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Our Setup from Statistical Learning Theory

The Spaces

e X: input space @ Y: outcome space @ A: action space

Prediction Function (or “decision function”)

A prediction function (or decision function) gets input x € X and produces an action a € A :

f: X - A
x = f(x)
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Our Setup from Statistical Learning Theory

The Spaces

e X: input space @ Y: outcome space @ A: action space

Prediction Function (or “decision function”)
A prediction function (or decision function) gets input x € X and produces an action a € A :
f: X - A
x = f(x)
Loss Function
A loss function evaluates an action in the context of the outcome y.
: AxY — R

(ay) = {ay)
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Risk and the Bayes Prediction Function

Definition

The risk of a prediction function f: X — A is
R(f) =FEL(f(x),y).

In words, it's the expected loss of f on a new example (x,y) drawn randomly from Py yy.

Tal Linzen (CDS, NYU) DS-GA 1003 Feb 1, 2022 4/47



Risk and the Bayes Prediction Function

Definition
The risk of a prediction function f: X — A is

R(f) =EL(f(x),y).

In words, it's the expected loss of f on a new example (x,y) drawn randomly from Py yy.

Definition
A Bayes prediction function 7*: X — A is a function that achieves the minimal risk among

all possible functions:
f* €argminR(f),
f

where the minimum is taken over all functions from X to A.

@ The risk of a Bayes prediction function is called the Bayes risk.
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The Empirical Risk

Let Dp=((x1,¥1),...,(Xn,¥n)) be drawn i.i.d. from Py .

Definition
The empirical risk of f: X — A with respect to D, is

Rull) == 3 t(F (). 31).
i=1

@ The unconstrained empirical risk minimizer can overfit.

o i.e. if we minimize R,(f) over all functions, we overfit.
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Constrained Empirical Risk Minimization

Definition
A hypothesis space J is a set of functions mapping X — A.

@ This is the collection of prediction functions we are choosing from.
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Constrained Empirical Risk Minimization

Definition
A hypothesis space J is a set of functions mapping X — A.
@ This is the collection of prediction functions we are choosing from.

e An empirical risk minimizer (ERM) in J is

. 1 ¢
f, € argmin 7Z€(f(x,-),y,-).
feg Ni—]

@ From now on “"ERM" always means “constrained ERM".

@ So we should always specify the hypothesis space when we're doing ERM.
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Example: Linear Least Squares Regression

Setup
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Example: Linear Least Squares Regression

Setup
o Input space X =R¢
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Example: Linear Least Squares Regression
Setup

o Input space X =R¢

@ Output space Y =R
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@ Output space Y =R
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Example: Linear Least Squares Regression

Setup
o Input space X =R¢

@ Output space Y =R
@ Action space Y =R

@ Loss: £(y,y) = (y—f/)z
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Example: Linear Least Squares Regression

Setup
o Input space X =R¢

@ Output space Y =R

Action space Y =R

Loss: £(9,y) = (y—9)

Hypothesis space: F={f:RY = R|f(x)=w'x, w e R?}

Given a data set D, ={(x1,%1),..., (Xm, ¥n)h
o Our goal is to find the ERM € F.
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Example: Linear Least Squares Regression

Objective Function: Empirical Risk

We want to find the function in J, parametrized by w € RY, that minimizes the empirical risk:

Rolw) == 3 (W= 1)

@ How do we solve this optimization problem?

min Rp(w)
wERd

@ (For OLS there's a closed form solution, but in general there isn't.)
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Gradient Descent J
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Unconstrained Optimization

Setting

We assume that the objective function f : RY — R is differentiable.
We want to find

x* =arg min f(x)
x€Rd
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The Gradient

o Let 7:RY — R be differentiable at xp € RY.

@ The gradient of f at the point xg, denoted Vf(xg), is the direction in which f(x)

increases fastest, if we start from xg.

contours of h(z, y)

fee

g ‘-\
.. high

%\\- direction of steepest ascent

Figure A.111 from Newtonian Dynamics, by Richard Fitzpatrick.
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Gradient Descent

@ To reach a local minimum as fast as possible, we want to go in the opposite direction from
the gradient.

