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Today's lecture

@ Neural networks: huge empirical success but poor theoretical understanding
o Key idea: representation learning

o Optimization: backpropagation 4+ SGD
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Feature engineering

@ Many problems are non-linear
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Feature engineering

@ Many problems are non-linear

@ We can express certain non-linear models in a linear form:

fix)=w'd(x). (1)
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Feature engineering

@ Many problems are non-linear

@ We can express certain non-linear models in a linear form:

fix)=w'd(x). (1)

@ Note that this model is not linear in the inputs x — we represent the inputs differently,
and the new representation is amenable to linear modeling
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Feature engineering

@ Many problems are non-linear
@ We can express certain non-linear models in a linear form:
x)=w'd(x).
f T 1

@ Note that this model is not linear in the inputs x — we represent the inputs differently,
and the new representation is amenable to linear modeling

@ For example, we can use a feature map that defines a kernel, e.g., polynomials in x
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Decomposing the problem

o Example: predicting how popular a restaurant is
Raw features #dishes, price, wine option, zip code, #seats, size
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Decomposing the problem

o Example: predicting how popular a restaurant is
Raw features #dishes, price, wine option, zip code, #seats, size

@ Decomposing the problem into subproblems:
o hi([#tdishes, price, wine option]) = food quality
o hy([zip code]) = walkable

o h3([#seats, size]) = noisy
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Decomposing the problem
o Example: predicting how popular a restaurant is
Raw features #dishes, price, wine option, zip code, #seats, size

@ Decomposing the problem into subproblems:
o hi([#tdishes, price, wine option]) = food quality

o hy([zip code]) = walkable

o h3([#seats, size]) = noisy

o Each intermediate models solves one of the subproblems
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Decomposing the problem
o Example: predicting how popular a restaurant is
Raw features #dishes, price, wine option, zip code, #seats, size

@ Decomposing the problem into subproblems:
o hi([#tdishes, price, wine option]) = food quality

o hy([zip code]) = walkable

o h3([#seats, size]) = noisy
o Each intermediate models solves one of the subproblems
@ A final linear predictor uses the intermediate features computed by the h;'s:

ws - food quality + ws - walkable + ws - noisy

Tal Linzen Slides based on Lecture from David DS-GA 1003 April 26, 2022

4/ 45


https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Perceptrons as logical gates

1w,
¢ Suppose that our input features .
indicate light at a two points in /Q—?
space (0 = no light; 1 = light) i > 0
Wa
* How can we build a perceptron _ _ . _
that detects when there is light 1 l2 Wil1+Wal2
in both locations? 0 0 0
0 1 1
wi=1lLw=10=2 1 0 1
1 1 2
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Limitations of a perceptrons as logical gates

« Can we build a perceptron that 1w
fires when the two pixels have
the same value (i1 = i2)?

_ > 07
12 Wa
Positive: (1,1) (0,0
wi+w, =20, 0=0
w, <0, w, <6
Negative: (1, 0) (0, 1)

The positive and negative cases

If @ is negative, the sum of two numbers that cannot be separated by a plane

are both less than @ cannot be greater than 6
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Multilayer perceptron

* Fire when the two pixels have the same value (i1 = i2)

Tal Linzen Slides based on Lecture from David

Hidden layer : Hidden layer
input output
102 h1. h2 hi h2 O
x1i0i{0 0 0 0 1 1
01i0: 1 1 -1 0 0 0
o2:1:i 0 1 -1 0 0 0
xei1:i1 2 -2 1 0 1
(for x1 and x2 the correct output is 1;
for o1 and o2 the correct output is 0)
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Multilayer perceptron

* Recode the input: the hidden layer representations

are now linearly separable

Hidden layer ;: Hidden layer
input output
Original Hidden layer col
inputs output 1. 02.h1 h2 hy h2 O
x1i0{0 0 0 0 1 1
o * X 0 1i1 1.0 0 0
o2i1:0 1 -1 0 0 0
04,0 2 X2 xei1:i1 2 i-2: 1 0 1
Not linearly Linearly separable
separable
DS-GA 1003 April 26, 2022
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Decomposing the problem into predefined subproblems

Input Intermediate

Output
features features P

#dishes —

price — \

food quality
/‘
. — Popularity
/
/. noise

wine option —
zip code —
#seats —

size —
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Learned intermediate features

Input Hidden
layer layer

#dishes —
price —

wine option —

Output
layer

zip code —

#seats —

size —
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Neural networks

Key idea: learn the intermediate features.

