# k-Means Clustering

He He

Slides based on Lecture 13a from David Rosenberg's course materials

(https://github.com/davidrosenberg/mlcourse)

CDS, NYU

April 26, 2022

## Logistics

#### Final exam

- Period: 6:00pm EST, May 12 8:00pm EST, May 12
- Format: on Gradescope, same as midterm
- Coverage: mainly about material from week 6 onwards but can overlap with basic concepts before midterm
- Submission: Make sure you leave enough time for submission!

K-means Clustering

# Unsupervised learning

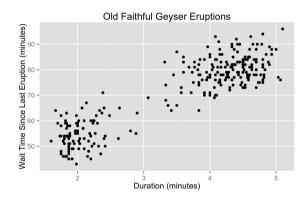
Goal Discover interesting structure in the data.

Formulation Density estimation:  $p(x;\theta)$  (often with *latent* variables).

Examples

- Discover *clusters*: cluster data into groups.
- Discover *factors*: project high-dimensional data to a small number of "meaningful" dimensions, i.e. dimensionality reduction.
- Discover *graph structures*: learn joint distribution of correlated variables, i.e. graphical models.

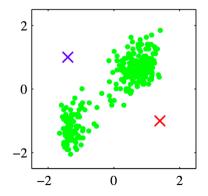
## Example: Old Faithful Geyser



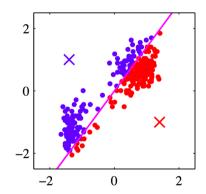
- Looks like two clusters.
- How to find these clusters algorithmically?

# *k*-Means: By Example

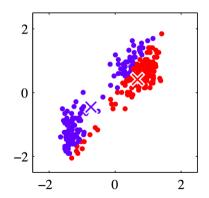
- Standardize the data.
- Choose two cluster centers.



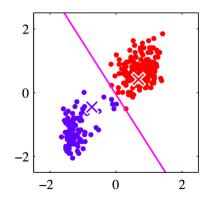
• Assign each point to closest center.



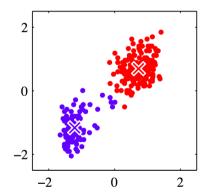
• Compute new cluster centers.



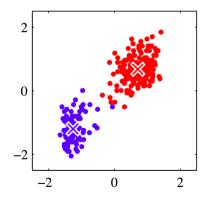
Assign points to closest center.



Compute cluster centers.

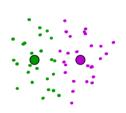


• Iterate until convergence.

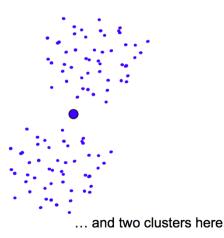


# Suboptimal Local Minimum

• The clustering for k = 3 below is a local minimum, but suboptimal:



Would be better to have one cluster here



From Sontag's DS-GA 1003, 2014, Lecture 8.

#### Formalize k-Means

- Dataset  $\mathcal{D} = \{x_1, \dots, x_n\} \subset \mathcal{X}$  where  $\mathcal{X} = \mathbb{R}^d$ .
- Goal: Partition data  $\mathcal{D}$  into k disjoint sets  $C_1, \ldots, C_k$ .
- Let  $c_i \in \{1, ..., k\}$  be the cluster assignment of  $x_i$ .
- The **centroid** of  $C_i$  is defined to be

$$\mu_i = \underset{\mu \in \mathcal{X}}{\operatorname{arg\,min}} \sum_{x \in C_i} \|x - \mu\|^2.$$
 mean of  $C_i$  (1)

• The *k*-means objective is to minimize the distance between each example and its cluster centroid:

$$J(c, \mu) = \sum_{i=1}^{n} \|x_i - \mu_{c_i}\|^2.$$
 (2)

#### k-Means: Algorithm

- **1** Initialize: Randomly choose initial centroids  $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$ .
- 2 Repeat until convergence (i.e.  $c_i$  doesn't change anymore):
  - For all *i*, set

$$c_i \leftarrow \underset{j}{\operatorname{arg\,min}} \|x_i - \mu_j\|^2$$
. Minimize  $J$  w.r.t.  $c$  while fixing  $\mu$  (3)

$$\mu_j \leftarrow \frac{1}{|C_j|} \sum_{x \in C_i} x.$$
 Minimze  $J$  w.r.t.  $\mu$  while fixing  $c$ . (4)

• Recall the objective:  $J(c, \mu) = \sum_{i=1}^{n} ||x_i - \mu_{c_i}||^2$ .

