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Logistics

Final exam
Period: 6:00pm EST, May 12 – 8:00pm EST, May 12

Format: on Gradescope, same as midterm

Coverage: mainly about material from week 6 onwards but can overlap with basic
concepts before midterm

Submission: Make sure you leave enough time for submission!
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K-means Clustering
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Unsupervised learning

Goal Discover interesting structure in the data.
Formulation Density estimation: p(x ;θ) (often with latent variables).

Examples Discover clusters: cluster data into groups.

Discover factors: project high-dimensional data to a small number of
“meaningful” dimensions, i.e. dimensionality reduction.

Discover graph structures: learn joint distribution of correlated variables, i.e.
graphical models.
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Example: Old Faithful Geyser

Looks like two clusters.

How to find these clusters algorithmically?
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k-Means: By Example

Standardize the data.

Choose two cluster centers.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(a).
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k-means: by example

Assign each point to closest center.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(b).
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k-means: by example

Compute new cluster centers.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(c).
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k-means: by example

Assign points to closest center.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(d).
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k-means: by example

Compute cluster centers.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(e).
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k-means: by example

Iterate until convergence.

From Bishop’s Pattern recognition and machine learning, Figure 9.1(i).
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Suboptimal Local Minimum

The clustering for k = 3 below is a local minimum, but suboptimal:

From Sontag’s DS-GA 1003, 2014, Lecture 8.
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Formalize k-Means

Dataset D= {x1, . . . ,xn}⊂ X where X= Rd .

Goal: Partition data D into k disjoint sets C1, . . . ,Ck .

Let ci ∈ {1, . . . ,k} be the cluster assignment of xi .

The centroid of Ci is defined to be

µi = argmin
µ∈X

∑
x∈Ci

‖x −µ‖2. mean of Ci (1)

The k-means objective is to minimize the distance between each example and its cluster
centroid:

J(c ,µ) =
n∑

i=1

‖xi −µci‖
2. (2)
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k-Means: Algorithm

1 Initialize: Randomly choose initial centroids µ1, . . . ,µk ∈ Rd .
2 Repeat until convergence (i.e. ci doesn’t change anymore):

1 For all i , set

ci ← argmin
j
‖xi −µj‖2. Minimize J w.r.t. c while fixing µ (3)

2 For all j , set

µj ←
1
|Cj |

∑
x∈Cj

x . Minimze J w.r.t. µ while fixing c . (4)

Recall the objective: J(c ,µ) =
∑n

i=1 ‖xi −µci‖2.
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Avoid bad local minima

k-means converges to a local minimum.
J is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:
Re-run with random initial centroids.

k-means++: choose initial centroids that spread over all data points.
Randomly choose the first centroid from the data points D.
Sequentially choose subsequent centroids from points that are farther away from
current centroids:

Compute distance between each xi and the closest already chosen centroids.
Randomly choose next centroid with probability proportional to the computed distance squared.
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Summary

We’ve seen
Clustering—an unsupervised learning problem that aims to discover group assignments.

k-means:
Algorithm: alternating between assigning points to clusters and computing cluster
centroids.

Objective: minmizing some loss function by cooridinate descent.

Converge to a local minimum.

Next, probabilistic model of clustering.
A generative model of x .

Maximum likelihood estimation.

He He Slides based on Lecture 13a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 26, 2022 16 / 61

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/13a.k-means.pdf
https://github.com/davidrosenberg/mlcourse


Gaussian Mixture Models
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Probabilistic Model for Clustering

Problem setup:
There are k clusters (or mixture
components).

We have a probability distribution for each
cluster.

Generative story of a mixture distribution:
1 Choose a random cluster z ∈ {1,2, . . . ,k}.
2 Choose a point from the distribution for

cluster z .

Example:
1 Choose z ∈ {1,2,3} with

p(1) = p(2) = p(3) = 1
3 .

2 Choose x | z ∼ N (X | µz ,Σz).
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Gaussian mixture model (GMM)

Generative story of GMM with k mixture components:
1 Choose cluster z ∼ Categorical(π1, . . . ,πk).
2 Choose x | z ∼ N(µz ,Σz).

Probability density of x :

Sum over (marginalize) the latent variable z .

p(x) =
∑
z

p(x ,z) (5)

=
∑
z

p(x | z)p(z) (6)

=
∑
k

πkN(µk ,Σk) (7)
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Identifiability Issues for GMM

Suppose we have found parameters

Cluster probabilities : π= (π1, . . . ,πk)

Cluster means : µ= (µ1, . . . ,µk)

Cluster covariance matrices: Σ= (Σ1, . . .Σk)

that are at a local minimum.