Feature engineering Manually specify ¢(x) based on domain knowledge and learn the weights:

F(x)=wd(x). (2)
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Neural networks

Key idea: learn the intermediate features.

Feature engineering Manually specify ¢(x) based on domain knowledge and learn the weights:

Flx) =w' (). (2)

Feature learning Learn both the features (K hidden units) and the weights:
h(x) = [h1(x),..., h (X)], (3)
f(x) =w'h(x) (4)
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Activation function

@ How should we parametrize the h;'s? Can they be linear?
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Activation function

@ How should we parametrize the h;'s? Can they be linear?
hi(x) = o(v;' x). (5)

@ o is a nonlinear activation function
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Activation function

@ How should we parametrize the h;'s? Can they be linear?
hi(x) = o(v;' x). (5)

@ o is a nonlinear activation function

@ Some possible activation functions:
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Activation function

@ How should we parametrize the h;'s? Can they be linear?
hi(x) = o(v;' x). (5)

@ o is a nonlinear activation function

@ Some possible activation functions:
o sign function (as in classic perceptron)? Non-differentiable.
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Activation function

@ How should we parametrize the h;'s? Can they be linear?
hi(x) = o(v;' x). (5)

@ o is a nonlinear activation function

@ Some possible activation functions:
o sign function (as in classic perceptron)? Non-differentiable.

o Differentiable approximations: sigmoid functions.
o E.g., logistic function, hyperbolic tangent function.
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Activation function

@ How should we parametrize the h;'s? Can they be linear?
hi(x) = o(v;' x). (5)

@ o is a nonlinear activation function

@ Some possible activation functions:
o sign function (as in classic perceptron)? Non-differentiable.

o Differentiable approximations: sigmoid functions.
o E.g., logistic function, hyperbolic tangent function.

@ Two-layer neural network (one hidden layer and one output layer) with K hidden units:

Z wihy (x Z wi o (Vg x (6)
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Activation Functions

@ The hyperbolic tangent is a common activation function:

o(x) =tanh(x).

05- Activation_Function

we== Tanh

0.0-

Output

-0.5-

4 2 0 2 4
Input
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Activation Functions

@ More recently, the rectified linear (ReLU) function has been very popular:
o(x) = max(0, x).

o Faster to calculate this function and its derivatives

@ Often more effective in practice
1.00 =
0.75 =

0.50 =

Output o

0.25 -

0.00 -
' ' '
-1.0 -0.5 0.0 0.5 1.0
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Approximation Ability: f(x) = x?

@ 3 hidden units; tanh activation functions

@ Blue dots are training points; dashed lines are hidden unit outputs; final output in red.

From Bishop's Pattern Recognition and Machine Learning, Fig 5.3
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Approximation Ability: f(x) =sin(x)

@ 3 hidden units; logistic activation function

@ Blue dots are training points; dashed lines are hidden unit outputs; final output in red.

From Bishop's Pattern Recognition and Machine Learning, Fig 5.3
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Approximation Ability: f(x) = |x|

@ 3 hidden units; logistic activation functions

@ Blue dots are training points; dashed lines are hidden unit outputs; final output in red.

— T ee

From Bishop's Pattern Recognition and Machine Learning, Fig 5.3
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Universal approximation theorem

Theorem (Universal approximation theorem)

A neural network with one possibly huge hidden layer F(x) can approximate any continuous
function F(x) on a closed and bounded subset of R? under mild assumptions on the activation
function, i.e. Ve > 0, there exists an integer N s.t.