#### Avoid bad local minima

k-means converges to a local minimum.

• *J* is non-convex, thus no guarantee to converging to the global minimum.

Avoid getting stuck with bad local minima:

- Re-run with random initial centroids.
- k-means++: choose initial centroids that spread over all data points.
  - Randomly choose the first centroid from the data points  $\mathfrak{D}$ .
  - Sequentially choose subsequent centroids from points that are farther away from current centroids:
    - Compute distance between each  $x_i$  and the closest already chosen centroids.
    - Randomly choose next centroid with probability proportional to the computed distance squared.

## Summary

#### We've seen

- Clustering—an unsupervised learning problem that aims to discover group assignments.
- *k*-means:
  - Algorithm: alternating between assigning points to clusters and computing cluster centroids.
  - Objective: minmizing some loss function by cooridinate descent.
  - Converge to a local minimum.

Next, probabilistic model of clustering.

- A generative model of x.
- Maximum likelihood estimation.

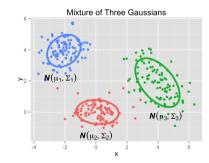
Gaussian Mixture Models

# Probabilistic Model for Clustering

- Problem setup:
  - There are *k* clusters (or **mixture components**).
  - We have a probability distribution for each cluster.
- Generative story of a mixture distribution:
  - Choose a random cluster  $z \in \{1, 2, ..., k\}$ .
  - Choose a point from the distribution for cluster z.

#### Example:

- Choose  $z \in \{1, 2, 3\}$  with  $p(1) = p(2) = p(3) = \frac{1}{3}$ .
- **2** Choose  $x \mid z \sim \mathcal{N}(X \mid \mu_z, \Sigma_z)$ .



# Gaussian mixture model (GMM)

#### Generative story of GMM with k mixture components:

- Choose cluster  $z \sim \text{Categorical}(\pi_1, \dots, \pi_k)$ .
- ② Choose  $x \mid z \sim \mathcal{N}(\mu_z, \Sigma_z)$ .

#### Probability density of x:

• Sum over (marginalize) the latent variable z.

$$p(x) = \sum_{z} p(x, z) \tag{5}$$

$$=\sum_{z}p(x\mid z)p(z)\tag{6}$$

$$=\sum_{k}\pi_{k}\mathcal{N}(\mu_{k},\Sigma_{k})\tag{7}$$

# Identifiability Issues for GMM

• Suppose we have found parameters

Cluster probabilities:  $\pi = (\pi_1, \dots, \pi_k)$ 

Cluster means :  $\mu = (\mu_1, ..., \mu_k)$ 

Cluster covariance matrices:  $\Sigma = (\Sigma_1, \dots \Sigma_k)$ 

that are at a local minimum.

- What happens if we shuffle the clusters? e.g. Switch the labels for clusters 1 and 2.
- We'll get the same likelihood. How many such equivalent settings are there?
- Assuming all clusters are distinct, there are k! equivalent solutions.
- Not a problem per se, but something to be aware of.

## Learning GMMs

How to learn the parameters  $\pi_k$ ,  $\mu_k$ ,  $\Sigma_k$ ?

- MLE (also called maximize marginal likelihood).
- Log likelihood of data:

$$L(\theta) = \sum_{i=1}^{n} \log p(x_i; \theta)$$
 (8)

$$=\sum_{i=1}^{n}\log\sum_{z}p(x,z;\theta)$$
(9)

- Cannot push log into the sum... z and x are coupled.
- No closed-form solution for GMM—try to compute the gradient yourself!

