Recitation 1 Statistical Learning Theory Intro to Gradient Descent

Colin

CDS

Jan. 25, 2022

Introduction

TAs for this course: Colin Wan, Vishakh Padmakumar

Office Hours: Colin: Mon 1:00PM-2:00PM, Vishakh: Wed 6:00PM-7:00PM

Motivation

In data science, we generally need to $\ensuremath{\textbf{Make a Decision}}$ on a problem. To do this, we need to understand

- The setup of the problem
- The possible actions
- The effect of actions
- The evaluation of the results

How do we translate the problem into the language of DS/modeling?

Formalization

The Spaces

 \mathcal{X} : input space \mathcal{Y} : outcome space \mathcal{A} : action space

Prediction Function

A **prediction function** f gets an input $x \in \mathcal{X}$ and produces an action $a \in \mathcal{A}$:

 $f: \mathcal{X} \mapsto \mathcal{A}$

Loss Function

A loss function $\ell(a, y)$ evaluates an action $a \in \mathcal{A}$ in the context of an outcome $y \in \mathcal{Y}$:

$$\ell:\mathcal{A} imes\mathcal{Y}\mapsto\mathbb{R}$$

Risk Function

- Given a loss function ℓ , how can we evaluate the "average performance" of a prediction function f?
- To do so, we need to first assume that there is a **data generating distribution** $\mathcal{P}_{x,y}$.
- Then the expected loss of f on $\mathcal{P}_{x,y}$ will reflect the notion of "average preformance".

Definition

The **risk** of a prediction function $f : \mathcal{X} \mapsto \mathcal{A}$ is

$$R(f) = \mathbb{E}\ell(f(x), y)$$

It is the expected loss of f on a new sample (x, y) drawn from $\mathcal{P}_{X,Y}$.

Finding 'best' function

Definition

 \mathfrak{F} is the family of functions we restrict our model to be. Example: Linear, quadratic, decision tree, two layer neural-net...

Definition

 $f_{\mathfrak{F}}$ is 'best' function one can obtain within \mathfrak{F} .

Definition

 \hat{f}_n is the 'best' function one can obtain using the data given.

Definition

 $ilde{f}_n$ is the function actually obtained using the data given.

The Bayes Prediction Function

Definition

A Bayes prediction function $f^* : \mathcal{X} \mapsto \mathcal{Y}$ is a function that achieves the *minimal risk* among all possible functions:

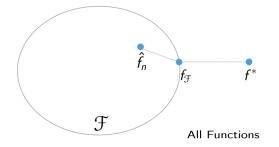
 $f^* \in \operatorname*{arg\,min}_f R(f),$

where the minimum is taken from all functions that maps from \mathcal{X} to \mathcal{A} .

The risk of a Bayes function is called **Bayes risk**.

Statistical Learning Theory

Error Decomposition



Statistical Learning Theory

Example

Error Decomposition

Approximation Error

- Caused by the choice of family of functions or capacity of the model.
- Expand the capacity of the model.
- Estimation Error
 - Caused by finite number of data
 - Obtain more data/add regularizer
- Optimization Error
 - Caused by not able to find the best parameters
 - Try different optimization algorithms, learning rates, etc.

Gradient Descent

Motivation:

- Our goal is the find \hat{f}_n , the best possible model from given data
- Naive approach: Take gradient of loss function, solve for parameters that gives you 0.
 - Computationally intractable
 - Impossible to compute due to complex function structure
- The optimal parameters for LR: $\hat{eta} = \left(X^{ op}X
 ight)^{-1}X^{ op}Y$
- When X's dimension reaches the millions, the inverse is essentially intractable.

But we do not need \hat{f}_n , a close \tilde{f}_n is good enough for decision making. Therefore, instead of solving for the best parameters, we just need to approximate it well enough.

Gradient Descent

Idea:

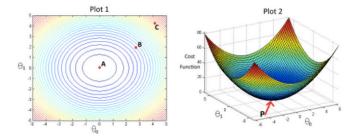
- Given any starting parameters, the gradient indicates the direction of local maximal change.
- If we obtain new parameters by moving old parameter along its gradient, the new ones will give smaller loss (if we are careful).
- We can repeat this procedure until we are happy with the result.