N
F(x)= Z wio(v;" x+ b;) (7)
i=1
satisfies |F(x) — F(x)| < €.
DS-GA 1003
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Universal approximation theorem

@ For the theorem to work, the number of hidden units needs to be exponential in d
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Universal approximation theorem

@ For the theorem to work, the number of hidden units needs to be exponential in d

@ The theorem doesn’t tell us how to find the parameters of this network
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Universal approximation theorem

@ For the theorem to work, the number of hidden units needs to be exponential in d
@ The theorem doesn’t tell us how to find the parameters of this network

o It doesn’t explain why practical neural networks work, or tell us how to build them
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Deep neural networks

e Wider: more hidden units (as in the approximation theorem).

@ Deeper: more hidden layers.

Input Hidden Output
layer layers layer

\‘\

X1 —

X2 — ’
o T~
. .—>‘H score
‘ /
Xd—1 — .
‘/?
Xd — /
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Multilayer Perceptron (MLP): formal definition

Input space: X =RY Action space A = R¥ (for k-class classification).

Let 0: R — R be an activation function (e.g. tanh or ReLU).

o Let's consider an MLP of L hidden layers, each having m hidden units.
o First hidden layer is given by
A (x)=0¢ (W(l)x+ b(l)) ,
for parameters W) € R™*9 and b € R™, and where o (-) is applied to each entry of its

argument.
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Multilayer Perceptron (MLP): formal definition

@ Each subsequent hidden layer takes the output o € R™ of previous layer and produces
Bl (0l )) =0 (WW ol 4 b)), for j=2,....1L

where WU) ¢ Rm>xm pl) ¢ RM
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Multilayer Perceptron (MLP): formal definition
@ Each subsequent hidden layer takes the output o € R™ of previous layer and produces
Bl (0l )) =0 (WW ol 4 b)), for j=2,....1L
where WU) ¢ Rm>xm pl) ¢ RM
o Last layer is an affine mapping (no activation function):

a(o'L)) = WL (L) 4 plLt1),

where W(L+H1) ¢ Rkxm gpd p(L+1) ¢ Rk,
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Multilayer Perceptron (MLP): formal definition

@ Each subsequent hidden layer takes the output o € R™ of previous layer and produces
Bl (0l )) =0 (WW ol 4 b)), for j=2,....1L
where WU) ¢ Rm>xm pl) ¢ RM
o Last layer is an affine mapping (no activation function):
a(O(L]) — W(L+1)O(L) _’_b(L+1)’
where W(L+1) € RkXm and plL+1) ¢ Rk,
@ The full neural network function is given by the composition of layers:

f(x) = <aoh<L> o...ohm) (x) (8)
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Multilayer Perceptron (MLP): formal definition

@ Each subsequent hidden layer takes the output o € R™ of previous layer and produces
Bl (0l )) =0 (WW ol 4 b)), for j=2,....1L
where WU) ¢ Rm>xm pl) ¢ RM
o Last layer is an affine mapping (no activation function):
a(olL)y = WL (L) 4 p(L+1)
where W(L+1) € RkXm and plL+1) ¢ Rk,
@ The full neural network function is given by the composition of layers:
f(x) = <aoh<L> o...ohm) (x) (8)

o Typically, the last layer gives us a score. How do we perform classification?
DS-GA 1003 April 26, 2022 22 / 45
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What did we do in multinomial logistic regression?

@ From each x, we compute a linear score function for each class:
k
x = ((wy,x), ..., (w,)) ER

@ We need to map this R¥ vector into a probability vector 6.

Tal Linzen Slides based on Lecture from David DS-GA 1003 April 26, 2022 23 / 45


https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

What did we do in multinomial logistic regression?

@ From each x, we compute a linear score function for each class:
x = ((wg,x), ..., (wg,)) € R¥
@ We need to map this R¥ vector into a probability vector 6.

