Feature learning, neural networks and backpropagation

Tal Linzen Slides based on Lecture 12a from David Rosenberg's course materials (https://github.com/davidrosenberg/mlcourse)

CDS, NYU

April 26, 2022

- Neural networks: huge empirical success but poor theoretical understanding
- Key idea: representation learning
- Optimization: backpropagation + SGD

Feature engineering

• Many problems are non-linear

- Many problems are non-linear
- We can express certain non-linear models in a linear form:

$$f(x) = w^{T} \phi(x).$$
(1)

- Many problems are non-linear
- We can express certain non-linear models in a linear form:

$$f(x) = w^{T} \phi(x). \tag{1}$$

• Note that this model is not linear in the inputs x — we represent the inputs differently, and the new representation is amenable to linear modeling

- Many problems are non-linear
- We can express certain non-linear models in a linear form:

$$f(x) = w^{T} \phi(x). \tag{1}$$

- Note that this model is not linear in the inputs x we represent the inputs differently, and the new representation is amenable to linear modeling
- For example, we can use a feature map that defines a kernel, e.g., polynomials in x

• Example: predicting how popular a restaurant is Raw features #dishes, price, wine option, zip code, #seats, size

- Example: predicting how popular a restaurant is Raw features #dishes, price, wine option, zip code, #seats, size
- Decomposing the problem into subproblems:
 - $h_1([\#dishes, price, wine option]) = food quality$
 - *h*₂([zip code]) = walkable
 - $h_3([\#seats, size]) = noisy$

- Example: predicting how popular a restaurant is Raw features #dishes, price, wine option, zip code, #seats, size
- Decomposing the problem into subproblems:
 - $h_1([\#dishes, price, wine option]) = food quality$
 - *h*₂([zip code]) = walkable
 - *h*₃([#seats, size]) = noisy
- Each intermediate models solves one of the subproblems

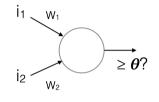
- Example: predicting how popular a restaurant is Raw features #dishes, price, wine option, zip code, #seats, size
- Decomposing the problem into subproblems:
 - $h_1([\#dishes, price, wine option]) = food quality$
 - *h*₂([zip code]) = walkable
 - $h_3([\#seats, size]) = noisy$
- Each intermediate models solves one of the subproblems
- A final *linear* predictor uses the **intermediate features** computed by the h_i 's:

```
w_1 \cdot \text{food quality} + w_2 \cdot \text{walkable} + w_3 \cdot \text{noisy}
```

Perceptrons as logical gates

- Suppose that our input features indicate light at a two points in space (0 = no light; 1 = light)
- How can we build a perceptron that detects when there is light in both locations?

$$w_1 = 1, w_2 = 1, \theta = 2$$



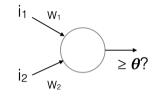
İ1	i2 W1i1+W2i2	
0	0	0
0	1	1
1	0	1
1	1	2

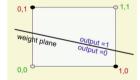
Limitations of a perceptrons as logical gates

 Can we build a perceptron that fires when the two pixels have the same value (i₁ = i₂)?

Positive: (1, 1) (0, 0) $w_1 + w_2 \ge \theta, \quad 0 \ge \theta$ $w_1 < \theta, \quad w_2 < \theta$ Negative: (1, 0) (0, 1)

If θ is negative, the sum of two numbers that are both less than θ cannot be greater than θ

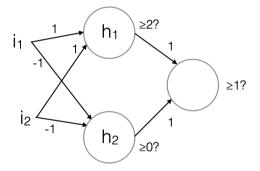


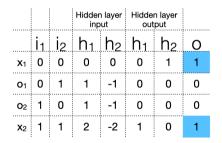


The positive and negative cases cannot be separated by a plane

Multilayer perceptron

• Fire when the two pixels have the same value $(i_1 = i_2)$

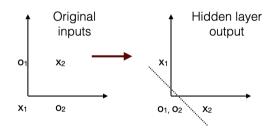




(for x_1 and x_2 the correct output is 1; for o_1 and o_2 the correct output is 0)

Multilayer perceptron

• Recode the input: the hidden layer representations are now linearly separable



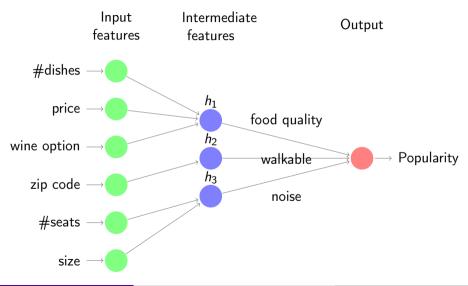
			input		output		
	i1	i2	h1	h ₂	h1	h ₂	0
X 1	0	0	0	0	0	1	1
O 1	0	1	1	-1	0	0	0
O 2	1	0	1	-1	0	0	0
X 2	1	1	2	-2	1	0	1