What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.

We’ll get the same likelihood. How many such equivalent settings are there?

Assuming all clusters are distinct, there are k! equivalent solutions.

Not a problem per se, but something to be aware of.
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Learning GMMs

How to learn the parameters πk ,µk ,Σk?

MLE (also called maximize marginal likelihood).

Log likelihood of data:

L(θ) =
n∑

i=1

logp(xi ;θ) (8)

=

n∑
i=1

log
∑
z

p(x ,z ;θ) (9)

Cannot push log into the sum... z and x are coupled.

No closed-form solution for GMM—try to compute the gradient yourself!
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Gradient Descent / SGD for GMM

What about running gradient descent or SGD on

J(π,µ,Σ) = −

n∑
i=1

log

{
k∑

z=1

πzN (xi | µz ,Σz)

}
?

Can be done, in principle – but need to be clever about it.

For example, each covariance matrix Σ1, . . . ,Σk has to be positive semidefinite.

How to maintain that constraint?
Rewrite Σi =MiM

T
i , where Mi is an unconstrained matrix.

Then Σi is positive semidefinite.

Even then, pure gradient-based methods have trouble.1
1See Hosseini and Sra’s Manifold Optimization for Gaussian Mixture Models for discussion and further

references.
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Learning GMMs: observable case

Suppose we observe cluster assignments z . Then MLE is easy:

nz =
n∑

i=1

1(zi = z) # examples in each cluster (10)

π̂(z) =
nz
n

fraction of examples in each cluster (11)

µ̂z =
1
nz

∑
i :zi=z

xi empirical cluster mean (12)

Σ̂z =
1
nz

∑
i :zi=z

(xi − µ̂z)(xi − µ̂z)
T . empirical cluster covariance (13)
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Learning GMMs: inference

The inference problem: observe x , want to know z .

p(z = j | xi ) = p(x ,z = j)/p(x) (14)

=
p(x | z = j)p(z = j)∑
k p(x | z = k)p(z = k)

(15)

=
πjN(xi | µj ,Σj)∑
k πkN(xi | µk ,Σk)

(16)

p(z | x) is a soft assignment.

If we know the parameters µ,Σ,π, this would be easy to compute.
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EM for GMM

Let’s compute the cluster assignments and the parameters iteratively.

The expectation-minimization (EM) algorithm:
1 Initialize parameters µ,Σ,π randomly.
2 Run until convergence:

1 E-step: fill in latent variables by inference.
compute soft assignments p(z | xi ) for all i .

2 M-step: standard MLE for µ,Σ,π given “observed” variables.
Equivalent to MLE in the observable case on data weighted by p(z | xi ).
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M-step for GMM

Let p(z | x) be the soft assignments:

γ
j
i =

πold
j N

(
xi | µ

old
j ,Σold

j

)
∑k

c=1π
old
c N (xi | µold

c ,Σold
c )

.

Exercise: show that

nz =

n∑
i=1

γzi

µnew
z =

1
nz

n∑
i=1

γzi xi

Σnew
z =

1
nz

n∑
i=1

γzi (xi −µ
new
z )(xi −µ

new
z )T

πnew
z =

nz
n
.
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EM for GMM

Initialization

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

First soft assignment:

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

First soft assignment:

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

After 5 rounds of EM:

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

After 20 rounds of EM:

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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EM for GMM: Summary

EM is a general algorithm for learning latent variable models.

Key idea: if data was fully observed, then MLE is easy.
E-step: fill in latent variables by computing p(z | x ,θ).

M-step: standard MLE given fully observed data.

Simpler and more efficient than gradient methods.

Can prove that EM monotonically improves the likelihood and converges to a local
minimum.

k-means is a special case of EM for GMM with hard assignments, also called hard-EM.
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Latent Variable Models
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General Latent Variable Model

Two sets of random variables: z and x .

z consists of unobserved hidden variables.

x consists of observed variables.

Joint probability model parameterized by θ ∈Θ:

p(x ,z | θ)

Definition
A latent variable model is a probability model for which certain variables are never observed.

e.g. The Gaussian mixture model is a latent variable model.
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Complete and Incomplete Data

Suppose we observe some data (x1, . . . ,xn).

To simplify notation, take x to represent the entire dataset

x = (x1, . . . ,xn) ,

and z to represent the corresponding unobserved variables

z = (z1, . . . ,zn) .

An observation of x is called an incomplete data set.

An observation (x ,z) is called a complete data set.
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Our Objectives

Learning problem: Given incomplete dataset x , find MLE

θ̂= argmax
θ

p(x | θ).

