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Today’s lecture:

Support Vector Machines: one of the most widely used classification model

We will focus on linear SVM today (non-linear SVM next week!)

Plan:
Derive the SVM learning objective (in two ways)

Solve the optimization problem

Get insight from its dual problem

(Requires some background knowledge on convex optimization)
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Part I: Derive the SVM Objective

Start with the inductive bias: what makes a good linear decision boundary?

Start with the loss function and regularization
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Maximum Margin Classifier
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Linearly Separable Data

Consider a linearly separable dataset D:
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Find a separating hyperplane such that

wT xi > 0 for all xi where yi =+1

wT xi < 0 for all xi where yi =−1
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The Perceptron Algorithm

Initialize w ← 0

While not converged (exists misclassified examples)
For (xi ,yi ) ∈D

If yiwT xi < 0 (wrong prediction)
Update w ← w + yixi

Intuition: move towards misclassified positive examples and away from negative examples

Guarantees to find a zero-error classifier (if one exists) in finite steps

What is the loss function if we consider this as a SGD algorithm?
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Maximum-Margin Separating Hyperplane

For separable data, there are infinitely many zero-error classifiers.

Which one do we pick?
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(Perceptron does not return a unique solution.)
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Maximum-Margin Separating Hyperplane

We prefer the classifier that is farthest from both classes of points
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Geometric margin: smallest distance between the hyperplane and the points

Maximum margin: largest distance to the closest points
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Geometric Margin

We want to maximize the distance between the separating hyperplane and the cloest points.

Let’s formalize the problem.

Definition (separating hyperplane)

We say (xi ,yi ) for i = 1, . . . ,n are linearly separable if there is a w ∈ Rd and b ∈ R such that
yi (w

T xi +b)> 0 for all i . The set {v ∈ Rd | wT v +b = 0} is called a separating hyperplane.

Definition (geometric margin)

Let H be a hyperplane that separates the data (xi ,yi ) for i = 1, . . . ,n. The geometric margin
of this hyperplane is

min
i

d(xi ,H),

the distance from the hyperplane to the closest data point.
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Distance between a Point and a Hyperplane

Projection of v ∈ Rd onto w ∈ Rd : v ·w
‖w‖2

Distance between xi and H:

d(xi ,H) =

∣∣∣∣wT xi +b

‖w‖2

∣∣∣∣= yi (w
T xi +b)

‖w‖2
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Maximize the Margin

We want to maximize the geometric margin:

maximize min
i

d(xi ,H).

Given separating hyperplane H =
{
v | wT v +b = 0

}
, we have

maximize min
i

yi (w
T xi +b)

‖w‖2
.

Let’s remove the inner minimization problem by

maximize M

subject to yi(w
T xi+b)
‖w‖2 >M for all i

Note that the solution is not unique (why?).
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Maximize the Margin

Let’s fix the norm ‖w‖2 to 1/M to obtain:

maximize 1
‖w‖2

subject to yi (w
T xi +b)> 1 for all i

It’s equivalent to solving the minimization problem

minimize 1
2‖w‖

2
2

subject to yi (w
T xi +b)> 1 for all i

Note that yi (wT xi +b) is the (functional) margin.

In words, it finds the minimum norm solution which has a margin of at least 1 on all examples.
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Soft Margin SVM

What if the data is not linearly separable?

For any w , there will be points with a negative margin.

Introduce slack variables to penalize small margin:

minimize 1
2‖w‖

2
2+

C
n

∑n
i=1ξi

subject to yi (w
T xi +b)> 1−ξi for all i

ξi > 0 for all i

If ξi = 0 ∀i , it’s reduced to hard SVM.

What does ξi > 0 mean?