Liddon lavor Hiddon lavor

Not linearly separable

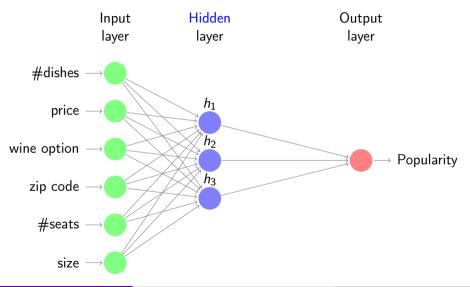
Linearly separable

Decomposing the problem into predefined subproblems



Tal Linzen Slides based on Lecture 12a from David

Learned intermediate features



Tal Linzen Slides based on Lecture 12a from David

Neural networks

Key idea: learn the intermediate features.

Feature engineering Manually specify $\phi(x)$ based on domain knowledge and learn the weights:

$$f(x) = \mathbf{w}^T \Phi(x). \tag{2}$$

Neural networks

Key idea: learn the intermediate features.

Feature engineering Manually specify $\phi(x)$ based on domain knowledge and learn the weights:

$$f(x) = \mathbf{w}^T \Phi(x). \tag{2}$$

Feature learning Learn both the features (K hidden units) and the weights:

$$h(x) = [\underline{h_1}(x), \dots, \underline{h_K}(x)], \qquad (3)$$

$$f(x) = \mathbf{w}^{\mathsf{T}} h(x) \tag{4}$$

• How should we parametrize the h_i 's? Can they be linear?

$$h_i(x) = \sigma(v_i^T x).$$
(5)

• σ is a nonlinear activation function

$$h_i(x) = \sigma(v_i^T x). \tag{5}$$

- $\bullet~\sigma$ is a nonlinear activation function
- Some possible activation functions:

$$h_i(x) = \sigma(v_i^T x).$$
(5)

- $\bullet~\sigma$ is a nonlinear activation function
- Some possible activation functions:
 - sign function (as in classic perceptron)? Non-differentiable.

$$h_i(x) = \sigma(v_i^T x).$$
(5)

- σ is a nonlinear activation function
- Some possible activation functions:
 - sign function (as in classic perceptron)? Non-differentiable.
 - Differentiable approximations: sigmoid functions.
 - E.g., logistic function, hyperbolic tangent function.

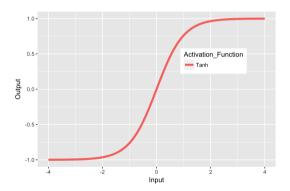
$$h_i(x) = \sigma(v_i^T x).$$
(5)

- $\bullet~\sigma$ is a nonlinear activation function
- Some possible activation functions:
 - sign function (as in classic perceptron)? Non-differentiable.
 - Differentiable approximations: sigmoid functions.
 - E.g., logistic function, hyperbolic tangent function.
- Two-layer neural network (one hidden layer and one output layer) with K hidden units:

$$f(x) = \sum_{k=1}^{K} w_k h_k(x) = \sum_{k=1}^{K} w_k \sigma(v_k^T x)$$
(6)

• The hyperbolic tangent is a common activation function:

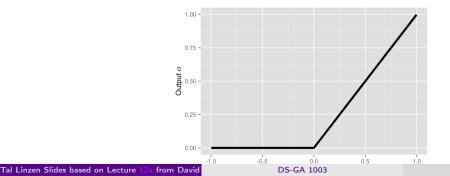
 $\sigma(x) = \tanh(x).$



• More recently, the rectified linear (ReLU) function has been very popular:

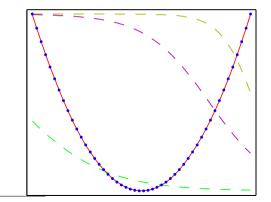
 $\sigma(x) = \max(0, x).$

- Faster to calculate this function and its derivatives
- Often more effective in practice



Approximation Ability: $f(x) = x^2$

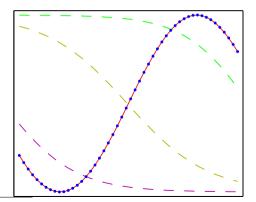
- 3 hidden units; tanh activation functions
- Blue dots are training points; dashed lines are hidden unit outputs; final output in red.