@ The softmax function maps scores s = (sy,...,sc) € R to a categorical distribution:

exp (s1) exp (k) )
L expl(s) S expl(s)

(51,...,5;()»—>6:SOthax(sl,...,sk):(Z
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Nonlinear Generalization of Multinomial Logistic Regression

@ From each x, we compute a non-linear score function for each class:
x = (f(x),..., fi(x)) € R¥
where f;'s are the outputs of the last hidden layer of a neural network.

@ Learning: Maximize the log-likelihood of training data

a;g m?xZ log [Softmax (A(x),..., fk(X))y,
]
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Interim discussion

@ With the right representations, we can turn nonlinear problems into linear ones

@ The goal of represenation learning is to automatically discover useful features from raw
data

@ Building blocks:

Input layer no learnable parameters
Hidden layer(s) affine + nonlinear activation function
Output layer affine (+ softmax)

@ A single, potentially huge hidden layer is sufficient to approximate any function

@ In practice, it is often helpful to have multiple hidden layers
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Fitting the parameters of an MLP

@ Input space: X =R
e Action Space / Output space: A=Y =R
@ Hypothesis space: MLPs with a single 3-node hidden layer:
f(x) = wo+wrh1(x) +waha(x) + wshz(x),

where
hi(x) =o(vix+b;) for i =1,2,3,

for some fixed activation function o: R — R.

@ What are the parameters we need to fit?
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Fitting the parameters of an MLP

@ Input space: X =R
e Action Space / Output space: A=Y =R
@ Hypothesis space: MLPs with a single 3-node hidden layer:
f(x) = wo+wrh1(x) +waha(x) + wshz(x),

where
hi(x) =o(vix+b;) for i =1,2,3,

for some fixed activation function o: R — R.

@ What are the parameters we need to fit?

b1, by, b3, v1,v2, v3, wo, wi, wp, w3 € R
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Finding the best hypothesis

@ As usual, we choose our prediction function using empirical risk minimization.
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Finding the best hypothesis

@ As usual, we choose our prediction function using empirical risk minimization.
@ Our hypothesis space is parameterized by

0= (bl, b2, b3, Vi, V2, V3, Wp, Wi, W, W3) €O = Rlo

Tal Linzen Slides based on Lecture from David DS-GA 1003 April 26, 2022 27 / 45


https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Finding the best hypothesis

@ As usual, we choose our prediction function using empirical risk minimization.
@ Our hypothesis space is parameterized by
0= (bl, by, b3, vi, vo, v3, Wy, Wy, Wo, W3) €0 = Rlo

@ For a training set (x1,y1),...,(xn, yn), our goal is to find
n

~ 1
0 :argmian(f(Xi;e)—)/i)?
eerw M=y
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How do we learn these parameters?

@ For a training set (x1,y1),...,(xn, yn), our goal is to find

A 1 <
0 :argmian(f(x,-;G)—y,-)?
gcR10 N i
@ We can use gradient descent

o Is f differentiable w.r.t. 87 f(x) = Wo—I—Z?:l w;tanh(v;x + b;).
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How do we learn these parameters?

@ For a training set (x1,y1),...,(xn, yn), our goal is to find
1 n
0 :argmian(f(x,-;G)—y,-)?
0cR10 n i
@ We can use gradient descent

o Is f differentiable w.r.t. 87 f(x) = Wo—I—Z?:l w;tanh(v;x + b;).

@ Is the loss convex in 07
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How do we learn these parameters?

@ For a training set (x1,y1),...,(xn, yn), our goal is to find
n

~ 1
0 :argmian(f(x,-;G)—y,-)?

0cR10 ni:1
@ We can use gradient descent
o Is f differentiable w.r.t. 87 f(x) = Wo—I—Z?:l w;tanh(v;x + b;).