What does C control?
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Slack Variables

d(xi ,H) =
yi(w

T xi+b)
‖w‖2 > 1−ξi

‖w‖2 , thus ξi measures the violation by multiples of the geometric
margin:

ξi = 1: xi lies on the hyperplane

ξi = 3: xi is past 2 margin width beyond the decision hyperplane

ξi = 1.5

ξi = 3

ξi = 1.5
ξi = 2
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Minimize the Hinge Loss
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Perceptron Loss

`(x ,y ,w) =max(0,−ywT x)

q loss

§qy
,,

If we do ERM with this loss function, what happens?
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Hinge Loss

SVM/Hinge loss: `Hinge =max {1−m,0}= (1−m)+

Margin m = yf (x); “Positive part” (x)+ = x1(x > 0).

Hinge is a convex, upper bound on 0−1 loss. Not differentiable at m = 1.
We have a “margin error” when m < 1.
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Support Vector Machine

Using ERM:

Hypothesis space F =
{
f (x) = wT x +b | w ∈ Rd ,b ∈ R

}
.

`2 regularization (Tikhonov style)

Hinge loss `(m) =max {1−m,0}= (1−m)+

The SVM prediction function is the solution to

min
w∈Rd ,b∈R

1
2
||w ||2+

c

n

n∑
i=1

max
(
0,1− yi

[
wT xi +b

])
.

Not differentiable because of the max
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SVM as a Constrained Optimization Problem

The SVM optimization problem is equivalent to

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to ξi >max
(
0,1− yi

[
wT xi +b

])
for i = 1, . . . ,n.

Which is equivalent to

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to ξi >
(
1− yi

[
wT xi +b

])
for i = 1, . . . ,n

ξi > 0 for i = 1, . . . ,n
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Summary

Two ways to derive the SVM optimization problem:

Maximize the (geometric) margin

Minimize the hinge loss with `2 regularization

Both leads to the minimum norm solution satisfying certain margin constraints.

Hard-margin SVM: all points must be correctly classified with the margin constraints

Soft-margin SVM: allow for margin constraint violation with some penalty
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Part II: Subgradient Descent for SVM

Now that we have the objective, can we do SGD on it?

Subgradient: generalize gradient for non-differentiable convex functions
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SVM Optimization Problem (no intercept)

SVM objective function:

J(w) =
1
n

n∑
i=1

max
(
0,1− yiw

T xi
)
+λ||w ||2.

Not differentiable... but let’s think about gradient descent anyway.

Hinge loss: `(m) =max(0,1−m)

∇wJ(w) = ∇w

(
1
n

n∑
i=1

`
(
yiw

T xi
)
+λ||w ||2

)

=
1
n

n∑
i=1

∇w `
(
yiw

T xi
)
+2λw
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“Gradient” of SVM Objective

Derivative of hinge loss `(m) =max(0,1−m):

` ′(m) =


0 m > 1
−1 m < 1
undefined m = 1

By chain rule, we have

∇w `
(
yiw

T xi
)

= ` ′
(
yiw

T xi
)
yixi

=


0 yiw

T xi > 1
−yixi yiw

T xi < 1
undefined yiw

T xi = 1
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“Gradient” of SVM Objective

∇w `
(
yiw

T xi
)

=


0 yiw

T xi > 1
−yixi yiw

T xi < 1
undefined yiw

T xi = 1

So

∇wJ(w) = ∇w

(
1
n

n∑
i=1

`
(
yiw

T xi
)
+λ||w ||2

)

=
1
n

n∑
i=1

∇w `
(
yiw

T xi
)
+2λw

=

{
1
n

∑
i :yiwT xi<1 (−yixi )+2λw all yiwT xi 6= 1

undefined otherwise
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Gradient Descent on SVM Objective?

The gradient of the SVM objective is

∇wJ(w) =
1
n

∑
i :yiwT xi<1

(−yixi )+2λw

when yiw
T xi 6= 1 for all i , and otherwise is undefined.

Potential arguments for why we shouldn’t care about the points of nondifferentiability:
If we start with a random w , will we ever hit exactly yiw

T xi = 1?

If we did, could we perturb the step size by ε to miss such a point?

Does it even make sense to check yiw
T xi = 1 with floating point numbers?

