
DS-GA-1003 - Spring 2023 1

Homework 6: Decision Trees and Boosting

Due: Wednesday, April 19th, 2023 at 11:59PM EST

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using
software that typesets mathematics (e.g.LaTeX, LyX, or MathJax via iPython), though if you
need to you may scan handwritten work. You may find the minted package convenient for
including source code in your LaTeX document. If you are using LyX, then the listings package
tends to work better. The optional problems should not take you too much time and
help you navigate the material, consider taking a shot at them.

1 Decision Tree Implementation

In this problem we’ll implement decision trees for both classification and regression. The strategy
will be to implement a generic class, called Decision Tree, which we’ll supply with the loss
function we want to use to make node splitting decisions, as well as the estimator we’ll use to
come up with the prediction associated with each leaf node. For classification, this prediction
could be a vector of probabilities, but for simplicity we’ll just consider hard classifications here.
We’ll work with the classification and regression data sets from previous assignments.

1. Complete the compute entropy and compute gini functions.

2. Complete the class Decision Tree, given in the skeleton code. The intended implemen-
tation is as follows: Each object of type Decision Tree represents a single node of the
tree. The depth of that node is represented by the variable self.depth, with the root node
having depth 0. The main job of the fit function is to decide, given the data provided,
how to split the node or whether it should remain a leaf node. If the node will split, then
the splitting feature and splitting value are recorded, and the left and right subtrees are
fit on the relevant portions of the data. Thus tree-building is a recursive procedure. We
should have as many Decision Tree objects as there are nodes in the tree. We will not
implement pruning here. Some additional details are given in the skeleton code.

3. Run the code provided that builds trees for the two-dimensional classification data. In-
clude the results. For debugging, you may want to compare results with sklearn’s decision
tree (code provided in the skeleton code). For visualization, you’ll need to install graphviz.

4. Complete the function mean absolute deviation around median (MAE). Use the code
provided to fit the Regression Tree to the krr dataset using both the MAE loss and me-
dian predictions. Include the plots for the 6 fits.

2 Ensembling

Recall the general gradient boosting algorithm , for a given loss function ℓ and a hypothesis
space F of regression functions (i.e. functions mapping from the input space to R):

https://github.com/gpoore/minted
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings


DS-GA-1003 - Spring 2023 2

0: Initialize f0(x) = 0.

1: For m = 1 to M :

(a) Compute:

gm =

(
∂

∂fm−1(xj)

n∑
i=1

ℓ (yi, fm−1(xi))

)n

j=1

(b) Fit regression model to −gm:

hm = argmin
h∈F

n∑
i=1

((−gm)i − h(xi))
2
.

(c) Choose fixed step size νm = ν ∈ (0, 1], or take

νm = argmin
ν>0

n∑
i=1

ℓ (yi, fm−1(xi) + νhm(xi)) .

(d) Take the step:
fm(x) = fm−1(x) + νmhm(x)

3: Return fM .

This method goes by many names, including gradient boosting machines (GBM), generalized
boosting models (GBM), AnyBoost, and gradient boosted regression trees (GBRT), among oth-
ers. One of the nice aspects of gradient boosting is that it can be applied to any problem with
a subdifferentiable loss function.

Gradient Boosting Regression Implementation
First we’ll keep things simple and consider the standard regression setting with square loss. In
this case the we have Y = R, our loss function is given by ℓ(ŷ, y) = 1/2 (ŷ − y)

2
, and at the m’th

round of gradient boosting, we have

hm = argmin
h∈F

n∑
i=1

[(yi − fm−1(xi))− h(xi)]
2
.

5. Complete the gradient boosting class. As the base regression algorithm to compute the
argmin, you should use sklearn’s regression tree. You should use the square loss for the tree
splitting rule (criterion keyword argument) and use the default sklearn leaf prediction
rule from the predict method 1. We will also use a constant step size ν.

6. Run the code provided to build gradient boosting models on the regression data sets
krr-train.txt, and include the plots generated. For debugging you can use the sklearn
implementation of GradientBoostingRegressor2.

1Examples of usage are given in the skeleton code to debug previous problems, and you can check the docs
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html

2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.

html

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html


DS-GA-1003 - Spring 2023 3

Classification of images with Gradient Boosting
In this problem we will consider the classification of MNIST, the dataset of handwritten digits
images, with ensembles of trees. For simplicity, we only retain the ‘0’ and ’1’ examples and
perform binary classification.

First we’ll derive a special case of the general gradient boosting framework: BinomialBoost. Let’s
consider the classification framework, where Y = {−1, 1}. In lecture, we noted that AdaBoost
corresponds to forward stagewise additive modeling with the exponential loss, and that the
exponential loss is not very robust to outliers (i.e. outliers can have a large effect on the final
prediction function). Instead, let’s consider the logistic loss

ℓ(m) = ln
(
1 + e−m

)
,

where m = yf(x) is the margin.

7. Give the expression of the negative gradient step direction, or pseudo residual, −gm for
the logistic loss as a function of the prediction function fm−1 at the previous iteration and
the dataset points {(xi, yi)}ni=1. What is the dimension of gm?

8. Write an expression for hm as an argmin over functions h in F .

9. Load the MNIST dataset using the helper preprocessing function in the skeleton code.Using
the scikit learn implementation of GradientBoostingClassifier, with the logistic loss
(loss=‘deviance’) and trees of maximum depth 3, fit the data with 2, 5, 10, 100 and 200
iterations (estimators). Plot the train and test accurary as a function of the number of
estimators.

Classification of images with Random Forests (Optional)

10. Another type of ensembling method we discussed in class are random forests. Explain in
your own words the construction principle of random forests.

11. Using the scikit learn implementation of RandomForestClassifier3, with the entropy
loss (criterion=‘entropy’) and trees of maximum depth 3, fit the preprocessed binary
MNIST dataset with 2, 5, 10, 50, 100 and 200 estimators.

12. What general remark can you make on overfitting for Random Forests and Gradient
Boosted Trees? Which method achieves the best train accuracy overall? Is this result
expected? Can you think of a practical disadvantage of the best performing method? How
do the algorithms compare in term of test accuracy?

3https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.

html#sklearn.ensemble.RandomForestClassifier

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier

	Decision Tree Implementation
	Ensembling

