built independently, bagging

o Reduce variance of a low bias, high variance estimator by ensembling many estimators
trained in parallel.

@ Sequential ensemble: models are built sequentially, boosting

e Reduce the error rate of a high bias estimator by ensembling many estimators trained in
sequential.

e Try to add new learners that do well where previous learners lack
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Brief Recap: Decision Tree, Random Forest and Adaboost

Random Forest:

Key idea of Random Forest: Use bagged decision trees, but modify the tree-growing
procedure to reduce the dependence between trees.

@ Build a collection of trees independently (in parallel).

@ When constructing each tree node, restrict choice of splitting variable to a randomly
chosen subset of features of size m.

e Avoid dominance by strong features.
@ Typically choose m =~ \/p, where p is the number of features.

@ Can choose m using cross validation.
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Brief Recap: Decision Tree, Random Forest and Adaboost
Adaboost Algorithm:

Training set D ={(x1,y1),..., (X0, ¥a)}.
Start with equal weight on all training points wy = --- = w, = 1.
Repeat for m=1,..., M:

o Base learner fits weighted training data and returns G,,(x)

o Increase weight on the points G,,;(x) misclassifies

Final prediction G(x) = sign Z,A;’:l cmem(x)} (recall Gp(x) €{—1,1})

o What are desirable o¢,,'s?

@ nonnegative
o larger when G, fits its weighted D well
o smaller when G, fits weighted D less well

Ying WANG (CDS, NYU) DS-GA 1003 May 3, 2023 10/25



Brief Recap: Forward stagewise additive modeling, Gradient Boosting

@ FSAM: a method used in boosting, greedily fit one function at a time without adjusting
previous functions.

e Learning with FSAM: Optimizing one basis function each step and add it to the target
function.

e Optimization: find the best basis function each step, uses gradient-based method.
(details next slide.)

@ Practice GBM with loss functions we discussed.

e Note: using exponential loss, GBM is the same as Adaboost.
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Brief Recap: Forward stagewise additive modeling, Gradient Boosting

GBM in computing basis function: for each step

@ compute the unconstrained gradient considering all training samples, i.e.

g=Vrdf)=0nt(y1.f1),..., 06, (yn n))

@ then, compute the basis function parameter within hypothesis space that has smallest
Euclidean distance to the gradient, i.e.

h = argmin (—gi—h(Xi))2
hed Z

@ The step size can be predefined or learnt using line search. Finally, we have
fn < fm—1+ Vmhm
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Brief Recap: Neural Networks

Intuition: Learning intermediate features.
Optimization: backpropagation, based on chain rule.

o for final: look at partial derivative of affine transformation and activation/transfer functions
o sigmoid, ReLU (subgradient), tanh, softmax

Note: Revising the XOR example could be helpful!

(optional) problem on NN optimization : risk of gradient exploding/vanishing.
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Brief Recap: k-Means, GMM, Expectation Maximization

Differences K-Means v.s. GMM:

o Hard v.s. soft clustering (utilizes the density in Gaussian).
o "circular" v.s. "oval-shaped" clusters

Optimization in GMM: Expectation Maximization
o Idea from Latent Variable Model:

we want to compute p(x)

we start from p(z)p(x|z), where p(x|z) is modeled with parameters 0

we do not know p(z), so we use another distribution g(z) to approximate p(z)
try to get £(q,0) —KL(q(z)||p(z|x;0))+logp(x;0) by yourself!

we will test LVM in the final!

Expectation Maximization:

o E-step: we update g(z) (GMM: the vy, you can think that 7t is defined by the y)
o M-step: we update parameters p(x|z) of, i.e. 6. (GMM: y, X)
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Question 1: Bayesian

Bayesian Bernoulli Model
Suppose we have a coin with unknown probability of heads 8 € (0,1). We flip the coin n times

and get a sequence of coin flips with nj heads and n; tails.
Recall the following: A Beta («,3) distribution, for shape parameters «, 3 > 0, is a distribution
supported on the interval (0, 1) with PDF given by

fx;oB) ox x"‘_l(l—x)ﬁ_1

The mean of a Beta («,B) is ;5. The mode is “jfgld assuming o, > 1 and o+ >2. If
o= 3 =1, then every value in (0, 1) is a mode.

Ying WANG (CDS, NYU) DS-GA 1003 May 3, 2023 15 /25



Question 1 Continued

@ Give an expression for the likelihood function Lp(0) for this sequence of flips.

@ Suppose we have a Beta («,f3) prior on 0, for some «, 3 > 0. Derive the posterior
distribution on 0 and, if it is a Beta distribution, give its parameters.

© If your posterior distribution on 0 is Beta(3, 6), what is your MAP estimate of 67
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Question 1 Solution

Q Lp(B)=0"(1—0)"

2]
p(0]D) ox p(0)L(0)

x 0% L (1—0)B~1e™(1—0)™
x enh+oc—1(1 _e)nt—l-f)—l

© Based on information box above, the mode of the beta distribution is

So the MAP estimate is %

+B 2foroc[3>1
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Question 2: Boostrap

© What is the probability of not picking one datapoint while creating a bootstrap sample?