However, would gradient descent work if the objective is not differentiable?
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Subgradient
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First-Order Condition for Convex, Differentiable Function

Suppose f : Rd → R is convex and differentiable Then for any x ,y ∈ Rd

f (y)> f (x)+∇f (x)T (y − x)

The linear approximation to f at x is a global underestimator of f :

This implies that if ∇f (x) = 0 then x is a global minimizer of f .

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3
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Subgradients

Definition

A vector g ∈ Rd is a subgradient of a convex function f : Rd → R at x if for all z ,

f (z)> f (x)+gT (z− x).

Blue is a graph of f (x).
Each red line x 7→ f (x0)+gT (x − x0) is a global lower bound on f (x).
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Properties

Definitions
The set of all subgradients at x is called the subdifferential: ∂f (x)

f is subdifferentiable at x if ∃ at least one subgradient at x .

For convex functions:
f is differentiable at x iff ∂f (x) = {∇f (x)}.
Subdifferential is always non-empty (∂f (x) = ∅ =⇒ f is not convex)

x is the global optimum iff 0 ∈ ∂f (x).

For non-convex functions:
The subdifferential may be an empty set (no global underestimator).
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Subdifferential of Absolute Value

Consider f (x) = |x |

Plot on right shows {(x ,g) | x ∈ R, g ∈ ∂f (x)}

Boyd EE364b: Subgradients Slides

He He Slides based on Lecture Lab 3 from David Rosenberg’s course material. (CDS, NYU)DS-GA 1003 Feb 15, 2022 30 / 64

https://davidrosenberg.github.io/mlcourse/Archive/2019/Labs/3-SVM-Slides.pdf
https://github.com/davidrosenberg/mlcourse


Subgradients of f (x1,x2) = |x1|+2 |x2|

Let’s find the subdifferential of
f (x1,x2) = |x1|+2 |x2| at (3,0).

First coordinate of subgradient must be 1, from |x1|

part (at x1 = 3).

Second coordinate of subgradient can be anything in
[−2,2].

So graph of h(x1,x2) = f (3,0)+gT (x1−3,x2−0)
is a global underestimate of f (x1,x2), for any
g = (g1,g2) , where g1 = 1 and g2 ∈ [−2,2].
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Subdifferential on Contour Plot

Contour plot of f (x1,x2) = |x1|+2 |x2|, with set of subgradients at (3,0). .

Plot courtesy of Brett Bernstein.
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Basic Rules for Calculating Subdifferential

Non-negative scaling: ∂αf (x) = α∂f (x) for (α > 0)

Summation: ∂(f1(x)+ f2(x)) = d1+d2 for any d1 ∈ ∂f1 and d2 ∈ ∂f2

Composing with affine functions: ∂f (Ax +b) = AT∂f (z) where z = Ax +b

max: convex combinations of argmax gradients

∂max(f1(x), f2(x)) =


∇f1(x) if f1(x)> f2(x),

∇f2(x) if f1(x)< f2(x),

∇θf1(x)+(1−θ)f2(x) if f1(x) = f2(x),

where θ ∈ [0,1].
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Subgradient Descent
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Gradient orthogonal to level sets

We know that gradient points to the fastest ascent direction. What about subgradients?

Plot courtesy of Brett Bernstein.
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Contour Lines and Subgradients

A hyperplane H supports a set S if H intersects S and all of S lies one one side of H.

Claim: If f : Rd → R has subgradient g at x0, then the hyperplane H orthogonal to g at x0
must support the level set S =

{
x ∈ Rd | f (x) = f (x0)

}
.

Proof:
For any y , we have f (y)> f (x0)+gT (y − x0). (def of subgradient)

If y is strictly on side of H that g points in,
then gT (y − x0)> 0.

So f (y)> f (x0).

So y is not in the level set S .

∴ All elements of S must be on H or on the −g side of H.
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Subgradient of f (x1,x2) = |x1|+2 |x2|

Points on g side of H have larger f -values than f (x0). (from proof)

But points on −g side may not have smaller f -values.