Tal Linzen (CDS, NYU) DS-GA 1003 Feb 1, 2022 12 /47



Gradient Descent

@ To reach a local minimum as fast as possible, we want to go in the opposite direction from
the gradient.

Gradient Descent

o Initialize x < 0.

@ Repeat:
o x+ x—mVIF(x)

@ until the stopping criterion is satisfied.
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Gradient Descent

@ To reach a local minimum as fast as possible, we want to go in the opposite direction from
the gradient.

Gradient Descent

o Initialize x < 0.

@ Repeat:
o x+ x—mVIF(x)

@ until the stopping criterion is satisfied.

@ The “step size" 1 is not the amount by which we update x!
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Gradient Descent Path

. Gradient Descent
T T e e I T
/ — Fixed step size: 0.20
— Backtracking line search: initial step 0.30

w
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Gradient Descent: Step Size

@ A fixed step size will work, eventually, as long as it's small enough (roughly — details to
come)
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Gradient Descent: Step Size

@ A fixed step size will work, eventually, as long as it's small enough (roughly — details to
come)

o If n is too large, the optimization process might diverge
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Gradient Descent: Step Size

@ A fixed step size will work, eventually, as long as it's small enough (roughly — details to
come)

o If n is too large, the optimization process might diverge

o In practice, it often makes sense to try several fixed step sizes

@ Intuition on when to take big steps and when to take small steps?
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Convergence Theorem for Fixed Step Size

Theorem

Suppose f: RY — R is convex and differentiable, and Vf is Lipschitz continuous with
constant L >0, i.e.

IVFf(x)=VF(x)| < Ll|x—x"|

for any x,x’ € RY. Then gradient descent with fixed step sizen < 1/L converges. In particular,

¢ = x|

(k)y _ ) <
Fx) =) < =

~

This says that gradient descent is guaranteed to converge and that it converges with rate

O(1/k).
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Gradient Descent: When to Stop?

e Wait until ||[Vf(x)]|2 < ¢, for some ¢ of your choosing.
o (Recall Vf(x) =0 at a local minimum.)
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Gradient Descent: When to Stop?

e Wait until ||[Vf(x)]|2 < ¢, for some ¢ of your choosing.
o (Recall Vf(x) =0 at a local minimum.)

o Early stopping:
o evalute loss on validation data after each iteration;

o stop when the loss does not improve (or gets worse).
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Gradient Descent for Empirical Risk - Scaling Issues J
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Quick recap: Gradient Descent for ERM

@ We have a hypothesis space of functions F = {fw X —Alwe Rd}
o Parameterized by w € RY.

e Finding an empirical risk minimizer entails finding a w that minimizes
1 n
Rn(w) = n;e(fw(x,-),y,-)

@ Suppose £(fy(x;),y;) is differentiable as a function of w.

@ Then we can do gradient descent on R,(w)
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Gradient Descent: Scalability

@ At every iteration, we compute the gradient at the current w:

A

VRn(w) = 5 Vullfi), )
i=1

o How does this scale with n?
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Gradient Descent: Scalability

@ At every iteration, we compute the gradient at the current w:
1 n

VRa(w) = ; .Zlvwe(fw(xi)y)/i)
1=

e How does this scale with n?
@ We have to iterate over all n training points to take a single step. [O(n)]

@ Will not scale to “big data”!
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Gradient Descent: Scalability

@ At every iteration, we compute the gradient at the current w:
1 n

VRy(w) = ; .Zlvwe(fw(xi)y)/i)
1=

How does this scale with n?

We have to iterate over all n training points to take a single step. [O(n)]
@ Will not scale to “big data”!

@ Can we make progress without looking at all the data before updating w?
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Stochastic Gradient Descent J
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“Noisy” Gradient Descent

@ Instead of using the gradient, we use a noisy estimate of the gradient.

