
DS-GA-1003 - Spring 2023 1

Homework 3: SVMs & Kernel Methods

Due: Wednesday, March 1, 2023 at 11:59PM EST

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using
software that typesets mathematics (e.g.LaTeX, LyX, or MathJax via iPython), though if you
need to you may scan handwritten work. You may find the minted package convenient for
including source code in your LaTeX document. If you are using LyX, then the listings package
tends to work better.

In this problem set we will get up to speed with SVMs and Kernels. Long at first glance, the
problem set includes a lot of helpers. You will find a review of kernalization. One section will
include a revision of ridge regression which you should start to be familiar with. For the second
and third problem some codes are provided to save you some time. Finally, some reminders on
positive (semi)definite matrices are included in the Appendix.

1 Support Vector Machines: SVMs with Pegasos

In this first problem we will use Support Vector Machines to predict whether the sentiment of a
movie review was positive or negative. We will represent each review by a vector x ∈ Rd where
d is the size of the word dictionary and xi is equal to the number of occurrence of the i-th word
in the review x. The corresponding label is either y = 1 for a positive review or y = −1 for
a negative review. In class we have seen how to transform the SVM training objective into a
quadratic program using the dual formulation. Here we will use a gradient descent algorithm
instead.

Subgradients
Recall that a vector g ∈ Rd is a subgradient of f : Rd → R at x if for all z,

f(z) ≥ f(x) + gT (z − x).

There may be 0, 1, or infinitely many subgradients at any point. The subdifferential of f at a
point x, denoted ∂f(x), is the set of all subgradients of f at x. A good reference for subgradients
are the course notes on Subgradients by Boyd et al. Below we derive a property that will make
our life easier for finding a subgradient of the hinge loss.

1. Suppose f1, . . . , fm : Rd → R are convex functions, and f(x) = maxi=1,...,,m fi(x). Let k
be any index for which fk(x) = f(x), and choose g ∈ ∂fk((x) (a convex function on Rd

has a non-empty subdifferential at all points). Show that g ∈ ∂f(x).

2. Give a subgradient of the hinge loss objective J(w) = max
{
0, 1− ywTx

}
.

3. (Optional) Suppose we have function f : Rn → R which is sub-differentiable everywhere,
i.e. ∂f ̸= ∅ for all x ∈ Rn. Show that f is convex. Note, in the general case, a function is
convex if for all x, y in the domain of f and for all θ ∈ (0, 1),

θf(a) + (1− θ)f(b) ≥ f(θa+ (1− θ)(b))

Hint: Suppose f is not convex, then by definition, there exists a point in some interval:
x0 ∈ (a, b), such that f(x0) lies above the line connection (a, f(a)), (b, f(b)). Is this possible
if the function s sub-differentiable everywhere?

https://github.com/gpoore/minted
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings
https://stanford.edu/class/ee364b/lectures/subgradients_notes.pdf

DS-GA-1003 - Spring 2023 2

SVM with the Pegasos algorithm
You will train a Support Vector Machine using the Pegasos algorithm 1. Recall the SVM objective
using a linear predictor f(x) = wTx and the hinge loss:

min
w∈Rd

λ

2
∥w∥2 + 1

n

n∑
i=1

max
{
0, 1− yiw

Txi

}
,

where n is the number of training examples and d the size of the dictionary. Note that, for
simplicity, we are leaving off the bias term b. Note also that we are using ℓ2 regularization with
a parameter λ. Pegasos is stochastic subgradient descent using a step size rule ηt = 1/ (λt) for
iteration number t. The pseudocode is given below:

Input: λ > 0. Choose w1 = 0, t = 0
While termination condition not met
For j = 1, . . . , n (assumes data is randomly permuted)
t = t+ 1
ηt = 1/ (tλ);
If yjw

T
t xj < 1

wt+1 = (1− ηtλ)wt + ηtyjxj
Else
wt+1 = (1− ηtλ)wt

4. Consider the SVM objective function for a single training point2: Ji(w) = λ
2 ∥w∥2 +

max
{
0, 1− yiw

Txi

}
. The function Ji(w) is not differentiable everywhere. Specify where

the gradient of Ji(w) is not defined. Give an expression for the gradient where it is defined.