From Bishop's Pattern Recognition and Machine Learning, Fig 5.3

Approximation Ability: f(x) = sin(x)

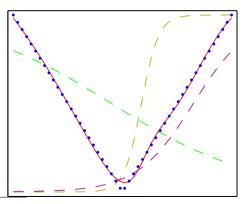
- 3 hidden units; logistic activation function
- Blue dots are training points; dashed lines are hidden unit outputs; final output in red.



From Bishop's Pattern Recognition and Machine Learning, Fig 5.3

Approximation Ability: f(x) = |x|

- 3 hidden units; logistic activation functions
- Blue dots are training points; dashed lines are hidden unit outputs; final output in red.



From Bishop's Pattern Recognition and Machine Learning, Fig 5.3

Theorem (Universal approximation theorem)

A neural network with one possibly huge hidden layer $\hat{F}(x)$ can approximate any continuous function F(x) on a closed and bounded subset of \mathbb{R}^d under mild assumptions on the activation function, i.e. $\forall \epsilon > 0$, there exists an integer N s.t.

$$\hat{F}(x) = \sum_{i=1}^{N} w_i \sigma(v_i^T x + b_i)$$
(7)

satisfies $|\hat{F}(x) - F(x)| < \epsilon$.

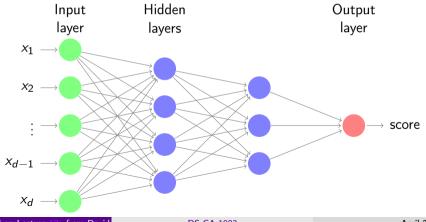
• For the theorem to work, the number of hidden units needs to be exponential in d

- For the theorem to work, the number of hidden units needs to be exponential in d
- The theorem doesn't tell us how to find the parameters of this network

- For the theorem to work, the number of hidden units needs to be exponential in d
- The theorem doesn't tell us how to find the parameters of this network
- It doesn't explain why practical neural networks work, or tell us how to build them

Deep neural networks

- Wider: more hidden units (as in the approximation theorem).
- Deeper: more hidden layers.



Tal Linzen Slides based on Lecture 12a from David

Multilayer Perceptron (MLP): formal definition

- Input space: $\mathfrak{X} = \mathbb{R}^d$ Action space $\mathcal{A} = \mathbb{R}^k$ (for k-class classification).
- Let $\sigma : \mathbf{R} \to \mathbf{R}$ be an activation function (e.g. tanh or ReLU).
- Let's consider an MLP of L hidden layers, each having m hidden units.
- First hidden layer is given by

$$h^{(1)}(x) = \sigma\left(W^{(1)}x + b^{(1)}\right),$$

for parameters $W^{(1)} \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$, and where $\sigma(\cdot)$ is applied to each entry of its argument.

Multilayer Perceptron (MLP): formal definition

• Each subsequent hidden layer takes the *output* $o \in \mathbf{R}^m$ of previous layer and produces

$$h^{(j)}(o^{(j-1)}) = \sigma\left(W^{(j)}o^{(j-1)} + b^{(j)}\right)$$
, for $j = 2, ..., L$

where $W^{(j)} \in \mathbb{R}^{m \times m}$, $b^{(j)} \in \mathbb{R}^m$.

Multilayer Perceptron (MLP): formal definition

• Each subsequent hidden layer takes the *output* $o \in \mathbf{R}^m$ of previous layer and produces

$$h^{(j)}(o^{(j-1)}) = \sigma\left(W^{(j)}o^{(j-1)} + b^{(j)}\right)$$
, for $j = 2, ..., L$

where $W^{(j)} \in \mathbb{R}^{m \times m}$, $b^{(j)} \in \mathbb{R}^m$.

• Last layer is an *affine* mapping (no activation function):

$$a(o^{(L)}) = W^{(L+1)}o^{(L)} + b^{(L+1)},$$

where $W^{(L+1)} \in \mathbb{R}^{k \times m}$ and $b^{(L+1)} \in \mathbb{R}^k$.

Multilayer Perceptron (MLP): formal definition

• Each subsequent hidden layer takes the *output* $o \in \mathbf{R}^m$ of previous layer and produces

$$h^{(j)}(o^{(j-1)}) = \sigma\left(W^{(j)}o^{(j-1)} + b^{(j)}\right)$$
, for $j = 2, ..., L$

where $W^{(j)} \in \mathbb{R}^{m \times m}$, $b^{(j)} \in \mathbb{R}^m$.