# Gradient Descent / SGD for GMM

• What about running gradient descent or SGD on

$$J(\pi, \mu, \Sigma) = -\sum_{i=1}^{n} \log \left\{ \sum_{z=1}^{k} \pi_{z} \mathcal{N}(x_{i} \mid \mu_{z}, \Sigma_{z}) \right\}?$$

- Can be done, in principle but need to be clever about it.
- For example, each covariance matrix  $\Sigma_1, \ldots, \Sigma_k$  has to be positive semidefinite.
- How to maintain that constraint?
  - Rewrite  $\Sigma_i = M_i M_i^T$ , where  $M_i$  is an unconstrained matrix.
  - Then  $\Sigma_i$  is positive semidefinite.
- Even then, pure gradient-based methods have trouble.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>See Hosseini and Sra's Manifold Optimization for Gaussian Mixture Models for discussion and further references.

# Learning GMMs: observable case

Suppose we observe cluster assignments z. Then MLE is easy:

$$n_z = \sum_{i=1}^n 1(z_i = z)$$
 # examples in each cluster (10)

$$\hat{\pi}(z) = \frac{n_z}{n}$$
 fraction of examples in each cluster (11)

$$\hat{\mu}_z = \frac{1}{n_z} \sum_{i: z_i = z} x_i$$
 empirical cluster mean (12)

$$\hat{\Sigma}_{z} = \frac{1}{n_{z}} \sum_{i: z_{i} = z} (x_{i} - \hat{\mu}_{z}) (x_{i} - \hat{\mu}_{z})^{T}. \qquad \text{empirical cluster covariance}$$
 (13)

## Learning GMMs: inference

The inference problem: observe x, want to know z.

$$p(z = j \mid x_i) = p(x, z = j)/p(x)$$
 (14)

$$= \frac{p(x \mid z = j)p(z = j)}{\sum_{k} p(x \mid z = k)p(z = k)}$$
(15)

$$= \frac{\pi_j \mathcal{N}(x_i \mid \mu_j, \Sigma_j)}{\sum_k \pi_k \mathcal{N}(x_i \mid \mu_k, \Sigma_k)}$$
(16)

- $p(z \mid x)$  is a soft assignment.
- If we know the parameters  $\mu$ ,  $\Sigma$ ,  $\pi$ , this would be easy to compute.

Let's compute the cluster assignments and the parameters iteratively.

The expectation-minimization (EM) algorithm:

- **1** Initialize parameters  $\mu$ ,  $\Sigma$ ,  $\pi$  randomly.
- 2 Run until convergence:
  - E-step: fill in latent variables by inference.
    - compute soft assignments  $p(z | x_i)$  for all i.
  - **2** M-step: standard MLE for  $\mu$ ,  $\Sigma$ ,  $\pi$  given "observed" variables.
    - Equivalent to MLE in the observable case on data weighted by  $p(z \mid x_i)$ .

#### M-step for GMM

• Let  $p(z \mid x)$  be the soft assignments:

$$\gamma_i^j = \frac{\pi_j^{\text{old}} \mathcal{N}\left(x_i \mid \mu_j^{\text{old}}, \Sigma_j^{\text{old}}\right)}{\sum_{c=1}^k \pi_c^{\text{old}} \mathcal{N}\left(x_i \mid \mu_c^{\text{old}}, \Sigma_c^{\text{old}}\right)}.$$