5. Show that a subgradient of Ji(w) is given by

gw =

{
λw − yixi for yiw

Txi < 1

λw for yiw
Txi ≥ 1.

You may use the following facts without proof: 1) If f1, . . . , fn : Rd → R are convex
functions and f = f1 + · · · + fn, then ∂f(x) = ∂f1(x) + · · · + ∂fn(x). 2) For α ≥ 0,
∂ (αf) (x) = α∂f(x). (Hint: Use the first part of this problem.)

Convince yourself that if your step size rule is ηt = 1/ (λt), then doing SGD with the subgradient
direction from the previous question is the same as given in the pseudocode.

Dataset and sparse representation
We will be using the Polarity Dataset v2.0, constructed by Pang and Lee, provided in the
data reviews folder. It has the full text from 2000 movies reviews: 1000 reviews are classified
as positive and 1000 as negative. Our goal is to predict whether a review has positive or negative
sentiment from the text of the review. Each review is stored in a separate file: the positive
reviews are in a folder called “pos”, and the negative reviews are in “neg”. We have provided
some code in utils svm reviews.py to assist with reading these files. The code removes some

1Shalev-Shwartz et al. Pegasos: Primal Estimated sub-GrAdient SOlver for SVM.
2Recall that if i is selected uniformly from the set {1, . . . , n}, then this objective function has the same expected

value as the full SVM objective function.

https://www.cs.cornell.edu/people/pabo/movie-review-data/
http://ttic.uchicago.edu/~nati/Publications/PegasosMPB.pdf

DS-GA-1003 - Spring 2023 3

special symbols from the reviews and shuffles the data. Load all the data to have an idea of
what it looks like.

A usual method to represent text documents in machine learning is with bag-of-words. As hinted
above, here every possible word in the dictionnary is a feature, and the value of a word feature
for a given text is the number of times that word appears in the text. As most words will not
appear in any particular document, many of these counts will be zero. Rather than storing many
zeros, we use a sparse representation, in which only the nonzero counts are tracked. The counts
are stored in a key/value data structure, such as a dictionary in Python. For example, “Harry
Potter and Harry Potter II” would be represented as the following Python dict: x={’Harry’:2,
’Potter’:2, ’and’:1, ’II’:1}.

6. Write a function that converts an example (a list of words) into a sparse bag-of-words
representation. You may find Python’s Counter3 class to be useful here. Note that a
Counter is itself a dictionary.

7. Load all the data and split it into 1500 training examples and 500 validation examples.
Format the training data as a list X train of dictionaries and y train as the list of corre-
sponding 1 or -1 labels. Format the test set similarly.

We will be using linear classifiers of the form f(x) = wTx, and we can store the w vec-
tor in a sparse format as well, such as w={’minimal’:1.3, ’Harry’:-1.1, ’viable’:-4.2,

’and’:2.2, ’product’:9.1}. The inner product between w and x would only involve the fea-
tures that appear in both x and w, since whatever doesn’t appear is assumed to be zero. For this
example, the inner product would be x(Harry) * w(Harry) + x(and) * w(and) = 2*(-1.1)

+ 1*(2.2). To help you along, utils svm reviews.py includes two functions for working with
sparse vectors: 1) a dot product between two vectors represented as dictionaries and 2) a func-
tion that increments one sparse vector by a scaled multiple of another vector, which is a very
common operation. It is worth reading the code, even if you intend to implement it yourself.
You may get some ideas on how to make things faster.

8. Implement the Pegasos algorithm to run on a sparse data representation. The output
should be a sparse weight vector w represented as a dictionary. Note that our Pegasos
algorithm starts at w = 0, which corresponds to an empty dictionary. Note: With this
problem, you will need to take some care to code things efficiently. In particular, be aware
that making copies of the weight dictionary can slow down your code significantly. If you
want to make a copy of your weights (e.g. for checking for convergence), make sure you
don’t do this more than once per epoch. Also: If you normalize your data in some way,
be sure not to destroy the sparsity of your data. Anything that starts as 0 should stay at 0.