• Last layer is an *affine* mapping (no activation function):

$$a(o^{(L)}) = W^{(L+1)}o^{(L)} + b^{(L+1)},$$

where $W^{(L+1)} \in \mathbb{R}^{k \times m}$ and $b^{(L+1)} \in \mathbb{R}^k$.

• The full neural network function is given by the *composition* of layers:

$$f(x) = \left(a \circ h^{(L)} \circ \dots \circ h^{(1)}\right)(x) \tag{8}$$

Multilayer Perceptron (MLP): formal definition

• Each subsequent hidden layer takes the *output* $o \in \mathbf{R}^m$ of previous layer and produces

$$h^{(j)}(o^{(j-1)}) = \sigma\left(W^{(j)}o^{(j-1)} + b^{(j)}\right)$$
, for $j = 2, ..., L$

where $W^{(j)} \in \mathbb{R}^{m \times m}$, $b^{(j)} \in \mathbb{R}^m$.

• Last layer is an *affine* mapping (no activation function):

$$a(o^{(L)}) = W^{(L+1)}o^{(L)} + b^{(L+1)},$$

where $W^{(L+1)} \in \mathbb{R}^{k \times m}$ and $b^{(L+1)} \in \mathbb{R}^k$.

• The full neural network function is given by the *composition* of layers:

$$f(x) = \left(a \circ h^{(L)} \circ \dots \circ h^{(1)}\right)(x) \tag{8}$$

• Typically, the last layer gives us a score. How do we perform classification?

What did we do in multinomial logistic regression?

• From each x, we compute a linear score function for each class:

$$x\mapsto (\langle w_1,x
angle$$
,..., $\langle w_k,
angle)\in \mathsf{R}^k$

• We need to map this \mathbf{R}^k vector into a probability vector $\boldsymbol{\theta}$.

What did we do in multinomial logistic regression?

• From each x, we compute a linear score function for each class:

$$x\mapsto (\langle w_1,x\rangle,\ldots,\langle w_k,\rangle)\in\mathsf{R}^k$$

- We need to map this \mathbf{R}^k vector into a probability vector $\boldsymbol{\theta}$.
- The softmax function maps scores $s = (s_1, ..., s_k) \in \mathbb{R}^k$ to a categorical distribution:

$$(s_1, \dots, s_k) \mapsto \theta = \operatorname{Softmax}(s_1, \dots, s_k) = \left(\frac{\exp(s_1)}{\sum_{i=1}^k \exp(s_i)}, \dots, \frac{\exp(s_k)}{\sum_{i=1}^k \exp(s_i)}\right)$$

Nonlinear Generalization of Multinomial Logistic Regression

• From each x, we compute a non-linear score function for each class:

$$x \mapsto (f_1(x), \ldots, f_k(x)) \in \mathbf{R}^k$$

where f_i 's are the outputs of the last hidden layer of a neural network.

• Learning: Maximize the log-likelihood of training data

$$\underset{f_1,\ldots,f_k}{\operatorname{arg\,max}} \sum_{i=1}^n \log \left[\operatorname{Softmax} \left(f_1(x),\ldots,f_k(x) \right)_{y_i} \right].$$

Interim discussion

- With the right representations, we can turn nonlinear problems into linear ones
- The goal of represenation learning is to automatically discover useful features from raw data
- Building blocks:

Input layer no learnable parameters Hidden layer(s) affine + *nonlinear* activation function Output layer affine (+ softmax)

- A single, potentially huge hidden layer is sufficient to approximate any function
- In practice, it is often helpful to have multiple hidden layers

Fitting the parameters of an MLP

- Input space: $\mathfrak{X} = \mathbf{R}$
- Action Space / Output space: $\mathcal{A} = \mathcal{Y} = \mathbf{R}$
- Hypothesis space: MLPs with a single 3-node hidden layer:

$$f(x) = w_0 + w_1 h_1(x) + w_2 h_2(x) + w_3 h_3(x),$$

where

$$h_i(x) = \sigma(v_i x + b_i)$$
 for $i = 1, 2, 3$,

for some fixed activation function $\sigma : \mathbf{R} \to \mathbf{R}$.

• What are the parameters we need to fit?

Fitting the parameters of an MLP

- Input space: $\mathcal{X} = \mathbf{R}$
- Action Space / Output space: $\mathcal{A} = \mathcal{Y} = \mathbf{R}$
- Hypothesis space: MLPs with a single 3-node hidden layer:

$$f(x) = w_0 + w_1 h_1(x) + w_2 h_2(x) + w_3 h_3(x),$$

where

$$h_i(x) = \sigma(v_i x + b_i)$$
 for $i = 1, 2, 3$,

for some fixed activation function $\sigma : \mathbf{R} \to \mathbf{R}$.