So −g may not be a descent direction. (shown in figure)
Plot courtesy of Brett Bernstein.
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Subgradient Descent

Move along the negative subgradient:

x t+1 = x t −ηg where g ∈ ∂f (x t) and η > 0

This can increase the objective but gets us closer to the minimizer if f is convex and η is
small enough:

‖x t+1− x∗‖< ‖x t − x∗‖

Subgradients don’t necessarily converge to zero as we get closer to x∗, so we need
decreasing step sizes, e.g. O(1/t) or O(1/

√
t).

Subgradient methods are slower than gradient descent, e.g. O(1/ε2) vs O(1/ε) for
convex functions.

Based on https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S20/S4.pdf
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Subgradient descent for SVM (HW3)

SVM objective function:

J(w) =
1
n

n∑
i=1

max
(
0,1− yiw

T xi
)
+λ||w ||2.

Pegasos: stochastic subgradient descent with step size ηt = 1/(tλ)
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Summary

Subgradient: generalize gradient for non-differentiable convex functions

Subgradient “descent”:
General method for non-smooth functions

Simple to implement

Slow to converge
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Part III: The Dual Problem

In addition to subgradient descent, we can directly solve the optimization problem using a QP
solver.

Let’s study its dual problem to gain addition insights (which will be useful for next week!)
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SVM as a Quadratic Program

The SVM optimization problem is equivalent to

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to −ξi 6 0 for i = 1, . . . ,n(
1− yi

[
wT xi +b

])
−ξi 6 0 for i = 1, . . . ,n

Differentiable objective function

n+d +1 unknowns and 2n affine constraints.

A quadratic program that can be solved by any off-the-shelf QP solver.

Let’s learn more by examining the dual.
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Why Do We Care About the Dual?
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The Lagrangian

The general [inequality-constrained] optimization problem is:

minimize f0(x)

subject to fi (x)6 0, i = 1, . . . ,m

Definition
The Lagrangian for this optimization problem is

L(x ,λ) = f0(x)+
m∑
i=1

λi fi (x).

λi ’s are called Lagrange multipliers (also called the dual variables).

Weighted sum of the objective and constraint functions

Hard constraints → soft constraints
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Lagrange Dual Function

Definition
The Lagrange dual function is

g(λ) = inf
x
L(x ,λ) = inf

x

(
f0(x)+

m∑
i=1

λi fi (x)

)

g(λ) is concave

Lower bound property: if λ� 0, g(λ)6 p∗ where p∗ is the optimal value of the
optimization problem.

g(λ) can be −∞ (uninformative lower bound)
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The Primal and the Dual

For any primal form optimization problem,

minimize f0(x)

subject to fi (x)6 0, i = 1, . . . ,m,

there is a recipe for constructing a corresponding Lagrangian dual problem:

maximize g(λ)

subject to λi > 0, i = 1, . . . ,m,

The dual problem is always a convex optimization problem.

The dual variables often have interesting and relevant interpretations.

The dual variables provide certificates for optimality.
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Weak Duality

We always have weak duality: p∗ > d∗.

Plot courtesy of Brett Bernstein.
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Strong Duality

For some problems, we have strong duality: p∗ = d∗.

For convex problems, strong duality is fairly typical.
Plot courtesy of Brett Bernstein.

He He Slides based on Lecture Lab 3 from David Rosenberg’s course material. (CDS, NYU)DS-GA 1003 Feb 15, 2022 48 / 64

https://davidrosenberg.github.io/mlcourse/Archive/2019/Labs/3-SVM-Slides.pdf
https://github.com/davidrosenberg/mlcourse


Complementary Slackness

Assume strong duality. Let x∗ be primal optimal and λ∗ be dual optimal. Then:

f0(x
∗) = g(λ∗) = inf

x
L(x ,λ∗) (strong duality and definition)

6 L(x∗,λ∗)

= f0(x
∗)+

m∑
i=1

λ∗i fi (x
∗)

6 f0(x
∗).