Note that in every step of the Pegasos algorithm, we rescale every entry of wt by the factor
(1 − ηtλ). Implementing this directly with dictionaries is very slow. We can make things
significantly faster by representing w as w = sW , where s ∈ R and W ∈ Rd. You can start
with s = 1 and W all zeros (i.e. an empty dictionary). Note that both updates (i.e. whether
or not we have a margin error) start with rescaling wt, which we can do simply by setting
st+1 = (1− ηtλ) st.

3https://docs.python.org/2/library/collections.html

https://docs.python.org/2/library/collections.html

DS-GA-1003 - Spring 2023 4

9. If the update is wt+1 = (1 − ηtλ)wt + ηtyjxj , then verify that the Pegasos update step is
equivalent to:

st+1 = (1− ηtλ) st

Wt+1 = Wt +
1

st+1
ηtyjxj .

Implement the Pegasos algorithm with the (s,W) representation described above. 4

10. Run both implementations of Pegasos on the training data for a couple epochs. Make sure
your implementations are correct by verifying that the two approaches give essentially the
same result. Report on the time taken to run each approach.

11. Write a function classification error that takes a sparse weight vector w, a list of sparse
vectors X and the corresponding list of labels y, and returns the fraction of errors when
predicting yi using sign(wTxi). In other words, the function reports the 0-1 loss of the
linear predictor f(x) = wTx.

12. Search for the regularization parameter that gives the minimal percent error on your test
set. You should now use your faster Pegasos implementation, and run it to convergence. A
good search strategy is to start with a set of regularization parameters spanning a broad
range of orders of magnitude. Then, continue to zoom in until you’re convinced that addi-
tional search will not significantly improve your test performance. Plot the test errors you
obtained as a function of the parameters λ you tested. (Hint: the error you get with the
best regularization should be closer to 15% than 20%. If not, maybe you did not train to
convergence.)

Error Analysis (Optional)
Recall that the score is the value of the prediction f(x) = wTx. We like to think that the
magnitude of the score represents the confidence of the prediction. This is something we can
directly verify or refute.

13. (Optional) Break the predictions on the test set into groups based on the score (you can
play with the size of the groups to get a result you think is informative). For each group,
examine the percentage error. You can make a table or graph. Summarize the results. Is
there a correlation between higher magnitude scores and accuracy?

In natural language processing one can often interpret why a model has performed well or poorly
on a specific example. The first step in this process is to look closely at the errors that the model
makes.

14. (Optional) Choose an input example x = (x1, . . . , xd) ∈ Rd that the model got wrong.
We want to investigate what features contributed to this incorrect prediction. One way

4There is one subtle issue with the approach described above: if we ever have 1− ηtλ = 0, then st+1 = 0, and
we’ll have a divide by 0 in the calculation for Wt+1. This only happens when ηt = 1/λ. With our step-size rule
of ηt = 1/ (λt), it happens exactly when t = 1. So one approach is to just start at t = 2. More generically, note
that if st+1 = 0, then wt+1 = 0. Thus an equivalent representation is st+1 = 1 and W = 0. Thus if we ever get
st+1 = 0, simply set it back to 1 and reset Wt+1 to zero, which is an empty dictionary in a sparse representation.

DS-GA-1003 - Spring 2023 5

to rank the importance of the features to the decision is to sort them by the size of their
contributions to the score. That is, for each feature we compute |wixi|, where wi is the
weight of the ith feature in the prediction function, and xi is the value of the ith feature in
the input x. Create a table of the most important features, sorted by |wixi|, including the
feature name, the feature value xi, the feature weight wi, and the product wixi. Attempt
to explain why the model was incorrect. Can you think of a new feature that might be
able to fix the issue? Include a short analysis for at least 2 incorrect examples. Can you
think of new features that might help fix a problem? (Think of making groups of words.)