• What are the parameters we need to fit?

$$b_1, b_2, b_3, v_1, v_2, v_3, w_0, w_1, w_2, w_3 \in \mathbf{R}$$

Finding the best hypothesis

• As usual, we choose our prediction function using empirical risk minimization.

Finding the best hypothesis

- As usual, we choose our prediction function using empirical risk minimization.
- Our hypothesis space is parameterized by

$$heta=(b_1,b_2,b_3,v_1,v_2,v_3,w_0,w_1,w_2,w_3)\in\Theta={\sf R}^{10}$$

Finding the best hypothesis

- As usual, we choose our prediction function using empirical risk minimization.
- Our hypothesis space is parameterized by

$$heta=({\it b_1},{\it b_2},{\it b_3},{\it v_1},{\it v_2},{\it v_3},{\it w_0},{\it w_1},{\it w_2},{\it w_3})\in\Theta={\sf R}^{10}$$

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta \in \mathbf{R}^{10}} \frac{1}{n} \sum_{i=1}^{n} \left(f(x_i; \theta) - y_i \right)^2.$$

How do we learn these parameters?

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta \in \mathsf{R}^{10}} \frac{1}{n} \sum_{i=1}^{n} \left(f(x_i; \theta) - y_i \right)^2.$$

- We can use gradient descent
- Is f differentiable w.r.t. θ ? $f(x) = w_0 + \sum_{i=1}^3 w_i \tanh(v_i x + b_i)$.

How do we learn these parameters?

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta \in \mathsf{R}^{10}} \frac{1}{n} \sum_{i=1}^{n} \left(f(x_i; \theta) - y_i \right)^2.$$

- We can use gradient descent
- Is f differentiable w.r.t. θ ? $f(x) = w_0 + \sum_{i=1}^3 w_i \tanh(v_i x + b_i)$.
- Is the loss convex in θ ?

How do we learn these parameters?

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta \in \mathbf{R}^{10}} \frac{1}{n} \sum_{i=1}^{n} \left(f(x_i; \theta) - y_i \right)^2.$$

- We can use gradient descent
- Is f differentiable w.r.t. θ ? $f(x) = w_0 + \sum_{i=1}^3 w_i \tanh(v_i x + b_i)$.
- Is the loss convex in θ ?
 - tanh is not convex
 - Regardless of nonlinearity, the composition of convex functions is not necessarily convex
- We might converge to a local minimum.

Gradient descent for (large) neural networks

- Mathematically, it's just *partial derivatives*, which you can compute by hand using the *chain rule*
 - In practice, this could be time-consuming and error-prone

Gradient descent for (large) neural networks

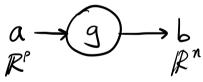
- Mathematically, it's just *partial derivatives*, which you can compute by hand using the *chain rule*
 - In practice, this could be time-consuming and error-prone
- Back-propagation computes gradients for neural networks (and other models) in a systematic and efficient way

Gradient descent for (large) neural networks

- Mathematically, it's just *partial derivatives*, which you can compute by hand using the *chain rule*
 - In practice, this could be time-consuming and error-prone
- Back-propagation computes gradients for neural networks (and other models) in a systematic and efficient way
- We can visualize the process using *computation graphs*, which expose the structure of the computation (modularity and dependency)

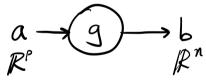
Functions as nodes in a graph

- We represent each component of the network as a *node* that takes in a set of *inputs* and produces a set of *outputs*.
- Example: $g: \mathbb{R}^{p} \to \mathbb{R}^{n}$.
 - Typical computation graph:

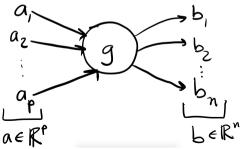


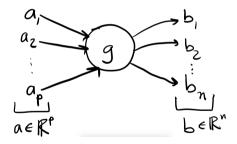
Functions as nodes in a graph

- We represent each component of the network as a *node* that takes in a set of *inputs* and produces a set of *outputs*.
- Example: $g: \mathbb{R}^{p} \to \mathbb{R}^{n}$.
 - Typical computation graph:

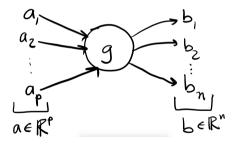


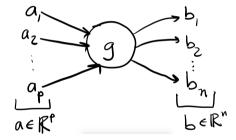
• Broken down by component:





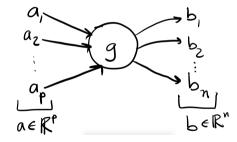
• Let
$$b = g(a) = Ma + c$$
. What is b_i ?





