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Homework 1: Error Decomposition & Polynomial Regression

Due: Wednesday, February 2, 2022 at 11:59pm

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using
software that typesets mathematics (e.g.LaTeX, LyX, or MathJax via iPython), though if you
need to you may scan handwritten work. You may find the minted package convenient for
including source code in your LaTeX document. If you are using LyX, then the listings package
tends to work better. The last application is optional.

General considerations (10 Points)

For the first part of this assignment we will consider a synthetic prediction problem to develop
our intuition about the error decomposition. Consider the random variables x ∈ X = [0, 1]
distributed uniformely (x ∼ Unif([0, 1])) and y ∈ Y = R defined as a polynomial of degree 2
of x: there exists (a0, a1, a2) ∈ R3 such that the values of x and y are linked as y = g(x) =
a0 + a1x+ a2x

2. Note that this relation fixes the joint distribution PX×Y .

From the knowledge of a sample {xi, yi}Ni=1, we would like to predict the relation between x and
y, that is find a function f to make predictions ŷ = f(x). We note Hd, the set of polynomial
functions on R of degree d: Hd =

{
f : x → b0 + bx+ · · · bdxd; bk ∈ R∀k ∈ {0, · · · d}

}
. We will

consider the hypothesis classes Hd varying d. We will minimize the squared loss ℓ(ŷ, y) =
1
2 (ŷ − y)2 to solve the regression problem.

1. (2 Points) Recall the definition of the expected risk R(f) of a predictor f . While this
cannot be computed in general note that here we defined PX×Y . Which function f∗ is an
obvious Bayes predictor? Make sure to explain why the risk R(f∗) is minimum at f∗.

2. (2 Points) Using H2 as your hypothesis class, which function f∗
H2

is a risk minimizer in
H2? Recall the definition of the approximation error. What is the approximation error
achieved by f∗

H2
?

3. (2 Points) Considering now Hd, with d > 2. Justify an inequality between R(f∗
H2

) and
R(f∗

Hd
). Which function f∗

Hd
is a risk minimizer in Hd? What is the approximation error

achieved by f∗
Hd

?

4. (4 Points) For this question we assume a0 = 0. Considering H = {f : x → b1x; b1 ∈ R},
which function f∗

H is a risk minimizer in H? What is the approximation error achieved by
f∗
H? In particular what is the approximation error achieved if furthermore a2 = 0 in the
definition of true underlying relation g(x) above?

Polynomial regression as linear least squares (5 Points)
In practice, PX×Y is usually unknown and we use the empirical risk minimizer (ERM). We will
reformulate the problem as a d-dimensional linear regression problem. First note that functions
in Hd are parametrized by a vector b = [b0, b1, · · · bd]⊤, we will use the notation fb. Similarly we
will note a ∈ R3 the vector parametrizing g(x) = fa(x). We will also gather data points from
the training sample in the following matrix and vector:

X =


1 x1 · · · xd

1

1 x2 · · · xd
2

...
...

...
...

1 xN · · · xN

 , y = [y0, y1, · · · yN ]⊤. (1)

https://github.com/gpoore/minted
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings
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These notations allow us to take advantage of the very effective linear algebra formalism. X is
called the design matrix.

5. (2 Points) Show that the empirical risk minimizer (ERM) b̂ is given by the following

minimization b̂ = argmin
b

∥Xb− y∥22 .

6. (3 Points) If N > d and X is full rank, show that b̂ = (X⊤X)−1X⊤y. (Hint: you should
take the gradients of the loss above with respect to b 1). Why do we need to use the
conditions N > d and X full rank ?

Hands on (7 Points)
Open the source code file hw1 code source.py from the .zip folder. Using the function get a

get a value for a, and draw a sample x train, y train of size N = 10 and a sample x test,

y test of size Ntest = 1000 using the function draw sample.

7. (2 Points) Write a function called least square estimator taking as input a design matrix

X ∈ RN×(d+1) and the corresponding vector y ∈ RN returning b̂ ∈ R(d+1). Your function
should handle any value of N and d, and in particular return an error if N ≤ d. (Drawing
x at random from the uniform distribution makes it almost certain that any design matrix
X with d ≥ 1 we generate is full rank).

8. (1 Points) Recall the definition of the empical risk R̂(f̂) on a sample {xi, yi}Ni=1 for a

prediction function f̂ . Write a function empirical risk to compute the empirical risk
of fb taking as input a design matrix X ∈ RN×(d+1), a vector y ∈ RN and the vector
b ∈ R(d+1) parametrizing the predictor.

9. (3 Points) Use your code to estimate b̂ from x train, y train using d = 5. Compare b̂
and a. Make a single plot (Plot 1) of the plan (x, y) displaying the points in the training
set, values of the true underlying function g(x) in [0, 1] and values of the estimated function
fb̂(x) in [0, 1]. Make sure to include a legend to your plot .

10. (1 Points) Now you can adjust d. What is the minimum value for which we get a “perfect
fit”? How does this result relates with your conclusions on the approximation error above?

In presence of noise (13 Points)
Now we will modify the true underlying PX×Y , adding some noise in y = g(x)+ϵ, with ϵ ∼ N (0, 1)
a standard normal random variable independent from x. We will call training error et the
empirical risk on the train set and generalization error eg the empirical risk on the test set.

11. (6 Points) Plot et and eg as a function of N for d < N < 1000 for d = 2, d = 5 and d = 10
(Plot 2). You may want to use a logarithmic scale in the plot. Include also plots similar
to Plot 1 for 2 or 3 different values of N for each value of d.

12. (4 Points) Recall the definition of the estimation error. Using the test set, (which we
intentionally chose large so as to take advantage of the law of large numbers) give an
empirical estimator of the estimation error. For the same values of N and d above plot the
estimation error as a function of N (Plot 3).

1You can check the linear algebra review here if needed http://cs229.stanford.edu/section/cs229-linalg.

pdf

http://cs229.stanford.edu/section/cs229-linalg.pdf
http://cs229.stanford.edu/section/cs229-linalg.pdf
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13. (2 Points) The generalization error gives in practice an information related to the estimation
error. Comment on the results of (Plot 2 and 3). What is the effect of increasing N? What
is the effect of increasing d?

14. (1 Points) Besides from the approximation and estimation there is a last source of error
we have not discussed here. Can you comment on the optimization error of the algorithm
we are implementing?

Application to Ozone data (optional) (2 Points)
You can now use the code we developed on the synthetic example on a real world dataset.
Using the command np.loadtxt(‘ozone wind.data’) load the data in the .zip. The first
column corresponds to ozone measurements and the second to wind measurements. You can try
polynomial fits of the ozone values as a function of the wind values.

15. (2 Points) Reporting plots, discuss the again in this context the results when varying N
(subsampling the training data) and d.