Each term in sum
∑

i=1λ
∗
i fi (x

∗) must actually be 0. That is

λi > 0 =⇒ fi (x
∗) = 0 and fi (x

∗)< 0 =⇒ λi = 0 ∀i

This condition is known as complementary slackness.
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The SVM Dual Problem
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SVM Lagrange Multipliers

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to −ξi 6 0 for i = 1, . . . ,n(
1− yi

[
wT xi +b

])
−ξi 6 0 for i = 1, . . . ,n

Lagrange Multiplier Constraint
λi -ξi 6 0
αi

(
1− yi

[
wT xi +b

])
−ξi 6 0

L(w ,b,ξ,α,λ) =
1
2
||w ||2+

c

n

n∑
i=1

ξi +

n∑
i=1

αi

(
1− yi

[
wT xi +b

]
−ξi

)
+

n∑
i=1

λi (−ξi )

Dual optimum value: d∗ = supα,λ�0 infw ,b,ξL(w ,b,ξ,α,λ)
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Strong Duality by Slater’s Constraint Qualification

The SVM optimization problem:

minimize
1
2
||w ||2+

c

n

n∑
i=1

ξi

subject to −ξi 6 0 for i = 1, . . . ,n(
1− yi

[
wT xi +b

])
−ξi 6 0 for i = 1, . . . ,n

Slater’s constraint qualification:
Convex problem + affine constraints =⇒ strong duality iff problem is feasible

Do we have a feasible point?

For SVM, we have strong duality.
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SVM Dual Function: First Order Conditions

Lagrange dual function is the inf over primal variables of L:

g(α,λ) = inf
w ,b,ξ

L(w ,b,ξ,α,λ)

= inf
w ,b,ξ

[
1
2
wTw +

n∑
i=1

ξi

(c
n
−αi −λi

)
+

n∑
i=1

αi

(
1− yi

[
wT xi +b

])]

∂wL= 0 ⇐⇒ w −

n∑
i=1

αiyixi = 0 ⇐⇒ w =

n∑
i=1

αiyixi

∂bL= 0 ⇐⇒ −

n∑
i=1

αiyi = 0 ⇐⇒
n∑

i=1

αiyi = 0

∂ξiL= 0 ⇐⇒ c

n
−αi −λi = 0 ⇐⇒ αi +λi =

c

n
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SVM Dual Function

Substituting these conditions back into L, the second term disappears.

First and third terms become

1
2
wTw =

1
2

n∑
i ,j=1

αiαjyiyjx
T
i xj

n∑
i=1

αi (1− yi
[
wT xi +b

]
) =

n∑
i=1

αi −

n∑
i ,j=1

αiαjyiyjx
T
j xi −b

n∑
i=1

αiyi︸ ︷︷ ︸
=0

.

Putting it together, the dual function is

g(α,λ) =


∑n

i=1αi −
1
2
∑n

i ,j=1αiαjyiyjx
T
j xi

∑n
i=1αiyi=0

αi+λi=
c
n , all i

−∞ otherwise.

He He Slides based on Lecture Lab 3 from David Rosenberg’s course material. (CDS, NYU)DS-GA 1003 Feb 15, 2022 54 / 64

https://davidrosenberg.github.io/mlcourse/Archive/2019/Labs/3-SVM-Slides.pdf
https://github.com/davidrosenberg/mlcourse


SVM Dual Problem

The dual function is

g(α,λ) =


∑n

i=1αi −
1
2
∑n

i ,j=1αiαjyiyjx
T
j xi

∑n
i=1αiyi=0

αi+λi=
c
n , all i

−∞ otherwise.

The dual problem is supα,λ�0 g(α,λ):

sup
α,λ

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi +λi =
c

n
αi ,λi > 0, i = 1, . . . ,n
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Insights from the Dual Problem
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KKT Conditions

For convex problems, if Slater’s condition is satisfied, then KKT conditions provide necessary
and sufficient conditions for the optimal solution.