@ Turns out this can work just finel
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“Noisy” Gradient Descent

@ Instead of using the gradient, we use a noisy estimate of the gradient.
@ Turns out this can work just finel

e Intuition:
o Gradient descent is an iterative procedure anyway.

o At every step, we have a chance to recover from previous missteps.
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Minibatch Gradient

@ The full gradient is
R 1 o
VRa(w) = n;vwe(fw(xi)v)/i)

@ It's an average over the full batch of data D, ={(x1,y1),..., (Xn, ¥n) 1}
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Minibatch Gradient

@ The full gradient is
R 1 o
VRa(w) = n;vwe(fw(xi)v)/i)

@ It's an average over the full batch of data D, ={(x1,y1),..., (Xn, ¥n) 1}
@ Let's take a random subsample of size N (called a minibatch):

(Xmlvyml)v---y(XvaymN)
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Minibatch Gradient

@ The full gradient is
1 n
= EZVWf(fw(Xi),y/')
i=1

@ It's an average over the full batch of data D, ={(x1,y1),..., (Xn, ¥n) 1}
@ Let's take a random subsample of size N (called a minibatch):

(Xmlvyml)v---y(XvaymN)

@ The minibatch gradient is

Zv e Xm, )/m,-)
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Batch vs Stochastic Methods

17

Rule of thumb for stochastic methods:

@ Stochastic methods work well far from the optimum

@ But struggle close the the optimum

A

T T T T T
-20 -10 0 10 20

(Slide adapted from Ryan Tibshirani)
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Minibatch Gradient Properties

@ The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does
that mean?
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Minibatch Gradient Properties
@ The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does

that mean?
E [VRN(W)} — VR, (w)
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Minibatch Gradient Properties
@ The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does

that mean?
E [VRN(W)} — VR, (w)

@ The bigger the minibatch, the better the estimate.

%Var [Vf%l(W)] = Var [VQN(W)}
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Minibatch Gradient Properties
@ The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does

that mean?
E [VRN(W)} — VR, (w)

@ The bigger the minibatch, the better the estimate.

%Var [Vf%l(W)] = Var [VQN(W)}

e Tradeoffs of minibatch size:
o Bigger N —> Better estimate of gradient, but slower (more data to process)

o Smaller N = Worse estimate of gradient, but can be quite fast
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Minibatch Gradient Properties

@ The minibatch gradient is an unbiased estimator for the [full] batch gradient. What does
that mean?
E [VRN(W)} — VR, (w)

@ The bigger the minibatch, the better the estimate.

%Var [Vél(w)} = Var [VR)N(W)}

e Tradeoffs of minibatch size:
o Bigger N —> Better estimate of gradient, but slower (more data to process)

o Smaller N = Worse estimate of gradient, but can be quite fast

@ Because of vectorization, we can often get minibatches of certain sizes for free
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Convergence of SGD

@ For convergence guarantee, use diminishing step sizes, e.g. N, =1/k
@ Theoretically, GD is much faster than SGD in terms of convergence rate:
o much faster to add a digit of accuracy.

o but most of that advantage comes into play once we're already pretty close to the
minimum.

o However, in many ML problems we don’t care about optimizing to high accuracy
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Step Sizes in Minibatch Gradient Descent

Minibatch Gradient Descent (minibatch size N)

@ initialize w =0

@ repeat
o randomly choose N points {(x,-,y,-)},’-V:1 c D,

o W w—n [ﬁ >N, wa(fw(xi),y,’)]

@ For SGD, fixed step size can work well in practice.

@ Typical approach: Fixed step size reduced by constant factor whenever validation
performance stops improving.

@ Other tricks: Bottou (2012), “Stochastic gradient descent tricks”
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Summary

o Gradient descent or “full-batch” gradient descent
o Use full data set of size n to determine step direction

@ Minibatch gradient descent
o Use a random subset of size N to determine step direction

@ Stochastic gradient descent
o Minibatch with N =1.

o Use a single randomly chosen point to determine step direction.

These days terminology isn't used so consistently, so always clarify the [mini]batch size.

