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Latent Variable Models
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General Latent Variable Model

Two sets of random variables: z and x .

z consists of unobserved hidden variables.

x consists of observed variables.

Joint probability model parameterized by ✓ 2⇥:

p(x ,z | ✓)

Definition
A latent variable model is a probability model for which certain variables are never observed.

e.g. The Gaussian mixture model is a latent variable model.
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Complete and Incomplete Data

Suppose we observe some data (x1, . . . ,xn).

To simplify notation, take x to represent the entire dataset

x = (x1, . . . ,xn) ,

and z to represent the corresponding unobserved variables

z = (z1, . . . ,zn) .

An observation of x is called an incomplete data set.

An observation (x ,z) is called a complete data set.
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Our Objectives

Learning problem: Given incomplete dataset x , find MLE

✓̂= argmax
✓

p(x | ✓).

Inference problem: Given x , find conditional distribution over z :

p (z | x ,✓) .

For Gaussian mixture model, learning is hard, inference is easy.

For more complicated models, inference can also be hard. (See DSGA-1005)
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Log-Likelihood and Terminology

Note that
argmax

✓
p(x | ✓) = argmax

✓
[logp(x | ✓)] .

Often easier to work with this “ log-likelihood”.

We often call p(x) the marginal likelihood,
because it is p(x ,z) with z “marginalized out”:

p(x) =
X

z

p(x ,z)

We often call p(x ,z) the joint. (for “joint distribution”)

Similarly, logp(x) is the marginal log-likelihood.
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EM Algorithm
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Intuition

Problem: marginal log-likelihood logp(x ;✓) is hard to optimize (observing only x)

Observation: complete data log-likelihood logp(x ,z ;✓) is easy to optimize (observing both x
and z)

Idea: guess a distribution of the latent variables q(z) (soft assignments)

Maximize the expected complete data log-likelihood:

max
✓

X

z2Z

q(z) logp(x ,z ;✓)

EM assumption: the expected complete data log-likelihood is easy to optimize

Why should this work?
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Math Prerequisites
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Jensen’s Inequality

Theorem (Jensen’s Inequality)
If f : R! R is a convex function, and x is a random variable, then

Ef (x)> f (Ex).

Moreover, if f is strictly convex, then equality implies that x = Ex with probability 1 (i.e. x is

a constant).

e.g. f (x) = x2 is convex. So Ex2 > (Ex)2. Thus

Var(x) = Ex2- (Ex)2 > 0.
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Kullback-Leibler Divergence

Let p(x) and q(x) be probability mass functions (PMFs) on X.

How can we measure how “different” p and q are?

The Kullback-Leibler or “KL” Divergence is defined by

KL(pkq) =
X

x2X

p(x) log
p(x)

q(x)
.

(Assumes q(x) = 0 implies p(x) = 0.)

Can also write this as

KL(pkq) = Ex⇠p log
p(x)

q(x)
.
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Gibbs Inequality (KL(pkq)> 0 and KL(pkp) = 0)

Theorem (Gibbs Inequality)
Let p(x) and q(x) be PMFs on X. Then

KL(pkq)> 0,

with equality iff p(x) = q(x) for all x 2 X.

KL divergence measures the “distance” between distributions.

Note:
KL divergence not a metric.

KL divergence is not symmetric.
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Gibbs Inequality: Proof

KL(pkq) = Ep


- log

✓
q(x)

p(x)

◆�

> - log


Ep

✓
q(x)

p(x)

◆�
(Jensen’s)

= - log

2

4
X

{x |p(x)>0}

p(x)
q(x)

p(x)

3

5

= - log

"
X

x2X

q(x)

#

= - log1 = 0.

Since - log is strictly convex, we have strict equality iff q(x)/p(x) is a constant, which
implies q = p .

He He (CDS, NYU) DS-GA 1003 April 27, 2021 13 / 30



The ELBO: Family of Lower Bounds on logp(x | ✓)
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The Maximum Likelihood Estimator
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Lower bound of the marginal log-likelihood

logp(x ;✓) = log
X

z2Z

p(x ,z ;✓)

= log
X

z2Z

q(z)
p(x ,z ;✓)

q(z)

>
X

z2Z

q(z) log
p(x ,z ;✓)

q(z)

def
= L(q,✓)

Evidence: logp(x ;✓)

Evidence lower bound (ELBO): L(q,✓)
q: chosen to be a family of tractable distributions
Idea: maximize the ELBO instead of logp(x ;✓)
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MLE, EM, and the ELBO

The MLE is defined as a maximum over ✓:

✓̂MLE = argmax
✓

[logp(x | ✓)] .

For any PMF q(z), we have a lower bound on the marginal log-likelihood

logp(x | ✓)> L(q,✓).