Inference problem: Given x , find conditional distribution over z :

p (z | x ,θ) .

For Gaussian mixture model, learning is hard, inference is easy.

For more complicated models, inference can also be hard. (See DSGA-1005)
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Log-Likelihood and Terminology

Note that
argmax
θ

p(x | θ) = argmax
θ

[logp(x | θ)] .

Often easier to work with this “ log-likelihood”.

We often call p(x) the marginal likelihood,
because it is p(x ,z) with z “marginalized out”:

p(x) =
∑
z

p(x ,z)

We often call p(x ,z) the joint. (for “joint distribution”)

Similarly, logp(x) is the marginal log-likelihood.
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EM Algorithm
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Intuition

Problem: marginal log-likelihood logp(x ;θ) is hard to optimize (observing only x)

Observation: complete data log-likelihood logp(x ,z ;θ) is easy to optimize (observing both x
and z)

Idea: guess a distribution of the latent variables q(z) (soft assignments)

Maximize the expected complete data log-likelihood:

max
θ

∑
z∈Z

q(z) logp(x ,z ;θ)

EM assumption: the expected complete data log-likelihood is easy to optimize

Why should this work?
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Math Prerequisites
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Jensen’s Inequality

Theorem (Jensen’s Inequality)

If f : R→ R is a convex function, and x is a random variable, then

Ef (x)> f (Ex).

Moreover, if f is strictly convex, then equality implies that x = Ex with probability 1 (i.e. x is
a constant).

e.g. f (x) = x2 is convex. So Ex2 > (Ex)2. Thus

Var(x) = Ex2−(Ex)2 > 0.
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Kullback-Leibler Divergence

Let p(x) and q(x) be probability mass functions (PMFs) on X.

How can we measure how “different” p and q are?

The Kullback-Leibler or “KL” Divergence is defined by

KL(p‖q) =
∑
x∈X

p(x) log
p(x)

q(x)
.

(Assumes q(x) = 0 implies p(x) = 0.)

Can also write this as

KL(p‖q) = Ex∼p log
p(x)

q(x)
.
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Gibbs Inequality (KL(p‖q)> 0 and KL(p‖p) = 0)

Theorem (Gibbs Inequality)

Let p(x) and q(x) be PMFs on X. Then

KL(p‖q)> 0,

with equality iff p(x) = q(x) for all x ∈ X.

KL divergence measures the “distance” between distributions.

Note:
KL divergence not a metric.

KL divergence is not symmetric.
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Gibbs Inequality: Proof

KL(p‖q) = Ep

[
− log

(
q(x)

p(x)

)]
> − log

[
Ep

(
q(x)

p(x)

)]
(Jensen’s)

= − log

 ∑
{x |p(x)>0}

p(x)
q(x)

p(x)


= − log

[∑
x∈X

q(x)

]
= − log1= 0.

Since − log is strictly convex, we have strict equality iff q(x)/p(x) is a constant, which
implies q = p .
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The ELBO: Family of Lower Bounds on logp(x | θ)

He He Slides based on Lecture 13a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 26, 2022 45 / 61

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/13a.k-means.pdf
https://github.com/davidrosenberg/mlcourse


The Maximum Likelihood Estimator

new
6*= avg.fi/@gPcxl0B O
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Lower bound of the marginal log-likelihood

logp(x ;θ) = log
∑
z∈Z

p(x ,z ;θ)

= log
∑
z∈Z

q(z)
p(x ,z ;θ)

q(z)

>
∑
z∈Z

q(z) log
p(x ,z ;θ)

q(z)

def
= L(q,θ)

Evidence: logp(x ;θ)
Evidence lower bound (ELBO): L(q,θ)
q: chosen to be a family of tractable distributions
Idea: maximize the ELBO instead of logp(x ;θ)
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MLE, EM, and the ELBO

The MLE is defined as a maximum over θ:

θ̂MLE = argmax
θ

[logp(x | θ)] .

For any PMF q(z), we have a lower bound on the marginal log-likelihood

logp(x | θ)> L(q,θ).

In EM algorithm, we maximize the lower bound (ELBO) over θ and q:

θ̂EM ≈ argmax
θ

[
max
q

L(q,θ)

]
In EM algorithm, q ranges over all distributions on z .
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EM: Coordinate Ascent on Lower Bound

Choose sequence of q’s and θ’s by “coordinate ascent” on L(q,θ).

EM Algorithm (high level):
1 Choose initial θold.
2 Let q∗ = argmaxqL(q,θ

old)
3 Let θnew = argmaxθL(q

∗,θ).
4 Go to step 2, until converged.