@ Is the loss convex in 67
e tanh is not convex
o Regardless of nonlinearity, the composition of convex functions is not necessarily

convex

o We might converge to a local minimum.
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Gradient descent for (large) neural networks

e Mathematically, it's just partial derivatives, which you can compute by hand using the
chain rule

o In practice, this could be time-consuming and error-prone
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Gradient descent for (large) neural networks

e Mathematically, it's just partial derivatives, which you can compute by hand using the
chain rule

o In practice, this could be time-consuming and error-prone

e Back-propagation computes gradients for neural networks (and other models) in a
systematic and efficient way
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Gradient descent for (large) neural networks

e Mathematically, it's just partial derivatives, which you can compute by hand using the
chain rule
o In practice, this could be time-consuming and error-prone

e Back-propagation computes gradients for neural networks (and other models) in a
systematic and efficient way

@ We can visualize the process using computation graphs, which expose the structure of the
computation (modularity and dependency)
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Functions as nodes in a graph

@ We represent each component of the network as a node that takes in a set of inputs and
produces a set of outputs.

o Example: g:RP — R".

@ Typical computation graph:

a L
R R"
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Functions as nodes in a graph

@ We represent each component of the network as a node that takes in a set of inputs and

produces a set of outputs.

o Example: g:RP — R".

@ Typical computation graph:

a L
R R"

Tal Linzen Slides based on Lecture from David

@ Broken down by component:

a y b'
a
a
| >
i b,
AT L
n
AE Kf L, < (K
DS-GA 1003 April 26, 2022 30 / 45


https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Partial derivatives of an affine function

@ Define the affine function g(x) = Mx+c, for M € R"*P and c € R.

a, b

a

: %

a b
Lt l__liw
ae LeR
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Partial derivatives of an affine function

@ Define the affine function g(x) = Mx+c, for M € R"*P and c € R.

o Let b=g(a) = Ma+c. What is b;?

a, b

a

: %

a b
Lt l__liw
ae LeR
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Partial derivatives of an affine function

@ Define the affine function g(x) = Mx+c, for M € R"*P and c € R.

o Let b=g(a) = Ma+c. What is b;?

aq !9, @ b; depends on the ith row of M:
a, b ,
, 2
N b,' = ZI\/I,-kak—i-c,-.
. N =
n
i3 iy
ae Lek
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Partial derivatives of an affine function

@ Define the affine function g(x) = Mx+c, for M € R"*P and c € R.

o Let b=g(a) = Ma+c. What is b;?

aq !9, @ b; depends on the ith row of M:
a, b ,
, 2
N b,' = ZI\/I,-kak—i-c,-.
. b =
P n
L L__I“ o If aj < a;j+ 9, what is b;?
ae Lek

b; + b; + M,'jé.

Tal Linzen Slides based on Lecture from David DS-GA 1003 April 26, 2022

31 /45


https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Partial derivatives of an affine function

@ Define the affine function g(x) = Mx+c, for M € R"*P and c € R.

o Let b=g(a) = Ma+c. What is b;?

aq b, @ b; depends on the ith row of M:
a, b ,
, 2
N b,' = ZI\/I,-kak—i-c,-.
. b, =
F
L——‘f L—J " o If aj < a;j+ 9, what is b;?
ae Lek

b; + b; + M,'jé.

The partial derivative/gradient measures sensitivity: If we perturb an input a little bit, how

much does the output change?
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Partial derivatives in general

e Consider a function g:RP — R".

o Partial derivative g[a": is the rate of change
J

a, b‘ of b; as we change a;
az b o If we change a; slightly to
‘ 2
' B aj+9o,
a
P mn @ Then (for small ), b; changes to
L——‘f L_‘J n approximately
ae Lek
ob;
bj+ —29.
aaj
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Composing multiple functions
@ We have g:R? - R" and f:R" — R™
e b=g(a), c=f(b).

@ How does a small change in a; affect ¢;?

b,

a, A . <
OGBS
.. .
a

3 LJ
L . —.
ack’ bel cek
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Composing multiple functions
@ We have g:R? - R" and f:R" — R™
e b=g(a), c=f(b).
@ How does a small change in a; affect ¢;?

@ Visualizing the chain rule:

b, o We sum changes induced on all paths
<, from a; to ¢;.

’ \ g c
a; 6’3 :Z o The change contributed by each path

c. is the product of changes on each
ag L L edge along the path.
n€ K? bel <<t
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Composing multiple functions
@ We have g:R? - R" and f:R" — R™

e b=g(a), c=f(b).