- Let b = g(a) = Ma + c. What is b_i ?
- b_i depends on the *i*th row of *M*:

$$b_i = \sum_{k=1}^p M_{ik} a_k + c_i.$$

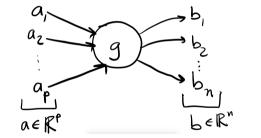


- Let b = g(a) = Ma + c. What is b_i ?
- b_i depends on the *i*th row of *M*:

$$b_i = \sum_{k=1}^p M_{ik} a_k + c_i.$$

• If
$$a_j \leftarrow a_j + \delta$$
, what is b_i ?
 $b_i \leftarrow b_i + M_{ij}\delta$.

• Define the affine function g(x) = Mx + c, for $M \in \mathbb{R}^{n \times p}$ and $c \in \mathbb{R}$.



• b_i depends on the *i*th row of M:

$$b_i = \sum_{k=1}^{p} M_{ik} a_k + c_i.$$

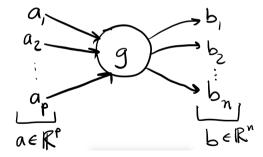
• If $a_j \leftarrow a_j + \delta$, what is b_i ? $b_i \leftarrow b_i + M_{ij}\delta$.

The partial derivative/gradient measures *sensitivity*: If we perturb an input a little bit, how much does the output change?

Tal Linzen Slides based on Lecture 12a from David

Partial derivatives in general

• Consider a function $g: \mathbb{R}^p \to \mathbb{R}^n$.



- Partial derivative
 ^{∂b_i}/_{∂a_j} is the rate of change
 of b_i as we change a_j
- If we change a_j slightly to

 $a_j + \delta$,

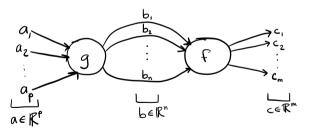
Then (for small δ), b_i changes to approximately

$$b_i + \frac{\partial b_i}{\partial a_j} \delta.$$

Composing multiple functions

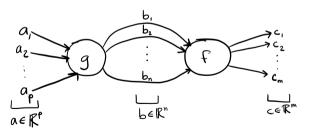
- We have $g: \mathbb{R}^p \to \mathbb{R}^n$ and $f: \mathbb{R}^n \to \mathbb{R}^m$
- b = g(a), c = f(b).

• How does a small change in a_j affect c_i ?



Composing multiple functions

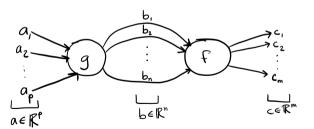
- We have $g: \mathbb{R}^p \to \mathbb{R}^n$ and $f: \mathbb{R}^n \to \mathbb{R}^m$
- b = g(a), c = f(b).



- How does a small change in a_j affect c_i ?
- Visualizing the chain rule:
 - We sum changes induced on all paths from *a_j* to *c_i*.
 - The change contributed by each path is the product of changes on each edge along the path.

Composing multiple functions

- We have $g: \mathbb{R}^p \to \mathbb{R}^n$ and $f: \mathbb{R}^n \to \mathbb{R}^m$
- b = g(a), c = f(b).



- How does a small change in a_j affect c_j ?
- Visualizing the chain rule:
 - We sum changes induced on all paths from *a_j* to *c_i*.
 - The change contributed by each path is the product of changes on each edge along the path.

$$\frac{\partial c_i}{\partial a_j} = \sum_{k=1}^n \frac{\partial c_i}{\partial b_k} \frac{\partial b_k}{\partial a_j}.$$

Example: Linear least squares

- Hypothesis space $\{f(x) = w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R}\}.$
- Data set $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbf{R}^d \times \mathbf{R}$.
- Define

$$\ell_i(w,b) = \left[\left(w^T x_i + b \right) - y_i \right]^2.$$

Example: Linear least squares

- Hypothesis space $\{f(x) = w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R}\}.$
- Data set $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbf{R}^d \times \mathbf{R}$.
- Define

$$\ell_i(w, b) = \left[\left(w^T x_i + b \right) - y_i \right]^2.$$

• In SGD, in each round we choose a random training instance $i \in 1, ..., n$ and take a gradient step

$$w_j \leftarrow w_j - \eta \frac{\partial \ell_i(w, b)}{\partial w_j}$$
, for $j = 1, ..., d$
 $b \leftarrow b - \eta \frac{\partial \ell_i(w, b)}{\partial b}$,

for some step size $\eta > 0$.