SGD is much more efficient in time and memory cost and has been quite successful in
large-scale ML.
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Example: Logistic regression with {» regularization

Batch methods converge faster :

— Full
—— Stochastic
—— Mini-batch, b=10
© —— Mini-batch, b=100
Q
o
x
e o
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8
S
g
o
o
B
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T T T T T T
0 10 20 30 40 50

Iteration number k

(Example from Ryan Tibshirani)
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Example: Logistic regression with {» regularization

Stochastic methods are computationally more efficient:

ull
tochastic
ini-batch, b=10

ini-batch, b=100

X
c 8 |
2 o
g
S
wn
B
[}
o
8
o
T T T
1e+02 1e+04 1e+06
Flop count

(Example from Ryan Tibshirani)
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Example: Logistic regression with {» regularization

Batch methods are much faster close to the optimum:

@
9
2
8
17}
T
X o
a (=]
g &7
o =
2
£
S
(2]
9
2
— Full
—— Stochastic
—— Mini-batch, b=10
N —— Mini-batch, b=100
é Bl T T T T T

0 10 20 30 40 50

Iteration number k

(Example from Ryan Tibshirani)
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Loss Functions: Regression J
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Regression Problems

@ Examples:
o Predicting the stock price given history prices

o Predicting medical cost of given age, sex, region, BMI etc.

o Predicting the age of a person based on their photos
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Regression Problems

@ Examples:
o Predicting the stock price given history prices

o Predicting medical cost of given age, sex, region, BMI etc.
o Predicting the age of a person based on their photos
@ Spaces:
o Input space X =R¢
o Action space A =R

o Outcome space Y =R.
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Regression Problems

@ Examples:
o Predicting the stock price given history prices

o Predicting medical cost of given age, sex, region, BMI etc.

o Predicting the age of a person based on their photos

@ Spaces:
o Input space X =R¢
o Action space A =R
o Outcome space Y =R.
o Notation:
o ¥ is the predicted value (the action)

o y is the actual observed value (the outcome)
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Loss Functions for Regression

@ A loss function in general:
(7.y) =ty y)eR
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Loss Functions for Regression

@ A loss function in general:
(7.y) =ty y)eR

@ Regression losses usually only depend on the residual r=y— 7.
o what you have to add to your prediction to get the correct answer.
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Loss Functions for Regression

@ A loss function in general:
(7.y) =ty y)eR

@ Regression losses usually only depend on the residual r=y— 7.
o what you have to add to your prediction to get the correct answer.

@ Aloss £(y,y) is called distance-based if:
@ It only depends on the residual:

Uy.y)=Uv(y—y) forsome Pp:R—R

@ It is zero when the residual is 0:

P(0)=0
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Distance-Based Losses are Translation Invariant

@ Distance-based losses are translation-invariant. That is,
Up+by+b)=L(y,y) VbeR.

@ When might you not want to use a translation-invariant loss?
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Distance-Based Losses are Translation Invariant

@ Distance-based losses are translation-invariant. That is,
Up+by+b)=L(y,y) VbeR.
@ When might you not want to use a translation-invariant loss?

o Sometimes the relative error ** is a more natural loss (but not translation-invariant)
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Distance-Based Losses are Translation Invariant

@ Distance-based losses are translation-invariant. That is,
Up+by+b)=L(y,y) VbeR.
@ When might you not want to use a translation-invariant loss?
=y

® Sometimes the relative error ** is a more natural loss (but not translation-invariant)

e Often you can transform response y so it's translation-invariant (e.g. log transform)
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Some Losses for Regression

@ Residual: r=y—y

e Square or €, Loss: £(r) = r?
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Some Losses for Regression

@ Residual: r=y—y
e Square or €, Loss: £(r) = r?

@ Absolute or Laplace or ¢y Loss: £(r) =|r|
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Some Losses for Regression

@ Residual: r=y—y
e Square or €, Loss: £(r) = r?

@ Absolute or Laplace or ¢y Loss: £(r) =|r|

Ly lylid=ly=3]rP=(y—9)]
110 1 1
510 5 25
100 10 100
5010 50 2500

@ Outliers typically have large residuals. (What is an outlier?)

@ Square loss much more affected by outliers than absolute loss.
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Loss Function Robustness

@ Robustness refers to how affected a learning algorithm is by outliers.