Exercise: show that

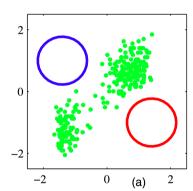
$$n_{z} = \sum_{i=1}^{n} \gamma_{i}^{z}$$

$$\mu_{z}^{\text{new}} = \frac{1}{n_{z}} \sum_{i=1}^{n} \gamma_{i}^{z} x_{i}$$

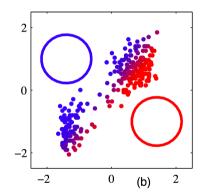
$$\Sigma_{z}^{\text{new}} = \frac{1}{n_{z}} \sum_{i=1}^{n} \gamma_{i}^{z} (x_{i} - \mu_{z}^{\text{new}}) (x_{i} - \mu_{z}^{\text{new}})^{T}$$

$$\pi_{z}^{\text{new}} = \frac{n_{z}}{n}.$$

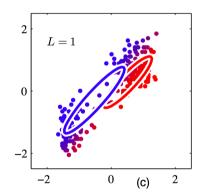
#### Initialization



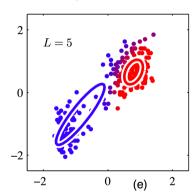
#### • First soft assignment:



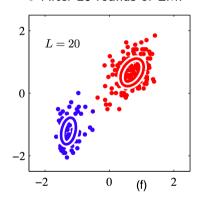
#### • First soft assignment:



#### • After 5 rounds of EM:



• After 20 rounds of EM:



## EM for GMM: Summary

- EM is a general algorithm for learning latent variable models.
- Key idea: if data was fully observed, then MLE is easy.
  - E-step: fill in latent variables by computing  $p(z \mid x, \theta)$ .
  - M-step: standard MLE given fully observed data.
- Simpler and more efficient than gradient methods.
- Can prove that EM monotonically improves the likelihood and converges to a local minimum.
- k-means is a special case of EM for GMM with hard assignments, also called hard-EM.

Latent Variable Models

#### General Latent Variable Model

- Two sets of random variables: z and x.
- z consists of unobserved hidden variables.
- x consists of observed variables.
- Joint probability model parameterized by  $\theta \in \Theta$ :

$$p(x, z \mid \theta)$$

#### Definition

A latent variable model is a probability model for which certain variables are never observed.

e.g. The Gaussian mixture model is a latent variable model.

# Complete and Incomplete Data

- Suppose we observe some data  $(x_1, ..., x_n)$ .
- To simplify notation, take x to represent the entire dataset

$$x=(x_1,\ldots,x_n)$$
,

and z to represent the corresponding unobserved variables

$$z = (z_1, \ldots, z_n)$$
.

- An observation of x is called an **incomplete data set**.
- An observation (x, z) is called a **complete data set**.

# Our Objectives

• Learning problem: Given incomplete dataset x, find MLE

$$\hat{\theta} = \arg\max_{\theta} p(x \mid \theta).$$

• Inference problem: Given x, find conditional distribution over z:

$$p(z | x, \theta)$$
.

- For Gaussian mixture model, learning is hard, inference is easy.
- For more complicated models, inference can also be hard. (See DSGA-1005)

# Log-Likelihood and Terminology

Note that

$$\mathop{\arg\max}_{\theta} p(x \mid \theta) = \mathop{\arg\max}_{\theta} \left[\log p(x \mid \theta)\right].$$

- Often easier to work with this "log-likelihood".
- We often call p(x) the marginal likelihood,
  - because it is p(x, z) with z "marginalized out":

$$p(x) = \sum_{z} p(x, z)$$

- We often call p(x, z) the **joint**. (for "joint distribution")
- Similarly,  $\log p(x)$  is the marginal log-likelihood.

# EM Algorithm

#### Intuition

Problem: marginal log-likelihood  $\log p(x;\theta)$  is hard to optimize (observing only x)

Observation: complete data log-likelihood  $\log p(x,z;\theta)$  is easy to optimize (observing both x and z)

Idea: guess a distribution of the latent variables q(z) (soft assignments)

Maximize the **expected complete data log-likelihood**:

$$\max_{\theta} \sum_{z \in \mathcal{Z}} q(z) \log p(x, z; \theta)$$

EM assumption: the expected complete data log-likelihood is easy to optimize

Why should this work?

