Recitation 3 Regularization: Motivation and Effect

Colin

CDS

Feb. 09, 2022

Logistics

- Submitting HWs
 - Ensure they are eligible
 - We encourage you to use LaTeX (Useful skill to learn)
 - Ensure they are in the correct orientation
 - Do not print out irrelevant information
 - Do not cite materials to support your proof
- Late submissions
 - Late days

Examples

Motivation for learning the math/proof

• We are not SDE or BA.

- Your task is to make a decision through modeling.
- Understand how each model behaves.
- Everything will lie to you, not math
- Be able to fix/alter/adjust your model when it fails.
 - Knowing what is expected to happen, what is not.
 - Anyone can copy model from github.
 - Few can diagnose when it doesn't work
 - Help you to build up intuition.

Regularization and its effects

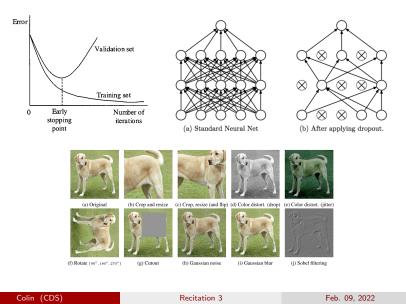
Motivation

- Hard to choose a good hypothesis space.
 - Knowing too little about the data/truth
- If the space is too small
 - Cannot model the data accurately
- If the space is too large
 - Overfit the training data
 - Amazing in training; Useless when deployed
- Solution:
 - Start with a large space, then shrink it down

Types of Regularization

- Implicit Regularization
 - Initialization
 - Training strategy
 - Model structure
- Explicit Regularization (what we refer to in this course)
 - Classics (what we will discuss today)
 - L1 & L2 & Elastic Net
 - Others
 - Early stopping
 - Data augmentation
 - Dropouts

Examples of other types of regularization



L2 (Ridge) and L1(Lasso) Regularization

L2 (Ridge)

$$\hat{w} = \arg\min_{w \in R^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda \|w\|_2$$

L1 (Lasso)

$$\hat{w} = \arg\min_{w \in R^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda \|w\|_1$$

- Suppose we have one feature x₁.
- Response variable y.
- The ERM is

$$\hat{f}(x_1) = 4x_1$$

• What happens if we get a new feature x2,

• but
$$x_2 = x_1$$
?

- New feature x2 gives no new information.
- ERM is still

$$\hat{f}(x_1) = 4x_1$$

• Now there are some more ERMs:

$$\hat{f}(x_1, x_2) = 2x_1 + 2x_2$$

 $\hat{f}(x_1, x) = x_1 + 3x_2$
 $\hat{f}(x_1, x_2) = 8x_1 - 4x_2$

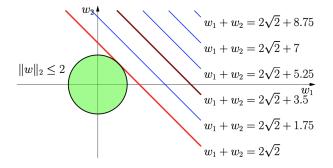
• What if we introduce L1 or L2 regularization?

- $f(x_1, x_2) = w_1 x_1 + w_2 x_2$ is an ERM iff $w_1 + w_2 = 4$.
- Consider the L1 and L2 norms of various solutions:

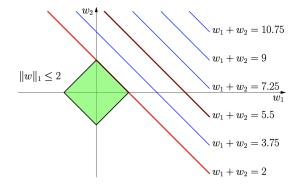
<i>w</i> ₁	<i>W</i> ₂	$\sum w_i _1$	$\sum w_i _2^2$
4	0	4	16
2	2	4	8
1	3	4	10
8	-4	12	80

- $|w|_1$ doesn't discriminate, as long as all have same sign
- $|w|_2$ minimized when weight is spread equally

L2 Contour Line



L1 Contour Line



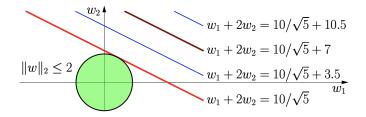
- Now lets consider the case where $x_2 = 2x_1$
- Then any model satisfies $2w_2 + w_1 = 4$ will be an ERM.
 - Suppose we are still dealing with the previous setup

•
$$\hat{f}(x_1, x_2) = 2x_1 + x_2$$

• $\hat{f}(x_1, x_2) = 3x_2 + 0.5x_2$
• $\hat{f}(x_1, x_2) = 6x_2 - x_2$

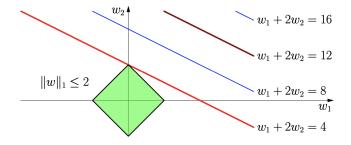
• How would the regularization change the outcome?

L2 Contour Line



16/24

L1 Contour Line

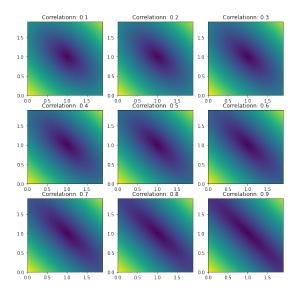


Summary

- For identical features
 - L1 regularization spreads weight arbitrarily (all weights same sign)
 - L2 regularization spreads weight evenly
- Linearly related features
 - L1 regularization chooses variable with larger scale, 0 weight to others
 - L2 prefers variables with larger scale spreads weight proportional to scale

- Recall our discussion of linear predictors $f(x) = w^T x$ and square loss.
- Sets of *w* giving same empirical risk (i.e. level sets) formed ellipsoids around the ERM.
- With x_1 and x_2 linearly related, $X^T X$ has a 0 eigenvalue.
- So the level set $\{ \hat{w} \mid (w \hat{w})^T X^T X (w \hat{w}) = c \}$ is no longer an ellipsoid.
- It's a degenerate ellipsoid that's why level sets were pairs of lines in this case

Note on contour lines

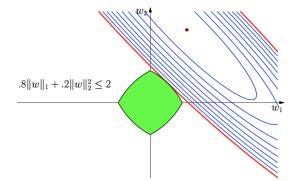


Feb. 09, 2022 20 / 24

A way of combining L1 and L2 regularization:

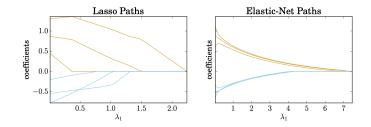
$$\hat{w} = \arg\min_{w \in d} \frac{1}{n} \sum_{i=1}^{n} \left\{ w^{T} x_{i} - y_{i} \right\}^{2} + \lambda_{1} \|w\|_{1} + \lambda_{2} \|w\|_{2}^{2}$$

Elastic Net



A not so inspiring way of compromising.

Elastic Net



• Ratio of L2 to L1 regularization roughly 2 : 1.

Generalization into more complicated models

- The goal is to make model remember only the relevant information.
- Reduce the model's dependency of each feature as much as possible.
 - Methods may vary when we have billions of parameters.