@ How does a small change in a; affect ¢;?

@ Visualizing the chain rule:

b, o We sum changes induced on all paths
G A ] < from a; to ¢;.
‘ <,
“; g’e : o The change contributed by each path
. c. is the product of changes on each
a edge along the path.
P 1 ) 2o g g p
ae Kf belk < n
aC,' o aC,' abk
aaj —1 abk aaj
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Example: Linear least squares

e Hypothesis space {f(x) =w'x+b|weR? beR}.
o Data set (x1,y1),...,(xn yn) € R xR.

@ Define )
¢i(w,b) = [(WTX,-—i-b) —y,-]
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Example: Linear least squares

e Hypothesis space {f(x) =w'x+b|weR? beR}.

o Data set (x1,y1),...,(xn yn) € R xR.

@ Define )
¢i(w,b) = [(WTX,-—i-b) —y,-] )
@ In SGD, in each round we choose a random training instance i € 1,...,n and take a
gradient step
0l;(w, b) ,
wi +— wi—n————, forj=1,...,d
J J aVVJ
0l;(w, b)
b b—nN—m—
— "5

for some step size n > 0.

@ How do we calculate these partial derivatives on a computation graph?
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Computation graph and intermediate variables

@ For a training point (x,y), the loss is

Uw, b) = [(WTX—i—b) —y]z.
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Computation graph and intermediate variables

@ For a training point (x,y), the loss is

Uw, b) = [(WTX—i—b) —y]z.

@ Let's break this down into intermediate computations:

(prediction) y w;x;j+ b

HI\/IQ
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Computation graph and intermediate variables

@ For a training point (x,y), the loss is

Uw, b) = [(WTX—i—b) —y]z.

@ Let's break this down into intermediate computations:

d
(prediction) y = ZWJ-Xj—i-b

j=1

y—

(residual) r = y
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Computation graph and intermediate variables

@ For a training point (x,y), the loss is

Uw, b) = [(WTX—i—b) —y]z.

@ Let's break this down into intermediate computations:

Me

(prediction) y = w;x;j+ b
j=1
(residual) r = y—yp
(loss) ¢ = r?
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Computation graph and intermediate variables

@ For a training point (x,y), the loss is

Uw, b) = [(WTX—i—b) —y]z.

@ Let's break this down into intermediate computations:

/P“famckﬁf Taw\w[ﬂ 0b‘]f(i‘\/£
J w
(prediction) y = ZWJ-Xj—i-b
b XT)-4-¢ D @
(residual) r = y—yp
(loss) ¢ = r? *

_rfﬂ'ml‘a- Exarv\f]a
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Partial derivatives on computation graph

o We'll work our way from the output £ back to the parameters w and b, reusing previous
computations as much as possible:

W R /Q
b — L9490
"2

N
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Partial derivatives on computation graph

o We'll work our way from the output £ back to the parameters w and b, reusing previous
computations as much as possible:

oL
or

W R /Q
b — L9490
"2

N
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Partial derivatives on computation graph

o We'll work our way from the output £ back to the parameters w and b, reusing previous
computations as much as possible:

o{
w d
L A”K aa;r:

"2
3
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Partial derivatives on computation graph

o We'll work our way from the output £ back to the parameters w and b, reusing previous
computations as much as possible:

o¢
W — = 2r
A v K ar
b o) (55 e ot _ % (1= —2r
oy or oy
¥ a
N b
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Partial derivatives on computation graph

o We'll work our way from the output £ back to the parameters w and b, reusing previous

computations as much as possible:

ol

w 2
Y4005 b
§'A ol
3 ab

ol

ow;
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Partial derivatives on computation graph

o We'll work our way from the output £ back to the parameters w and b, reusing previous
computations as much as possible:

o¢
W — = 2r
A v K or
b o) (55 e ot _ % (1= —2r
oy or oy
B'A o¢ ol oy
— = ——==(=2r)(1)=-2
N b oo~ (2=
o¢ ol oy
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Example: Ridge Regression

@ For training point (x, y), the {>-regularized objective function is
J(w,b) = [(wTx+b)—y]* +AwTw.