Linear data with noise and outliers

T
—O— least squares
3H = -EF - laplace

KPM Figure 7.6
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Some Losses for Regression

@ Square or {, Loss: {(r) = r? (not robust)

e Absolute or Laplace Loss: {(r) =|r| (not differentiable)
o gives median regression

e Huber Loss: Quadratic for |r| < 6 and linear for |r| > & (robust and differentiable)
o Equal values and slopes at r =9

5
45
4
35
3
R
25
2

15

KPM Figure 7.6
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Classification Loss Functions J
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The Classification Problem

@ Examples:
o Predict whether the image contains a cat

o Predict whether the email is SPAM
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The Classification Problem

@ Examples:
o Predict whether the image contains a cat

o Predict whether the email is SPAM

o Classification spaces:
o Input space RY

o Outcome space Y ={-—1,1}
o Action space A =R (easier to work with than A ={—1,1})
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The Classification Problem

@ Examples:
o Predict whether the image contains a cat

o Predict whether the email is SPAM

o Classification spaces:
o Input space RY

o Outcome space Y ={-—1,1}
o Action space A =R (easier to work with than A ={—1,1})

o Inference:

f(x) >0 = Predict 1
f(x) <0 = Predict —1
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The Score Function

@ Action space A =R Output space Y ={—1,1}
@ Real-valued prediction function f: X — R
Definition
The value f(x) is called the score for the input x.
@ In this context, f may be called a score function.

@ The magnitude of the score can be interpreted as our confidence of our prediction.
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The Margin

Definition
The margin (or functional margin) for a predicted score y and the true class y € {—1,1} is yy.
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The Margin

Definition
The margin (or functional margin) for a predicted score y and the true class y € {—1,1} is yy.
@ The margin is often written as yf(x), where f(x) is our score function.

@ The margin is a measure of how correct we are:
o If y and y are the same sign, prediction is correct and margin is positive.

o If y and y have different sign, prediction is incorrect and margin is negative.
e We want to maximize the margin

@ Most classification losses depend only on the margin (they are margin-based losses).
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Classification Losses: 0—1 Loss
o If 7 is the inference function (1 if f(x) >0 and —1 otherwise), then
@ The 0-1 loss for f: X — {—1,1}
L(f(x),y) =1(F(x) #y)
@ Empirical risk for 0—1 loss:

Ralf) == 3 10y () <0)
i=1

Minimizing empirical 0 —1 risk not computationally feasible

R (f) is non-convex, not differentiable (in fact, discontinuous!).
Optimization is NP-Hard.
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Classification Losses

Zero-One loss: {p.1 =1(m < 0)

Loss

=== Zero_One

0
Margin m=yf(x)

@ x-axis is margin: m >0 <= correct classification
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Classification Losses

SVM/Hinge loss: {inge = max(1—m,0)

Loss
= Zero_One
3-

== Hinge

|
2

0 2
Margin m=yf(x)

Hinge is a convex, upper bound on 0—1 loss. Not differentiable at m =1.
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Classification Losses

Logistic/Log loss: { ogistic = log (1+e~™)

Loss
m== Zero_One
=== Hinge
3-

=== | ogistic

N

0
Margin m=yf(x)

Logistic loss is differentiable. Logistic loss always rewards a larger margin (the loss is never 0).
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What About Square Loss for Classification?

Action space A =R Output space Y ={—1,1}

Loss £(f(x),y) = (F(x) —y)°.

@ Turns out, can write this in terms of margin m = f(x)y:
UFx)y) = (FX) =y =(1—F(x)y)* = (1—m)?

@ Prove using fact that y2 =1, since y € {—1,1}.
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What About Square Loss for Classification?

Loss
we Zero_One
== Hinge

m== | ogistic
34 ogisti

e Square

Loss(m)

2 0 H
Margin m=yf(x)

Heavily penalizes outliers (e.g. mislabeled examples).

May have higher sample complexity (i.e. needs more data) than hinge & logistic?.

Rosasco et al's “Are Loss Functions All the Same?” http://web.mit.edu/lrosasco/www/publications/loss.pdf
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