Math Prerequisites

### Jensen's Inequality

#### Theorem (Jensen's Inequality)

If  $f: R \to R$  is a **convex** function, and x is a random variable, then

$$\mathbb{E}f(x) \geqslant f(\mathbb{E}x).$$

Moreover, if f is **strictly convex**, then equality implies that  $x = \mathbb{E}x$  with probability 1 (i.e. x is a constant).

• e.g.  $f(x) = x^2$  is convex. So  $\mathbb{E}x^2 \geqslant (\mathbb{E}x)^2$ . Thus

$$\operatorname{Var}(x) = \mathbb{E}x^2 - (\mathbb{E}x)^2 \geqslant 0.$$

# Kullback-Leibler Divergence

- Let p(x) and q(x) be probability mass functions (PMFs) on X.
- How can we measure how "different" p and q are?
- The Kullback-Leibler or "KL" Divergence is defined by

$$\mathrm{KL}(p\|q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}.$$

(Assumes 
$$q(x) = 0$$
 implies  $p(x) = 0$ .)

Can also write this as

$$\mathrm{KL}(p\|q) = \mathbb{E}_{x \sim p} \log \frac{p(x)}{q(x)}.$$

# Gibbs Inequality $(KL(p||q) \ge 0 \text{ and } KL(p||p) = 0)$

#### Theorem (Gibbs Inequality)

Let p(x) and q(x) be PMFs on X. Then

$$KL(p||q) \geqslant 0$$
,

with equality iff p(x) = q(x) for all  $x \in \mathcal{X}$ .

- KL divergence measures the "distance" between distributions.
- Note:
  - KL divergence not a metric.
  - KL divergence is not symmetric.

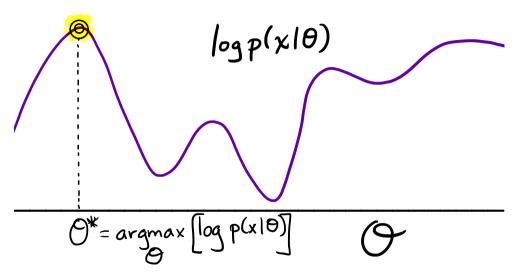
# Gibbs Inequality: Proof

$$\begin{aligned} \mathrm{KL}(\rho \| q) &= & \mathbb{E}_{\rho} \left[ -\log \left( \frac{q(x)}{\rho(x)} \right) \right] \\ &\geqslant & -\log \left[ \mathbb{E}_{\rho} \left( \frac{q(x)}{\rho(x)} \right) \right] \quad \text{(Jensen's)} \\ &= & -\log \left[ \sum_{\{x \mid \rho(x) > 0\}} p(x) \frac{q(x)}{\rho(x)} \right] \\ &= & -\log \left[ \sum_{x \in \mathcal{X}} q(x) \right] \\ &= & -\log 1 = 0. \end{aligned}$$

• Since  $-\log$  is strictly convex, we have strict equality iff q(x)/p(x) is a constant, which implies q=p.

The ELBO: Family of Lower Bounds on  $\log p(x \mid \theta)$ 

#### The Maximum Likelihood Estimator



# Lower bound of the marginal log-likelihood

$$\log p(x;\theta) = \log \sum_{z \in \mathcal{Z}} p(x,z;\theta)$$

$$= \log \sum_{z \in \mathcal{Z}} q(z) \frac{p(x,z;\theta)}{q(z)}$$

$$\geqslant \sum_{z \in \mathcal{Z}} q(z) \log \frac{p(x,z;\theta)}{q(z)}$$

$$\stackrel{\text{def}}{=} \mathcal{L}(q,\theta)$$

- Evidence:  $\log p(x; \theta)$
- Evidence lower bound (ELBO):  $\mathcal{L}(q, \theta)$
- q: chosen to be a family of tractable distributions
- Idea: maximize the ELBO instead of  $log p(x; \theta)$