2 Kernel Methods

2.1 Kernelization review

Consider the following optimization problem on a data set (x1, y1) , . . . (xn, yn) ∈ Rd × Y:

min
w∈Rd

R
(√

⟨w,w⟩
)
+ L (⟨w,x1⟩ , . . . , ⟨w,xn⟩) ,

where w,x1, . . . ,xn ∈ Rd, and ⟨·, ·⟩ is the standard inner product on Rd. The function R :
[0,∞) → R is nondecreasing and gives us our regularization term, while L : Rn → R is arbitrary5

and gives us our loss term. We noted in lecture that this general form includes soft-margin SVM
and ridge regression, though not lasso regression. Using the representer theorem, we showed if
the optimization problem has a solution, there is always a solution of the form w =

∑n
i=1αixi,

for some α ∈ Rn. Plugging this into the our original problem, we get the following “kernelized”
optimization problem:

min
α∈Rn

R
(√
αTKα

)
+ L (Kα) ,

where K ∈ Rn×n is the Gram matrix (or “kernel matrix”) defined by Kij = k(xi,xj) = ⟨xi,xj⟩.
Predictions are given by

f(x) =

n∑
i=1

αik(xi,x),

and we can recover the original w ∈ Rd by w =
∑n

i=1 αixi.

The kernel trick is to swap out occurrences of the kernel k (and the corresponding Gram matrix
K) with another kernel. For example, we could replace k(xi, xj) = ⟨xi, xj⟩ by k′(xi, xj) =
⟨ψ(xi), ψ(xj)⟩ for an arbitrary feature mapping ψ : Rd → Rd. In this case, the recovered w ∈ Rd

would be w =
∑n

i=1 αiψ(xi) and predictions would be ⟨w,ψ(xi)⟩.
More interestingly, we can replace k by another kernel k′′(xi,xj) for which we do not even know
or cannot explicitly write down a corresponding feature map ψ. Our main example of this is the
RBF kernel

k(x, x′) = exp

(
−∥x− x′∥2

2σ2

)
,

for which the corresponding feature map ψ is infinite dimensional. In this case, we cannot
recover w since it would be infinite dimensional. Predictions must be done using α ∈ Rn, with
f(x) =

∑n
i=1 αik(xi,x).

5You may be wondering “Where are the yi’s?”. They’re built into the function L. For example, a square loss

on a training set of size 3 could be represented as L(s1, s2, s3) =
1
3

[
(s1 − y1)

2 + (s2 − y2)
2 + (s3 − y3)

3
]
, where

each si stands for the ith prediction ⟨w,xi⟩.

DS-GA-1003 - Spring 2023 6

Your implementation of kernelized methods below should not make any reference to w or to
a feature map ψ. Your learning routine should return α, rather than w, and your prediction
function should also use α rather thanw. This will allow us to work with kernels that correspond
to infinite-dimensional feature vectors.

2.2 Kernel problems

Ridge Regression: Theory
Suppose our input space is X=Rd and our output space is Y = R. LetD = {(x1, y1) , . . . , (xn, yn)}
be a training set from X × Y. We’ll use the “design matrix” X ∈ Rn×d, which has the input
vectors as rows:

X =

−x1−
...

−xn−

 .

Recall the ridge regression objective function:

J(w) = ||Xw − y||2 + λ||w||2,

for λ > 0.

15. Show that for w to be a minimizer of J(w), we must have XTXw + λIw = XT y. Show
that the minimizer of J(w) is w = (XTX+λI)−1XT y. Justify that the matrix XTX+λI
is invertible, for λ > 0. (You should use properties of positive (semi)definite matrices. If
you need a reminder look up the Appendix.)

16. Rewrite XTXw + λIw = XT y as w = 1
λ (X

T y − XTXw). Based on this, show that we
can write w = XTα for some α, and give an expression for α.

17. Based on the fact that w = XTα, explain why we say w is “in the span of the data.”

18. Show that α = (λI + XXT)−1y. Note that XXT is the kernel matrix for the standard
vector dot product. (Hint: Replace w by XTα in the expression for α, and then solve for
α.)

19. Give a kernelized expression for the Xw, the predicted values on the training points. (Hint:
Replace w by XTα and α by its expression in terms of the kernel matrix XXT .)

20. Give an expression for the prediction f(x) = xTw∗ for a new point x, not in the training
set. The expression should only involve x via inner products with other x’s. (Hint: It is
often convenient to define the column vector

kx =

x
Tx1

...
xTxn

to simplify the expression.)