In EM algorithm, we maximize the lower bound (ELBO) over ✓ and q:

✓̂EM ⇡ argmax
✓


max
q

L(q,✓)

�

In EM algorithm, q ranges over all distributions on z .
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EM: Coordinate Ascent on Lower Bound

Choose sequence of q’s and ✓’s by “coordinate ascent” on L(q,✓).

EM Algorithm (high level):
1 Choose initial ✓old.
2 Let q⇤ = argmaxqL(q,✓

old)
3 Let ✓new = argmax✓L(q

⇤,✓old).
4 Go to step 2, until converged.

Will show: p(x | ✓new)> p(x | ✓old)

Get sequence of ✓’s with monotonically increasing likelihood.
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EM: Coordinate Ascent on Lower Bound

1 Start at ✓old.

2 Find q giving best lower bound at ✓old =) L(q,✓).
3 ✓new = argmax✓L(q,✓).

From Bishop’s Pattern recognition and machine learning, Figure 9.14.
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Justification for maximizing ELBO

L(q,✓) =
X

z2Z

q(z) log
p(x ,z ;✓)

q(z)

=
X

z2Z

q(z) log
p(z | x ;✓)p(x ;✓)

q(z)

=-
X

z2Z

q(z) log
q(z)

p(z | x ;✓)
+
X

z2Z

q(z) logp(x ;✓)

=-KL(q(z)kp(z | x ;✓))+ logp(x ;✓)| {z }
evidence

KL divergence: measures “distance” between two distributions (not symmetric!)

KL(qkp)> 0 with equality iff q(z) = p(z | x).

ELBO = evidence - KL 6 evidence
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[discussion]Justification for maximizing ELBO

L(q,✓) =-KL(q(z)kp(z | x ;✓))+ logp(x ;✓)

Fix ✓= ✓0 and maxqL(q,✓0): q⇤ = p(z | x ;✓0)

Let ✓⇤,q⇤ be the global optimzer of L(q,✓), then ✓⇤ is the global optimizer of logp(x ;✓).
(Proof: exercise)
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Marginal Log-Likelihood IS the Supremum over Lower Bounds

sup is over all distributions on z

%eE.ie#Ee
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Summary

Latent variable models: clustering, latent structure, missing lables etc.

Parameter estimation: maximum marginal log-likelihood

Challenge: directly maximize the evidence logp(x ;✓) is hard

Solution: maximize the evidence lower bound:

ELBO = L(q,✓) =-KL(q(z)kp(z | x ;✓))+ logp(x ;✓)

Why does it work?

q⇤(z) = p(z | x ;✓) 8✓ 2⇥

L(q⇤,✓⇤) =max
✓

logp(x ;✓)
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EM algorithm

Coordinate ascent on L(q,✓)

1 Random initialization: ✓old ✓0

2 Repeat until convergence
(i) q(z) argmaxqL(q,✓

old)

Expectation (the E-step): q⇤(z) = p(z | x ;✓old)

J(✓) = L(q⇤,✓)

(ii) ✓new argmax✓L(q
⇤,✓)

Maximization (the M-step): ✓new argmax
✓

J(✓)
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EM Algorithm

1 Expectation Step

Let q⇤(z) = p(z | x ,✓old). [q⇤ gives best lower bound at ✓old]
Let

J(✓) := L(q⇤,✓) =
X

z

q⇤(z) log

✓
p(x ,z | ✓)

q⇤(z)

◆

| {z }
expectation w.r.t. z⇠q⇤(z)

2 Maximization Step

✓new = argmax
✓

J(✓).

[Equivalent to maximizing expected complete log-likelihood.]

EM puts no constraint on q in the E-step and assumes the M-step is easy. In general, both
steps can be hard.
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[discussion]Monotonically increasing likelihood

Exercise: prove that EM increases the marginal likelihood monotonically

logp(x ;✓new)> logp(x ;✓old) .

Does EM converge to a global maximum?
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Variations on EM
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EM Gives Us Two New Problems

The “E” Step: Computing

J(✓) := L(q⇤,✓) =
X

z

q⇤(z) log

✓
p(x ,z | ✓)

q⇤(z)

◆

The “M” Step: Computing
✓new = argmax

✓
J(✓).

Either of these can be too hard to do in practice.
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Generalized EM (GEM)

Addresses the problem of a difficult “M” step.

Rather than finding
✓new = argmax

✓
J(✓),

find any ✓new for which
J(✓new)> J(✓old).

Can use a standard nonlinear optimization strategy
e.g. take a gradient step on J.

We still get monotonically increasing likelihood.
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EM and More General Variational Methods

Suppose “E” step is difficult:
Hard to take expectation w.r.t. q⇤(z) = p(z | x ,✓old).

Solution: Restrict to distributions Q that are easy to work with.

Lower bound now looser:

q⇤ = argmin
q2Q

KL[q(z),p(z | x ,✓old)]
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