Contour Graphs

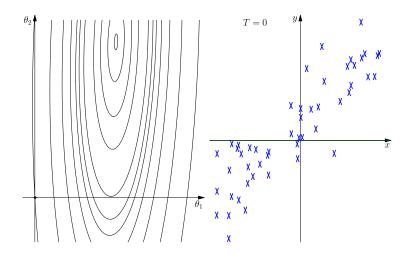
Imagine we are solving a simple linear regression problem: $y = \theta_0 + \theta_1 x$ with loss function:

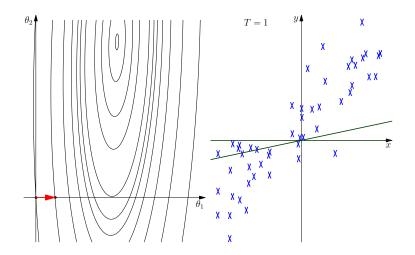
$$J(\theta_0,\theta_1) = \sum_{i=1}^{n} (y_i - (\theta_0 + \theta_1 x_i))^2$$

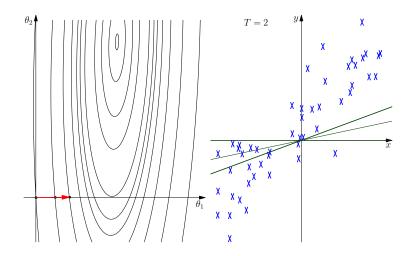
Plots for Cost Function $J(\theta_0, \theta_1)$

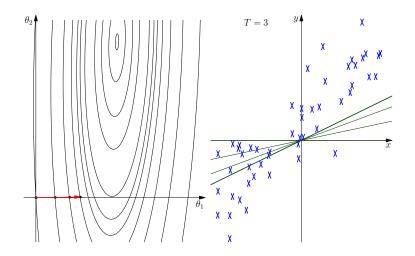


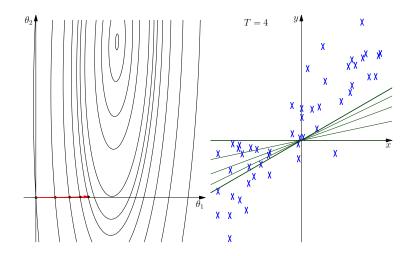
Colin (CDS)

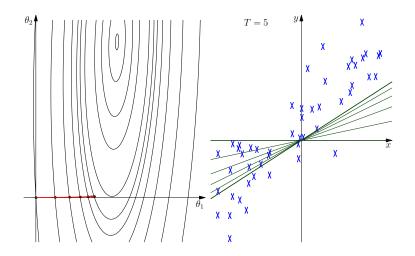


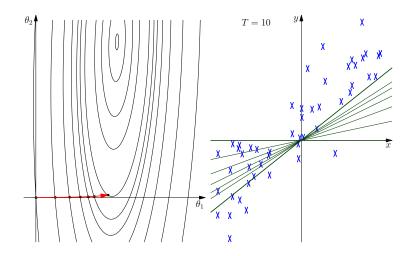


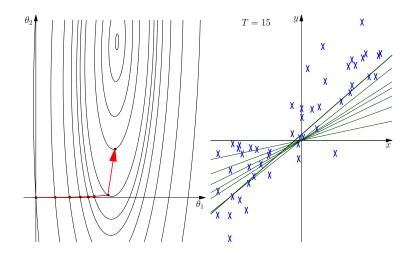


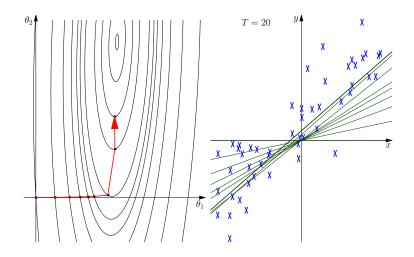


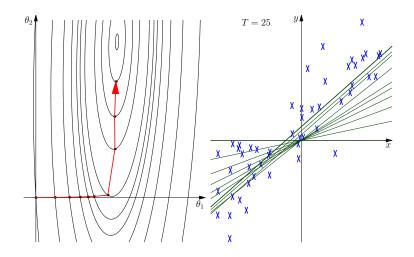


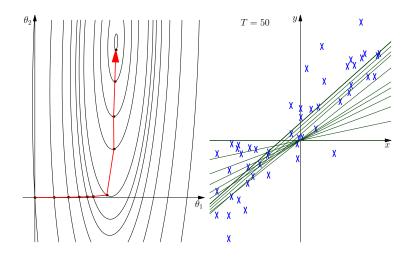












Gradient Descent

Gradient descent Algorithm

- Goal: find $\theta^* = \arg \min_{\theta} J(\theta)$
- $\theta^0 :=$ [initial condition] (can be randomly chosen)
- i := 0
- while not [termination condition]:
 - compute $\nabla J(\theta_i)$
 - $\alpha := [$ choose learning rate at iteration i]
 - $\theta^{i+1} := \theta^i \alpha \nabla J(\theta_i)$
 - *i* := *i* + 1

• return θ^i

Things to review

- Calculus
 - Gradients, taking (partial) derivatives
- Linear Algebra
 - Matrix computation, matrix derivatives
 - Example: compute $\frac{\partial x^T A x}{\partial x}$, where A is a matrix and x is a vector