DS-GA-1003 - Spring 2023 7

Kernels and Kernel Machines
There are many different families of kernels. So far we spoken about linear kernels, RBF/Gaussian
kernels, and polynomial kernels. The last two kernel types have parameters. In this section, we’ll
implement these kernels in a way that will be convenient for implementing our kernelized ridge
regression later on. For simplicity, we will assume that our input space is X = R . This allows
us to represent a collection of n inputs in a matrix X ∈ Rn×1. You should now refer to the
jupyter notebook skeleton code kernels.ipynb.

21. Write functions that compute the RBF kernel kRBF(σ)(x, x
′) = exp

(
−∥x− x′∥2/

(
2σ2

))
and the polynomial kernel kpoly(a,d)(x, x

′) = (a+ ⟨x, x′⟩)d. The linear kernel klinear(x, x′) =
⟨x, x′⟩, has been done for you in the support code. Your functions should take as input
two matrices W ∈ Rn1×d and X ∈ Rn2×d and should return a matrix M ∈ Rn1×n2 where
Mij = k(Wi·, Xj·). In words, the (i, j)’th entry of M should be kernel evaluation between
wi (the ith row of W) and xj (the jth row of X). For the RBF kernel, you may use the
scipy function cdist(X1,X2,’sqeuclidean’) in the package scipy.spatial.distance.

22. Use the linear kernel function defined in the code to compute the kernel matrix on the set
of points x0 ∈ DX = {−4,−1, 0, 2}. Include both the code and the output.

23. Suppose we have the data set DX,y = {(−4, 2), (−1, 0), (0, 3), (2, 5)} (in each set of paren-
theses, the first number is the value of xi and the second number the corresponding value
of the target yi). Then by the representer theorem, the final prediction function will be in
the span of the functions x 7→ k(x0, x) for x0 ∈ DX = {−4,−1, 0, 2}. This set of functions
will look quite different depending on the kernel function we use. The set of functions
x 7→ klinear(x0, x) for x0 ∈ X and for x ∈ [−6, 6] has been provided for the linear kernel.

(a) Plot the set of functions x 7→ kpoly(1,3)(x0, x) for x0 ∈ DX and for x ∈ [−6, 6].

(b) Plot the set of functions x 7→ kRBF(1)(x0, x) for x0 ∈ X and for x ∈ [−6, 6].

Note that the values of the parameters of the kernels you should use are given in their
definitions in (a) and (b).

24. By the representer theorem, the final prediction function will be of the form f(x) =∑n
i=1 αik(xi, x), where x1, . . . , xn ∈ X are the inputs in the training set. We will use

the class Kernel Machine in the skeleton code to make prediction with different kernels.
Complete the predict function of the class Kernel Machine. Construct a Kernel Machine

object with the RBF kernel (sigma=1), with prototype points at −1, 0, 1 and correspond-
ing weights αi 1,−1, 1. Plot the resulting function.

Note: For this last problem, and for other problems below, it may be helpful to use par-
tial application on your kernel functions. For example, if your polynomial kernel function
has signature polynomial kernel(W, X, offset, degree), you can write k = functools.

partial(polynomial kernel, offset=2, degree=2), and then a call to k(W,X) is equivalent
to polynomial kernel(W, X, offset=2, degree=2), the advantage being that the extra pa-
rameter settings are built into k(W,X). This can be convenient so that you can have a function
that just takes a kernel function k(W,X) and doesn’t have to worry about the parameter settings
for the kernel.

Kernel Ridge Regression: Practice

https://en.wikipedia.org/wiki/Partial_application
https://en.wikipedia.org/wiki/Partial_application

DS-GA-1003 - Spring 2023 8

In the zip file for this assignment, we provide a training krr-train.txt and test set krr-test.txt
for a one-dimensional regression problem, in which X = Y = A = R. Fitting this data using
kernelized ridge regression, we will compare the results using several different kernel functions.
Because the input space is one-dimensional, we can easily visualize the results.

25. Plot the training data. You should note that while there is a clear relationship between x
and y, the relationship is not linear.