Primal feasibility: fi (x)6 0 ∀i

Dual feasibility: λ� 0

Complementary slackness: λi fi (x) = 0

First-order condition:
∂

∂x
L(x ,λ) = 0
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The SVM Dual Solution

We found the SVM dual problem can be written as:

sup
α

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

Given solution α∗ to dual, primal solution is w∗ =
∑n

i=1α
∗
i yixi .

The solution is in the space spanned by the inputs.

Note α∗i ∈ [0, cn ]. So c controls max weight on each example. (Robustness!)
What’s the relation between c and regularization?
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Complementary Slackness Conditions

Recall our primal constraints and Lagrange multipliers:

Lagrange Multiplier Constraint
λi -ξi 6 0
αi (1− yi f (xi ))−ξi 6 0

Recall first order condition ∇ξiL= 0 gave us λ∗i =
c
n −α

∗
i .

By strong duality, we must have complementary slackness:

α∗i (1− yi f
∗(xi )−ξ

∗
i ) = 0

λ∗i ξ
∗
i =

(c
n
−α∗i

)
ξ∗i = 0
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Consequences of Complementary Slackness

By strong duality, we must have complementary slackness.

α∗i (1− yi f
∗(xi )−ξ

∗
i ) = 0(c

n
−α∗i

)
ξ∗i = 0

Recall “slack variable” ξ∗i =max(0,1− yi f
∗(xi )) is the hinge loss on (xi ,yi ).

If yi f ∗(xi )> 1 then the margin loss is ξ∗i = 0, and we get α∗i = 0.

If yi f ∗(xi )< 1 then the margin loss is ξ∗i > 0, so α∗i =
c
n .

If α∗i = 0, then ξ∗i = 0, which implies no loss, so yi f
∗(x)> 1.

If α∗i ∈
(
0, cn
)
, then ξ∗i = 0, which implies 1− yi f

∗(xi ) = 0.
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Complementary Slackness Results: Summary

If α∗ is a solution to the dual problem, then primal solution is

w∗ =
n∑

i=1

α∗i yixi whereα∗i ∈ [0,
c

n
].

Relation between margin and example weights (αi ’s):

α∗i = 0 =⇒ yi f
∗(xi )> 1

α∗i ∈
(
0,
c

n

)
=⇒ yi f

∗(xi ) = 1

α∗i =
c

n
=⇒ yi f

∗(xi )6 1

yi f
∗(xi )< 1 =⇒ α∗i =

c

n

yi f
∗(xi ) = 1 =⇒ α∗i ∈

[
0,
c

n

]
yi f
∗(xi )> 1 =⇒ α∗i = 0
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Support Vectors

If α∗ is a solution to the dual problem, then primal solution is

w∗ =
n∑

i=1

α∗i yixi

with α∗i ∈ [0, cn ].

The xi ’s corresponding to α∗i > 0 are called support vectors.

Few margin errors or “on the margin” examples =⇒ sparsity in input examples.
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Teaser for Kernelization

He He Slides based on Lecture Lab 3 from David Rosenberg’s course material. (CDS, NYU)DS-GA 1003 Feb 15, 2022 63 / 64

https://davidrosenberg.github.io/mlcourse/Archive/2019/Labs/3-SVM-Slides.pdf
https://github.com/davidrosenberg/mlcourse


Dual Problem: Dependence on x through inner products

SVM Dual Problem:

sup
α

n∑
i=1

αi −
1
2

n∑
i ,j=1

αiαjyiyjx
T
j xi

s.t.
n∑

i=1

αiyi = 0

αi ∈
[
0,
c

n

]
i = 1, . . . ,n.

Note that all dependence on inputs xi and xj is through their inner product: 〈xj ,xi 〉= xTj xi .

We can replace xTj xi by other products...

This is a “kernelized” objective function.
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