### MLE, EM, and the ELBO

• The MLE is defined as a maximum over  $\theta$ :

$$\hat{\theta}_{\mathsf{MLE}} = \operatorname*{arg\,max}_{\theta} \left[ \log p(x \mid \theta) \right].$$

ullet For any PMF q(z), we have a lower bound on the marginal log-likelihood

$$\log p(x \mid \theta) \geqslant \mathcal{L}(q, \theta).$$

• In EM algorithm, we maximize the lower bound (ELBO) over  $\theta$  and q:

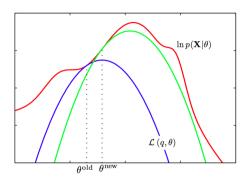
$$\hat{\theta}_{\mathsf{EM}} pprox rg \max_{\theta} \left[ \max_{q} \mathcal{L}(q, \theta) \right]$$

• In EM algorithm, q ranges over all distributions on z.

#### EM: Coordinate Ascent on Lower Bound

- Choose sequence of q's and  $\theta$ 's by "coordinate ascent" on  $\mathcal{L}(q,\theta)$ .
- EM Algorithm (high level):
  - Choose initial  $\theta^{\text{old}}$ .
  - 2 Let  $q^* = \arg\max_{q} \mathcal{L}(q, \theta^{\text{old}})$
  - 3 Let  $\theta^{\text{new}} = \arg\max_{\theta} \mathcal{L}(q^*, \theta)$ .
  - Go to step 2, until converged.
- Will show:  $p(x \mid \theta^{new}) \geqslant p(x \mid \theta^{old})$
- Get sequence of  $\theta$ 's with monotonically increasing likelihood.

#### EM: Coordinate Ascent on Lower Bound



- Start at  $\theta^{\text{old}}$ .
- ② Find q giving best lower bound at  $\theta^{\text{old}} \Longrightarrow \mathcal{L}(q,\theta)$ .

From Bishop's Pattern recognition and machine learning, Figure 9.14.

Is ELBO a "good" lowerbound?

$$\mathcal{L}(q,\theta) = \sum_{z \in \mathcal{Z}} q(z) \log \frac{p(x,z \mid \theta)}{q(z)}$$

$$= \sum_{z \in \mathcal{Z}} q(z) \log \frac{p(z \mid x,\theta)p(x \mid \theta)}{q(z)}$$

$$= -\sum_{z \in \mathcal{Z}} q(z) \log \frac{q(z)}{p(z \mid x,\theta)} + \sum_{z \in \mathcal{Z}} q(z) \log p(x \mid \theta)$$

$$= -KL(q(z) ||p(z \mid x,\theta)) + \underbrace{\log p(x \mid \theta)}_{z \in \mathcal{Z}}$$

- KL divergence: measures "distance" between two distributions (not symmetric!)
- $KL(q||p) \ge 0$  with equality iff q(z) = p(z|x).
- ELBO = evidence KL ≤ evidence

# Maximizing over q for fixed $\theta$ .

Find q maximizing

$$\mathcal{L}(q,\theta) = -\text{KL}[q(z), p(z \mid x, \theta)] + \underbrace{\log p(x \mid \theta)}_{\text{no } q \text{ here}}$$

- Recall  $KL(p||q) \ge 0$ , and KL(p||p) = 0.
- Best q is  $q^*(z) = p(z \mid x, \theta)$  and

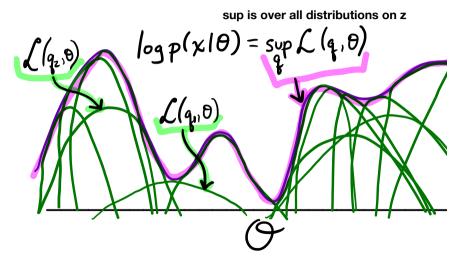
$$\mathcal{L}(q^*, \theta) = -\underbrace{\mathrm{KL}[p(z \mid x, \theta), p(z \mid x, \theta)]}_{=0} + \log p(x \mid \theta)$$

Summary:

$$\log p(x \mid \theta) = \sup_{q} \mathcal{L}(q, \theta) \qquad \forall \theta$$

• For any  $\theta$ , sup is attained at  $q(z) = p(z \mid x, \theta)$ .