@ Suppose the dataset is fairly large. In an expected sense, what fraction of our bootstrap
sample will be unique?
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Question 2 Solution

0 (1-3)

Q@ As n— oo, (1—%)” — % So 1—% unique samples.
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Question 3: Random Forest and Boosting

Indicate whether each of the statements (about random forests and gradient boosting) is true
or false.

© True or False: If your gradient boosting model is overfitting, taking additional steps is
likely to help

@ True or False: In gradient boosting, if you reduce your step size, you should expect to need
fewer rounds of boosting (i.e. fewer steps) to achieve the same training set loss.

© True or False: Fitting a random forest model is extremely easy to parallelize.

@ True or False: Fitting a gradient boosting model is extremely easy to parallelize, for any
base regression algorithm.

© True or False: Suppose we apply gradient boosting with absolute loss to a regression
problem. If we use linear ridge regression as our base regression algorithm, the final
prediction function from gradient boosting always will be an affine function of the input.

Ying WANG (CDS, NYU) DS-GA 1003 May 3, 2023 20 /25



Question 3 Solution

False, False, True, False, True
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Question 4: Neural Networks

@ True or False: Consider a hypothesis space 3 of prediction functions f : RY — R given by
a multilayer perceptron (MLP) with 3 hidden layers, each consisting of m nodes, for which
the activation function is o(x) = cx, for some fixed ¢ € R. Then this hypothesis space is
strictly larger than the set of all affine functions mapping R to R.

@ True or False: Let g: [0, 119 5 R be any continuous function on the compact set [0, 1]9.
Then for any ¢ > 0, there exists me€{1,2,3,...},

S oW -
a=(a1,...,am) €ER" b= (b1,...,by) €ER™, and W = | : : 5 € R™*4 for which
_ Wr:r,1_
the function f:[0,1]¢ — R given by

m
f(x) = Z a;max(0, W,-TX+ b;)
i=1
satisfies |f(x) —g(x)| < € for all x € [0,1].
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Question 4 Solutions

False, True
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Question 5: Mixture Models

Suppose we have a latent variable z €{1,2,3} and an observed variable x € (0,00) generated as
follows:

z ~ Categorical(7ty, 710, 713)
x|z~ Gamma(2,B;),

where (B1,B2,B3) € (0,00)3, and Gamma(2, B) is supported on (0,00) and has density
p(x) = B%xe PX. Suppose we know that f1=1,B» =2, 3 =4. Give an explicit expression for
p(z=1|x =1) in terms of the unknown parameters 71y, 715, 713.
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Question 5 Solutions

plz =1x=1) me 1+ mbe 2+ m3lbe 4
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Regularization strategies

universality of neural networks also means they can overfit
strategies for variance reduction:

data augmentation

noise robustness

early stopping

bagging and dropout

sparse representations (e.g., L1 penalty on hidden unit activations)
semi-supervised and multi-task learning

adversarial training

parameter-tying

|



Data augmentation

a larger dataset results in a better generalization

example: in all 3 examples below training error is close to zero

however, a larger training dataset leads to better generalization

N =40




Data augmentation

a larger dataset results in a better generalization

increase the size of dataset by adding reasonable transformations 7(x)
that change the label in predictable ways; e.g., f(r(x)) = f()

special approaches to data-augmentation

¢ adding noise to the input
¢ adding noise to hidden units

= noise in higher level of abstraction

o learn a generative model P(Z,Yy) of the data
= use z(") y(®) ~ p for training

sometimes we an achieve the same goal by designing the models
" that are invariant to a given set of transformations

image: https://github.com/aleju/imgaug/blob/master/README.md



Noise robustness

make the model robust to noise in
input (data augmentation)
hidden units (eg, in dropout)

WEightS the loss is not sensitive to small changes in the weight (flat minima)

Training Function

.
! Testing Function
I

flat minima generalize better
good performance of SGD using small minibatch is attributed to flat minima

in this case, SGD regularizes the model due to gradient noise

Flat Minimum Sharp Minimum

output (avoid overfitting, specially to wrong labels)

a heuristic is to replace hard labels with "soft-labels"
eg.,[0,0,1,0] = [5,5,1—¢ %]

image credit: Keshkar et al'17



Early stopping

0.20

— T T I I
-§ e—e Training set loss
% 0.15 —— Validation set loss
=]
E
o 0.10H . .
£ the test loss-vs-time step is "often" U-shaped
®
£ oosf { use validation for early stopping
S 000 . . ‘ also saves computation!
) 50 100 150 200 25

Time (epochs)

early stopping bounds the region of the parameter-space that is reachable in T time-steps
assuming

bounded gradient

starting with a small w
it has an effect similar to L2 regularization
we get the regularization path (various y )
we saw a similar phenomena in boosting

wy




Bagging

several sources of variance in neural networks, such as
optimization
= initialization
= randomness of SGD
= |earning rate and other hyper-parameters
choice of architecture
= number of layers, hidden units, etc.

use bagging or even averaging without bootstrap to reduce variance
issue: computationally expensive



Dropout
|__idea |

randomly remove a subset of units during training
as opposed to bagging a single model is trained

—>

Base network

Shs
o

(a) Standard Neural Net (b) After applying dropout.

can be viewed as exponentially many subnetworks that share parameters

is one of the most effective regularization schemes for MLPs

e
oI

Ensemble of subnetworks