• How do we calculate these partial derivatives on a computation graph?

• For a training point (x, y), the loss is

$$\ell(w, b) = \left[\left(w^T x + b \right) - y \right]^2.$$

• For a training point (x, y), the loss is

$$\ell(w, b) = \left[\left(w^T x + b \right) - y \right]^2.$$

(prediction)
$$\hat{y} = \sum_{j=1}^{d} w_j x_j + b$$

• For a training point (x, y), the loss is

$$\ell(w, b) = \left[\left(w^T x + b \right) - y \right]^2.$$

(prediction)
$$\hat{y} = \sum_{j=1}^{d} w_j x_j + b$$

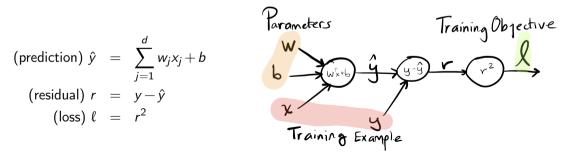
(residual) $r = y - \hat{y}$

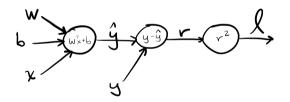
• For a training point (x, y), the loss is

$$\ell(w, b) = \left[\left(w^T x + b \right) - y \right]^2.$$

• For a training point (x, y), the loss is

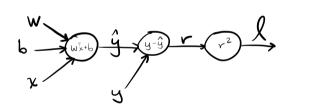
$$\ell(w,b) = \left[\left(w^T x + b \right) - y \right]^2.$$

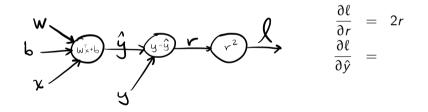


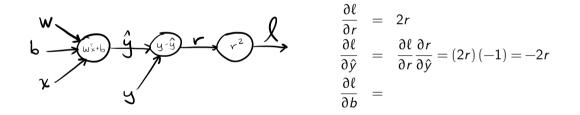


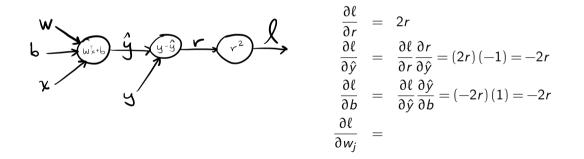
• We'll work our way from the output ℓ back to the parameters w and b, reusing previous computations as much as possible:

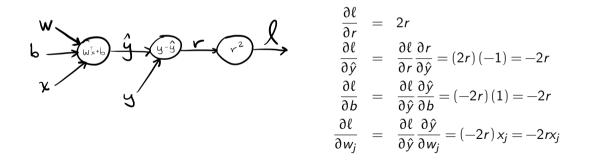
<u>ər</u>











Example: Ridge Regression

• For training point (x, y), the ℓ_2 -regularized objective function is

$$J(w, b) = \left[\left(w^T x + b \right) - y \right]^2 + \lambda w^T w.$$

• Let's break this down into some intermediate computations:

(prediction)
$$\hat{y} = \sum_{j=1}^{d} w_j x_j + b$$

(residual) $r = y - \hat{y}$
(loss) $\ell = r^2$

Example: Ridge Regression

• For training point (x, y), the ℓ_2 -regularized objective function is

$$J(w, b) = \left[\left(w^T x + b \right) - y \right]^2 + \lambda w^T w.$$

• Let's break this down into some intermediate computations:

(prediction)
$$\hat{y} = \sum_{j=1}^{d} w_j x_j + b$$

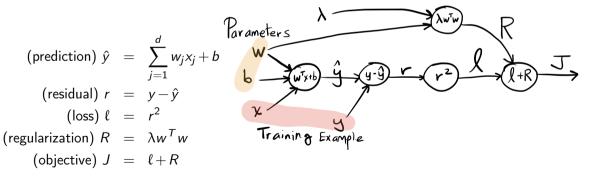
(residual) $r = y - \hat{y}$
(loss) $\ell = r^2$
(regularization) $R = \lambda w^T w$
(objective) $J = \ell + R$

Example: Ridge Regression

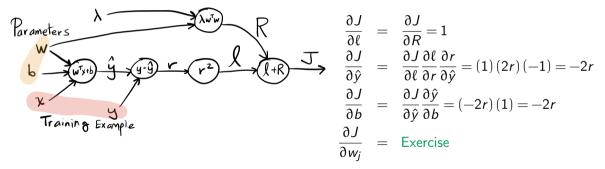
• For training point (x, y), the ℓ_2 -regularized objective function is

$$J(w, b) = \left[\left(w^T x + b \right) - y \right]^2 + \lambda w^T w.$$

• Let's break this down into some intermediate computations:



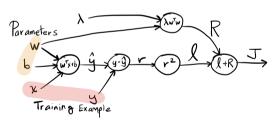
• We'll work our way from graph output ℓ back to the parameters w and b:



Backpropagation: Overview

- Learning: run gradient descent to find the parameters that minimize our objective J.
- Backpropagation: we compute the gradient w.r.t. each (trainable) parameter $\frac{\partial J}{\partial \theta_i}$.

Forward pass Compute intermediate function values, i.e. output of each node Backward pass Compute the partial derivative of J w.r.t. all intermediate variables and the model parameters



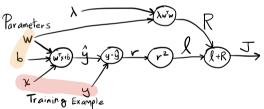
How do we minimize computation?

Backpropagation: Overview

- Learning: run gradient descent to find the parameters that minimize our objective J.
- Backpropagation: we compute the gradient w.r.t. each (trainable) parameter $\frac{\partial J}{\partial \theta_i}$.

Forward pass Compute intermediate function values, i.e. output of each node

Backward pass Compute the partial derivative of J w.r.t. all intermediate variables and the model parameters

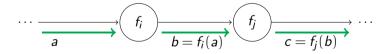


How do we minimize computation?

- Path sharing: each node *caches intermediate results*: we don't need to compute them over and over again
- An example of dynamic programming

DS-GA 1003

- Order nodes by topological sort (every node appears before its children)
- For each node, compute the output given the input (output of its parents).
- Forward at intermediate node f_i and f_j :



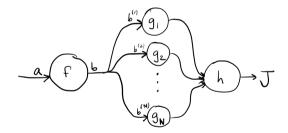
- Order nodes in reverse topological order (every node appears after its children)
- For each node, compute the partial derivative of its output w.r.t. its input, multiplied by the partial derivative of its children (chain rule)
- Backward pass at intermediate node f_i:

$$\cdots \xrightarrow{a} f_i \xrightarrow{b = f_i(a)} f_j \xrightarrow{c = f_j(b)} \cdots$$

$$g_i = g_j \cdot \frac{\partial b}{\partial a} = \frac{\partial J}{\partial a} \xrightarrow{g_j = \frac{\partial J}{\partial b}}$$

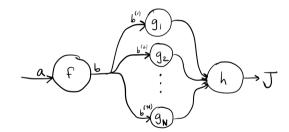
Multiple children

• First sum partial derivatives from all children, then multiply.



Multiple children

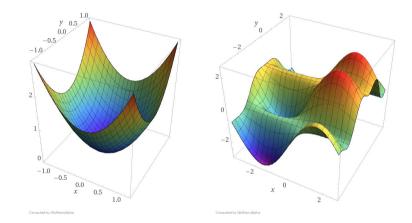
• First sum partial derivatives from all children, then multiply.



- Backprop for node f:
- Input: $\frac{\partial J}{\partial b^{(1)}}, \dots, \frac{\partial J}{\partial b^{(N)}}$ (Partials w.r.t. inputs to all children)
- Output:

$$\frac{\partial J}{\partial b} = \sum_{k=1}^{N} \frac{\partial J}{\partial b^{(k)}}$$
$$\frac{\partial J}{\partial a} = \frac{\partial J}{\partial b} \frac{\partial b}{\partial a}$$

Non-convex optimization



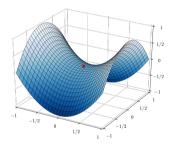
• Left: convex loss function. Right: non-convex loss function.

Tal Linzen Slides based on Lecture 12a from David

DS-GA 1003

Non-convex optimization: challenges

- What if we converge to a bad local minimum?
 - Rerun with a different initialization
- Hit a saddle point
 - Doesn't often happen with SGD
 - Second partial derivative test
- Flat region: low gradient magnitude
 - Possible solution: use ReLU instead of sigmoid
- High curvature: large gradient magnitude
 - Possible solutions: Gradient clipping, adaptive step sizes



Reference: Chris De Sa's slides (CS6787 Lecture 7).

- Backpropagation is an algorithm for computing the gradient (partial derivatives + chain rule) efficiently
- It is used in gradient descent optimization for neural networks
- Key idea: function composition and dynamic programming
- In practice, we can use existing software packages, e.g. PyTorch (backpropagation, neural network building blocks, optimization algorithms etc.)