26. In a previous problem, we showed that in kernelized ridge regression, the final prediction
function is f(x) =

∑n
i=1 αik(xi,x), where α = (λI +K)−1y and K ∈ Rn×n is the kernel

matrix of the training data: Kij = k(xi,xj), for x1, . . . ,xn. In terms of kernel machines,
αi is the weight on the kernel function evaluated at the training point xi. Complete the
function train kernel ridge regression so that it performs kernel ridge regression and
returns a Kernel Machine object that can be used for predicting on new points.

27. Use the code provided to plot your fits to the training data for the RBF kernel with a fixed
regularization parameter of 0.0001 for 3 different values of sigma: 0.01, 0.1, and 1.0. What
values of sigma do you think would be more likely to over fit, and which less?

28. Use the code provided to plot your fits to the training data for the RBF kernel with a fixed
sigma of 0.02 and 4 different values of the regularization parameter λ: 0.0001, 0.01, 0.1,
and 2.0. What happens to the prediction function as λ→ ∞?

29. (Optional) Find the best hyperparameter settings (including kernel parameters and the
regularization parameter) for each of the kernel types. Summarize your results in a table,
which gives training error and test error for each setting. Include in your table the best
settings for each kernel type, as well as nearby settings that show that making small change
in any one of the hyperparameters in either direction will cause the performance to get
worse. You should use average square loss on the test set to rank the parameter settings.
To make things easier for you, we have provided an sklearn wrapper for the kernel ridge
regression function we have created so that you can use sklearn’s GridSearchCV. Note:
Because of the small dataset size, these models can be fit extremely fast, so there is no
excuse for not doing extensive hyperparameter tuning.

30. (Optional) Plot your best fitting prediction functions using the polynomial kernel and the
RBF kernel. Use the domain x ∈ (−0.5, 1.5). Comment on the results.

31. (Optional) The data for this problem was generated as follows: A function f : R → R
was chosen. Then to generate a point (x, y), we sampled x uniformly from (0, 1) and we
sampled ϵ ∼ N

(
0, 0.12

)
(so var(ϵ) = 0.12). The final point is (x, f(x) + ϵ). What is the

Bayes decision function and the Bayes risk for the loss function ℓ (ŷ, y) = (ŷ − y)
2
.

3 Kernel SVMs with Kernelized Pegasos (Optional)

32. (Optional) Load the SVM training svm-train.txt and svm-test.txt test data from the
zip file. Plot the training data using the code supplied. Are the data linearly separable?
Quadratically separable? What if we used some RBF kernel?

DS-GA-1003 - Spring 2023 9

33. (Optional) Unlike for kernel ridge regression, there is no closed-form solution for SVM
classification (kernelized or not). Implement kernelized Pegasos. Because we are not using
a sparse representation for this data, you will probably not see much gain by implementing
the “optimized” versions described in the problems above.

34. (Optional) Find the best hyperparameter settings (including kernel parameters and the
regularization parameter) for each of the kernel types. Summarize your results in a table,
which gives training error and test error (i.e. average 0/1 loss) for each setting. Include
in your table the best settings for each kernel type, as well as nearby settings that show
that making small change in any one of the hyperparameters in either direction will cause
the performance to get worse. You should use the 0/1 loss on the test set to rank the
parameter settings.

35. (Optional) Plot your best fitting prediction functions using the linear, polynomial, and the
RBF kernel. The code provided may help.

DS-GA-1003 - Spring 2023 10

Appendix (Not for credit)

Here we are recalling important properties of positive (semi)definite matrices. The exercises
below are for revisions for student who may not feel comfortable with these notions. None of
the appendix is for credit.

A Positive Semidefinite Matrices

In statistics and machine learning, we use positive semidefinite matrices a lot. Let’s recall some
definitions from linear algebra that will be useful here:

Definition. A set of vectors {x1, . . . , xn} is orthonormal if ⟨xi, xi⟩ = 1 for any i ∈ {1, . . . , n}
(i.e. xi has unit norm), and for any i, j ∈ {1, . . . , n} with i ̸= j we have ⟨xi, xj⟩ = 0 (i.e. xi and
xj are orthogonal).