### Marginal Log-Likelihood IS the Supremum over Lower Bounds



### Summary

Latent variable models: clustering, latent structure, missing lables etc.

Parameter estimation: maximum marginal log-likelihood

Challenge: directly maximize the evidence  $\log p(x; \theta)$  is hard

Solution: maximize the evidence lower bound:

$$\mathsf{ELBO} = \mathcal{L}(q, \theta) = -\mathsf{KL}(q(z) || p(z \mid x; \theta)) + \log p(x; \theta)$$

Why does it work?

$$q^*(z) = p(z \mid x; \theta) \quad \forall \theta \in \Theta$$
$$\mathcal{L}(q^*, \theta^*) = \max_{\theta} \log p(x; \theta)$$

### EM algorithm

#### Coordinate ascent on $\mathcal{L}(q,\theta)$

- **1** Random initialization:  $\theta^{\text{old}} \leftarrow \theta_0$
- Repeat until convergence

Expectation (the E-step): 
$$q^*(z) = p(z \mid x; \theta^{\text{old}})$$
  
 $J(\theta) = \mathcal{L}(q^*, \theta)$ 

**Maximization** (the M-step):  $\theta^{\text{new}} \leftarrow \underset{\theta}{\text{arg max}} J(\theta)$ 

### **EM Algorithm**

#### Expectation Step

- Let  $q^*(z) = p(z \mid x, \theta^{\text{old}})$ .  $[q^*]$  gives best lower bound at  $\theta^{\text{old}}$
- Let

$$J(\theta) := \mathcal{L}(q^*, \theta) = \underbrace{\sum_{z} q^*(z) \log \left( \frac{p(x, z \mid \theta)}{q^*(z)} \right)}_{\text{expectation w.r.t. } z \sim q^*(z)}$$

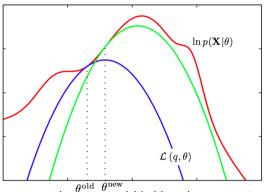
Maximization Step

$$\theta^{\mathsf{new}} = \underset{\theta}{\mathsf{arg}} \max_{\theta} J(\theta).$$

[Equivalent to maximizing expected complete log-likelihood.]

EM puts no constraint on q in the E-step and assumes the M-step is easy. In general, both steps can be hard.

### Monotonically increasing likelihood



Exercise: prove that EM increases the marginal likelihood monotonically

$$\log p(x; \theta^{\mathsf{new}}) \geqslant \log p(x; \theta^{\mathsf{old}}) .$$

Does EM converge to a global maximum?

### Variations on EM

#### EM Gives Us Two New Problems

• The "E" Step: Computing

$$J(\theta) := \mathcal{L}(q^*, \theta) = \sum_{z} q^*(z) \log \left( \frac{p(x, z \mid \theta)}{q^*(z)} \right)$$

• The "M" Step: Computing

$$\theta^{\mathsf{new}} = \underset{\theta}{\mathsf{arg}} \max_{\theta} J(\theta).$$

Either of these can be too hard to do in practice.

# Generalized EM (GEM)

- Addresses the problem of a difficult "M" step.
- Rather than finding

$$\theta^{\text{new}} = \underset{\theta}{\text{arg max}} J(\theta),$$

find any  $\theta^{\text{new}}$  for which

$$J(\theta^{\text{new}}) > J(\theta^{\text{old}}).$$

- Can use a standard nonlinear optimization strategy
  - $\bullet$  e.g. take a gradient step on J.
- We still get monotonically increasing likelihood.

#### EM and More General Variational Methods

- Suppose "E" step is difficult:
  - Hard to take expectation w.r.t.  $q^*(z) = p(z \mid x, \theta^{\text{old}})$ .
- Solution: Restrict to distributions Q that are easy to work with.
- Lower bound now looser:

$$q^* = \underset{q \in \Omega}{\operatorname{arg\,min}\, \mathrm{KL}[q(z), p(z \mid x, \theta^{\mathrm{old}})]}$$