Will show: p(x | θnew)> p(x | θold)

Get sequence of θ’s with monotonically increasing likelihood.
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EM: Coordinate Ascent on Lower Bound

1 Start at θold.

2 Find q giving best lower bound at θold =⇒ L(q,θ).
3 θnew = argmaxθL(q,θ).

From Bishop’s Pattern recognition and machine learning, Figure 9.14.
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Is ELBO a "good" lowerbound?

L(q,θ) =
∑
z∈Z

q(z) log
p(x ,z | θ)

q(z)

=
∑
z∈Z

q(z) log
p(z | x ,θ)p(x | θ)

q(z)

= −
∑
z∈Z

q(z) log
q(z)

p(z | x ,θ)
+
∑
z∈Z

q(z) logp(x | θ)

= −KL(q(z)‖p(z | x ,θ))+ logp(x | θ)︸ ︷︷ ︸
evidence

KL divergence: measures “distance” between two distributions (not symmetric!)

KL(q‖p)> 0 with equality iff q(z) = p(z | x).

ELBO = evidence - KL 6 evidence
He He Slides based on Lecture 13a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 26, 2022 51 / 61

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/13a.k-means.pdf
https://github.com/davidrosenberg/mlcourse


Maximizing over q for fixed θ.

Find q maximizing

L(q,θ) = −KL[q(z),p(z | x ,θ)]+ logp(x | θ)︸ ︷︷ ︸
no q here

Recall KL(p‖q)> 0, and KL(p‖p) = 0.

Best q is q∗(z) = p(z | x ,θ) and

L(q∗,θ) = −KL[p(z | x ,θ),p(z | x ,θ)]︸ ︷︷ ︸
=0

+ logp(x | θ)

Summary:
logp(x | θ) = sup

q
L(q,θ) ∀θ

For any θ, sup is attained at q(z) = p(z | x ,θ).
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Marginal Log-Likelihood IS the Supremum over Lower Bounds

sup is over all distributions on z

%eE.ie#Ee
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Summary

Latent variable models: clustering, latent structure, missing lables etc.

Parameter estimation: maximum marginal log-likelihood

Challenge: directly maximize the evidence logp(x ;θ) is hard

Solution: maximize the evidence lower bound:

ELBO= L(q,θ) = −KL(q(z)‖p(z | x ;θ))+ logp(x ;θ)

Why does it work?

q∗(z) = p(z | x ;θ) ∀θ ∈Θ
L(q∗,θ∗) =max

θ
logp(x ;θ)
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EM algorithm

Coordinate ascent on L(q,θ)

1 Random initialization: θold← θ0

2 Repeat until convergence
(i) q(z)← argmaxqL(q,θ

old)

Expectation (the E-step): q∗(z) = p(z | x ;θold)

J(θ) = L(q∗,θ)

(ii) θnew← argmaxθL(q
∗,θ)

Maximization (the M-step): θnew← argmax
θ

J(θ)
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EM Algorithm

1 Expectation Step
Let q∗(z) = p(z | x ,θold). [q∗ gives best lower bound at θold]
Let

J(θ) := L(q∗,θ) =
∑
z

q∗(z) log

(
p(x ,z | θ)

q∗(z)

)
︸ ︷︷ ︸
expectation w.r.t. z∼q∗(z)

2 Maximization Step
θnew = argmax

θ
J(θ).

[Equivalent to maximizing expected complete log-likelihood.]

EM puts no constraint on q in the E-step and assumes the M-step is easy. In general, both
steps can be hard.
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Monotonically increasing likelihood

Exercise: prove that EM increases the marginal likelihood monotonically

logp(x ;θnew)> logp(x ;θold) .

Does EM converge to a global maximum?
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Variations on EM
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EM Gives Us Two New Problems

The “E” Step: Computing

J(θ) := L(q∗,θ) =
∑
z

q∗(z) log

(
p(x ,z | θ)

q∗(z)

)
The “M” Step: Computing

θnew = argmax
θ

J(θ).

Either of these can be too hard to do in practice.
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Generalized EM (GEM)

Addresses the problem of a difficult “M” step.

Rather than finding
θnew = argmax

θ
J(θ),

find any θnew for which
J(θnew)> J(θold).

Can use a standard nonlinear optimization strategy
e.g. take a gradient step on J.

We still get monotonically increasing likelihood.
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EM and More General Variational Methods

Suppose “E” step is difficult:
Hard to take expectation w.r.t. q∗(z) = p(z | x ,θold).

Solution: Restrict to distributions Q that are easy to work with.

Lower bound now looser:

q∗ = argmin
q∈Q

KL[q(z),p(z | x ,θold)]
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