Note that if the vectors are column vectors in a Euclidean space, we can write this as xTi xj =
1i ̸= j for all i, j ∈ {1, . . . , n}.
Definition. A matrix is orthogonal if it is a square matrix with orthonormal columns.

It follows from the definition that if a matrix M ∈ Rn×n is orthogonal, then MTM = I, where
I is the n× n identity matrix. Thus MT =M−1, and so MMT = I as well.

Definition. A matrix M is symmetric if M =MT .

Definition. For a square matrix M , if Mv = λv for some column vector v and scalar λ, then
v is called an eigenvector of M and λ is the corresponding eigenvalue.

Theorem. [Spectral Theorem]A real, symmetric matrix M ∈ Rn×n can be diagonalized as
M = QΣQT , where Q ∈ Rn×n is an orthogonal matrix whose columns are a set of orthonormal
eigenvectors of M , and Σ is a diagonal matrix of the corresponding eigenvalues.

Definition. A real, symmetric matrix M ∈ Rn×n is positive semidefinite (psd) if for any
x ∈ Rn,

xTMx ≥ 0.

Note that unless otherwise specified, when a matrix is described as positive semidefinite, we
are implicitly assuming it is real and symmetric (or complex and Hermitian in certain contexts,
though not here).

As an exercise in matrix multiplication, note that for any matrix A with columns a1, . . . , ad,
that is

A =

 | |
a1 · · · ad
| |

 ∈ Rn×d,

we have

ATMA =

aT1Ma1 aT1Ma2 · · · aT1Mad
aT2Ma1 aT2Ma2 · · · aT2Mad

...
... · · ·

...
aTdMa1 aTdMa2 · · · aTdMad

 .

So M is psd if and only if for any A ∈ Rn×d, we have diag(ATMA) =
(
aT1Ma1, . . . , a

T
dMad

)T ⪰
0, where ⪰ is elementwise inequality, and 0 is a d× 1 column vector of 0’s .

DS-GA-1003 - Spring 2023 11

1. Use the definition of a psd matrix and the spectral theorem to show that all eigenvalues of a
positive semidefinite matrixM are non-negative. [Hint: By Spectral theorem, Σ = QTMQ
for some Q. What if you take A = Q in the “exercise in matrix multiplication” described
above?]

2. In this problem, we show that a psd matrix is a matrix version of a non-negative scalar, in
that they both have a “square root”. Show that a symmetric matrix M can be expressed
as M = BBT for some matrix B, if and only if M is psd. [Hint: To show M = BBT

implies M is psd, use the fact that for any vector v, vT v ≥ 0. To show that M psd implies
M = BBT for some B, use the Spectral Theorem.]

B Positive Definite Matrices

Definition. A real, symmetric matrix M ∈ Rn×n is positive definite (spd) if for any x ∈ Rn

with x ̸= 0,
xTMx > 0.

1. Show that all eigenvalues of a symmetric positive definite matrix are positive. [Hint: You
can use the same method as you used for psd matrices above.]

2. Let M be a symmetric positive definite matrix. By the spectral theorem, M = QΣQT ,
where Σ is a diagonal matrix of the eigenvalues ofM . By the previous problem, all diagonal
entries of Σ are positive. If Σ = diag (σ1, . . . , σn), then Σ−1 = diag

(
σ−1
1 , . . . , σ−1

n

)
. Show

that the matrix QΣ−1QT is the inverse of M .

3. Since positive semidefinite matrices may have eigenvalues that are zero, we see by the
previous problem that not all psd matrices are invertible. Show that if M is a psd matrix
and I is the identity matrix, then M +λI is symmetric positive definite for any λ > 0, and
give an expression for the inverse of M + λI.

4. LetM and N be symmetric matrices, withM positive semidefinite and N positive definite.
Use the definitions of psd and spd to show thatM+N is symmetric positive definite. Thus
M + N is invertible. (Hint: For any x ̸= 0, show that xT (M + N)x > 0. Also note that
xT (M +N)x = xTMx+ xTNx.)

	Support Vector Machines: SVMs with Pegasos
	Kernel Methods
	Kernelization review
	Kernel problems

	Kernel SVMs with Kernelized Pegasos (Optional)
	Positive Semidefinite Matrices
	Positive Definite Matrices

