# Neural Network and Backpropagation Questions 

Ying Wang<br>CDS, NYU

April 19, 2023

## Question 1: Step Activation Function ${ }^{1}$

Suppose we have a neural network with one hidden layer.

$$
f(x)=w_{0}+\sum_{i} w_{i} h_{i}(x) ; \quad h_{i}(x)=g\left(b_{i}+v_{i} x\right),
$$

where activation function $g$ is defined as

$$
g(z)= \begin{cases}1 & \text { if } z \geqslant 0 \\ 0 & \text { if } z<0\end{cases}
$$

Which of the following functions can be exactly represented by this neural network?

- polynomials of degree one: $I(x)=a x+b$
- hinge loss: $I(x)=\max (1-x, 0)$
- polynomials of degree two: $I(x)=a x^{2}+b x+c$
- piecewise constant functions


## ${ }^{1}$ From CMU

## [Solution] Question 1: Step Activation Function

Suppose we have a neural network with one hidden layer.

$$
f(x)=w_{0}+\sum_{i} w_{i} h_{i}(x) ; \quad h_{i}(x)=g\left(b_{i}+v_{i} x\right),
$$

where activation function $g$ is defined as

$$
g(z)= \begin{cases}1 & \text { if } z \geqslant 0 \\ 0 & \text { if } z<0\end{cases}
$$

Which of the following functions can be exactly represented by this neural network?

- polynomials of degree one: $I(x)=a x+b$ No If $g$ can be identity function, then the answer is Yes
- hinge loss: $I(x)=\max (1-x, 0)$ No
- polynomials of degree two: $I(x)=a x^{2}+b x+c$ No
- piecewise constant functions Yes

$$
(-c) \cdot g(x-b)+(c) \cdot g(x-a) \text { can represent } I(x)=c, a \leqslant x<b
$$

[Solution] Question 1: Step Activation Function


If we can represent any,

$$
f(x)= \begin{cases}c_{1} & x<a_{1} \\ c_{2} & a_{1} \leq x<a_{2} \\ \cdots & \\ c_{n} & x \geqslant a_{n}\end{cases}
$$

then any piecewise constant function can be represented by $f(x)=\sum l_{i}(x)$

Q: How to represent $1(x)=c, a \leq x \leq b$ ? $I(x)=c I^{\prime}(x)$ where $I^{\prime}(x)=1, a \leq x \leq b$
(1)


$$
z_{i}^{\prime}(x)=g(x-a)
$$



$$
\begin{aligned}
& \Rightarrow I^{\prime}(x)=g(x-a)-g(x-b) \\
& \Rightarrow I(x)=c g(x-a)-c g(x-b)
\end{aligned}
$$

$$
I_{2}^{\prime}(x)=g(x-b)
$$

## Question 2: Power of ReLU ${ }^{2}$

Consider the following small NN:

$$
w_{2}^{\top} \operatorname{ReLU}\left(W_{1} x+b_{1}\right)+b_{2}
$$

where the data is $2 \mathrm{D}, W_{1}$ is 2 by $2, b_{1}$ is $2 \mathrm{D}, w_{2}$ is 2 D and $b_{2}$ is 1 D .

$$
x_{1}=(1,1) \quad y_{1}=1 ; \quad x_{2}=(1,-1) \quad y_{2}=-1 ; \quad x_{3}=(-1,1) \quad y_{3}=-1 ; \quad x_{4}=(-1,-1) y_{4}=1
$$

Find $b_{1}, b_{2}, W_{1}, w_{2}$ to solve the problem. (Separate points from class $y=1$ and $y=-1$.)


[^0][Solution] Question 2: Power of ReLU
$$
\hat{y}=w_{2}^{\top} \operatorname{ReLU}\left(W_{1} x+b_{1}\right)+b_{2}
$$


One choice is

$$
\begin{gathered}
W_{1}=\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right), b_{1}=\binom{0}{0} \\
w_{2}=\binom{1}{1}, b_{2}=-1
\end{gathered}
$$

[Solution] Question 2: Power of ReLU

| $x$ | $h(x)$ | $\operatorname{Re}(u(h(x))$ | $\hat{y}$ |
| :---: | :---: | :---: | :---: |
| $(1,1)$ | $(2,-2)$ | $(2,0)$ | $2-1=1$ |
| $(-1,1)$ | $(0,0)$ | $(0,0)$ | $0-1=-1$ |
| $(1,-1)$ | $(0,0)$ | $(0,0)$ | $0-1=-1$ |
| $(-1,-1)$ | $(-2,2)$ | $(0,2)$ | $2-1=1$ |

## Question 3: Backpropagation ${ }^{3}$

Suppose we have a one hidden layer network and computation is:

$$
\begin{aligned}
& h=\operatorname{RELU}(W x+b 1) \\
& \hat{y}=\operatorname{softmax}\left(U h+b_{2}\right) \\
& J=\operatorname{Cross} \operatorname{entropy}(y, \hat{y})=-\sum_{i} y_{i} \log \hat{y}_{i}
\end{aligned}
$$

The dimensions of the matrices are:

$$
W \in \mathbb{R}^{m \times n} \quad x \in \mathbb{R}^{n} \quad b_{1} \in \mathbb{R}^{m} \quad U \in \mathbb{R}^{k \times m} \quad b_{2} \in \mathbb{R}^{k}
$$

Use backpropagation to calculate these four gradients

$$
\begin{array}{llll}
\frac{\partial J}{\partial b_{2}} & \frac{\partial J}{\partial U} & \frac{\partial J}{\partial b_{1}} & \frac{\partial J}{\partial W}
\end{array}
$$

[^1]
## [Solution] Question 3: Backpropagation

$$
\begin{aligned}
z_{2} & =U h+b 2 \quad \delta_{1}=\frac{\partial J}{\partial z_{2}}=\hat{y}-y \\
\frac{\partial J}{\partial b_{2}} & =\delta_{1} \\
\frac{\partial J}{\partial U} & =\delta_{1} h^{T} \\
\frac{\partial J}{\partial h} & =U^{T} \delta_{1} \\
z_{1} & =W x+b_{1} \quad \delta_{2}=\frac{\partial J}{\partial z_{1}}=U^{T} \delta_{1} \circ 1\{h>0\} \\
\frac{\partial J}{\partial b_{1}} & =\delta_{2} \\
\frac{\partial J}{\partial W} & =\delta_{2} x^{T}
\end{aligned}
$$

[Solution] Question 3: Backpropagation


$$
\begin{aligned}
& J=-\sum_{i} y_{i} \operatorname{leg} \frac{e^{z_{2 i}}}{\sum_{j} e^{z_{2 j}}}=-\sum_{i} y_{i}\left(z_{2 i}-\log \sum_{j} e^{z_{2 j}}\right) \\
& \frac{\partial J}{\partial z_{2 k}}=-y_{k}+\sum_{i} y_{i} \frac{e^{z_{2 k}}}{\sum_{j} e^{z_{2 j}}}=-y_{k}+\hat{y}_{k} \sum_{j} y_{i}=-y_{k}+\hat{y}_{k} \Rightarrow \frac{\partial J}{\partial z_{2}}=\hat{y}-y
\end{aligned}
$$

( $y$ is one-hor vecton)


[^0]:    ${ }^{2}$ From Harvard

[^1]:    ${ }^{3}$ From Stanford