@ Let's break this down into some intermediate computations:

Me

(prediction) y = wjxj+ b
j=1
(residual) r = y—y
(loss) ¢ = r?
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Example: Ridge Regression

@ For training point (x, y), the {>-regularized objective function is
J(w,b) = [(wTx+b)—y]* +AwTw.

@ Let's break this down into some intermediate computations:

d
(prediction) y = Z wjxj+ b
j=1
(residual) r = y—y
(loss) ¢ = r?
(regularization) R = Aw'w

(objective) J = {+R
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Example: Ridge Regression

@ For training point (x, y), the {>-regularized objective function is

J(w,b) = [(wTx+b)—y]* +AwTw.

@ Let's break this down into some intermediate computations:

A

(prediction) y =

(residual) r =

(loss) ¢

(regularization) R
(objective) J = {+R

DS-GA 1003 April 26, 2022 37 / 45
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Partial Derivatives on Computation Graph

o We'll work our way from graph output £ back to the parameters w and b:

oJ

(Bvamefers &
y oJ

v 9J
Tminir\a Ex?qr)¢ anb

dw;
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Backpropagation: Overview

@ Learning: run gradient descent to find the parameters that minimize our objective J.

@ Backpropagation: we compute the gradient w.r.t. each (trainable) parameter %.

Forward pass Compute intermediate function
values, i.e. output of each node

Backward pass Compute the partial derivative of J
w.r.t. all intermediate variables and
the model parameters

(Bvame*'evs

How do we minimize computation?

Trainin ¥ Ex ;?quz
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Backpropagation: Overview

@ Learning: run gradient descent to find the parameters that minimize our objective J.

@ Backpropagation: we compute the gradient w.r.t. each (trainable) parameter %.

Forward pass Compute intermediate function
values, i.e. output of each node

Backward pass Compute the partial derivative of J
w.r.t. all intermediate variables and
the model parameters

(Bvame*'evs

How do we minimize computation?
@ Path sharing: each node caches intermediate
results: we don't need to compute them over
and over again

Trainin ¥ Ex ;?quz

@ An example of dynamic programming
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Forward pass

@ Order nodes by topological sort (every node appears before its children)
@ For each node, compute the output given the input (output of its parents).

e Forward at intermediate node f; and f;:

a ’C b=fa) c=5b)
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Backward pass

@ Order nodes in reverse topological order (every node appears after its children)

@ For each node, compute the partial derivative of its output w.r.t. its input, multiplied by
the partial derivative of its children (chain rule)

@ Backward pass at intermediate node f;:

—_— —
. — o..0b _ 0J . 9oJ
& =8 3.~ 2a & = 3b
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Multiple children

@ First sum partial derivatives from all children, then multiply.
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Multiple children

@ First sum partial derivatives from all children, then multiply.

e Backprop for node f:

6J 9J
o Input: 3,5 ' 3

(Partlals W.r. t mputs to all children)

k=1
T VLT
da  0b0a
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Non-convex optimization

@ Left: convex loss function. Right: non-convex loss function.
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Non-convex optimization: challenges

e What if we converge to a bad local minimum?
e Rerun with a different initialization

o Hit a saddle point
o Doesn't often happen with SGD
o Second partial derivative test

o Flat region: low gradient magnitude
o Possible solution: use ReLU instead of sigmoid

@ High curvature: large gradient magnitude

o Possible solutions: Gradient clipping, adaptive
step sizes

Reference: Chris De Sa’s slides (CS6787 Lecture 7).
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Review

@ Backpropagation is an algorithm for computing the gradient (partial derivatives + chain
rule) efficiently

@ It is used in gradient descent optimization for neural networks
o Key idea: function composition and dynamic programming

@ In practice, we can use existing software packages, e.g. PyTorch (backpropagation, neural
network building blocks, optimization algorithms etc.)
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