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General Latent Variable Model

@ Two sets of random variables: z and x.

@ z consists of unobserved hidden variables.

@ x consists of observed variables.

@ Joint probability model parameterized by 0 € ©:

p(x,z|0)

Definition

A latent variable model is a probability model for which certain variables are never observed.

e.g. The Gaussian mixture model is a latent variable model.
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Complete and Incomplete Data

@ Suppose we observe some data (xi,...,x,).
@ To simplify notation, take x to represent the entire dataset
X=(Xt,....%n),
and z to represent the corresponding unobserved variables
z=(z1,....2zn).
@ An observation of x is called an incomplete data set.

@ An observation (x, z) is called a complete data set.
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Our Objectives

Learning problem: Given incomplete dataset x, find MLE

6 = argmaxp(x | 0).
0

@ Inference problem: Given x, find conditional distribution over z:
p(z|x,0).
o For Gaussian mixture model, learning is hard, inference is easy.

@ For more complicated models, inference can also be hard. (See DSGA-1005)
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Log-Likelihood and Terminology

@ Note that
argmaxp(x|0) = argmax|logp(x | 0)].
0 0

e Often easier to work with this “log-likelihood".

o We often call p(x) the marginal likelihood,
o because it is p(x, z) with z “marginalized out:

p(x)=) plx.2)

e We often call p(x,z) the joint. (for “joint distribution”)

o Similarly, log p(x) is the marginal log-likelihood.
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EM Algorithm J
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[ntuition

Problem: marginal log-likelihood log p(x;0) is hard to optimize (observing only x)

Observation: complete data log-likelihood log p(x, z;0) is easy to optimize (observing both x
and z)

|dea: guess a distribution of the latent variables g(z) (soft assignments)

Maximize the expected complete data'log-likelihood:

maqu )logp(x,z;0)
zEZ

EM assumption: the expected complete data log-likelihood is easy to optimize

Why should this work?
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Math Prerequisites J
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Jensen’s Inequality

Theorem (Jensen's Inequality)

If f : R— R is a convex function, and x is a random variable, then
Ef(x) > f(Ex).

Moreover, if f is strictly convex, then equality implies that x = Ex with probability 1 (i.e. x is
a constant).

e eg. f(x)=x?is convex. So Ex? > (Ex)z. Thus
Var (x) = Ex?— (Ex)? > 0.
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Kullback-Leibler Divergence

@ Let p(x) and g(x) be probability mass functions (PMFs) on X.

@ How can we measure how “different” p and q are?

@ The Kullback-Leibler or “KL" Divergence is defined by
p(x)
KL = x)log ——.
(pllq) X%Cp( Jlog 5
(Assumes g(x) =0 implies p(x) =0.)
@ Can also write this as

KL(pllg) = Exp '0g@-

q(x)
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Gibbs Inequality (KL(pl||g) = 0 and KL(p||p) =0)

Theorem (Gibbs Inequality)
Let p(x) and q(x) be PMFs on X. Then

KL(pllq) =0,
with equality iff p(x) = q(x) for all x € X.

o KL divergence measures the “distance” between distributions.
@ Note:

o KL divergence not a metric.
o KL divergence is not symmetric. & S4XA + KLCYUP)
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Gibbs Inequality: Proof

KL(pl/q)

—log

—log

—log

s [ (G
(q )

[IEP

{xlp(x)>0

> q(X)]

LxeX

£
jo]

—logl =0.

@ Since —log is strictly convex, we have strict equality iff g(x)/p(x) is a constant, which

implies g=1p .
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The ELBO: Family of Lower Bounds on logp(x | 0) J
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The Maximum Likelihood Estimator

é"‘: arg\gax [TOS 1o g &
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Lower bound of the marginal log-likelihood

log p(x;0) IogprzG

zeEZ
p(x, z; 9
=log ) q(2)
zEZ
p(x, z; 9)
> Y qlz)log P22 7
zEZ
det
= £L(q,0)

o Evidence: logp(x;0)

e Evidence lower bound (ELBO): £(q,0)

@ g: chosen to be a family of tractable distributions

o |dea: maximize the ELBO instead of log p(x;0)
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MLE, EM, and the ELBO

@ The MLE is defined as a maximum over 0:

BmLe = argmax [logp(x | 0)].
0

@ For any PMF g(z), we have a lower bound on the marginal log-likelihood
logp(x|0) = L(q,0).

e In EM algorithm, we maximize the lower bound (ELBO) over 6 and g:
Bem ~ arg max [maxL(q,G)]
0 q
@ In EM algorithm, g ranges over all distributions on z.
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EM: Coordinate Ascent on Lower Bound

e Choose sequence of g's and 0's by “coordinate ascent” on £(q,0).

e EM Algorithm (high level):
@ Choose initial 69,
Q Let g* =arg maqu(q,G"'d)
© Let 8™ = argmaxg £(g*,0°9).
@ Go to step 2, until converged.

o Will show: p(x|6mW) > p(x | 6°!d)

e Get sequence of 0's with monotonically increasing likelihood.
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EM: Coordinate Ascent on Lower Bound

Inp(X[6)

0°1d onew

@9

@ Start at 6°d.
@ Find g giving best lower bound at 8° — £(q,0).
© 0" =argmaxgL(q,0).

From Bishop's Pattern recognition and machine learning, Figure 9.14.
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Justification for maximizing ELBO

p(x,z;0)
0) = log =~
£(q.0) Zezzq(z) 8 o]
B p(z|x;0)p(x;0)
_zezzq(z)log q(z)
=—> qlz Jlog 8 +Zq )log p(x; 6)
zeZ zeZ

= —KL (q(z)Hp(z | x;0)) +log p(x; 6)
—

evidence
e KL divergence: measures “distance” between two distributions (not symmetric!)

e KL(gl||p) > 0 with equality iff g(z) = p(z | x).

@ ELBO = evidence - KL < evidence
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[discussion]Justification for maximizing ELBO

£(q,0) =—KL(q(2)[|p(z | x;0)) +log p(x;0)
Fix 0 =00 and maxq£(q,00): ¢* = p(z| x;60)

Let 0%, g* be the global optimzer of £(q,0), then 6* is the global optimizer of log p(x;0).
(Proof: exercise)
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Marginal Log-Likelihood IS the Supremum over Lower Bounds

sup is over all distributions on z

[ﬂiz’e /03 P()cle) = S{p L (1,9)




Summary

Latent variable models: clustering, latent structure, missing lables etc.
Parameter estimation: maximum marginal log-likelihood
Challenge: directly maximize the evidence log p(x;0) is hard

Solution: maximize the evidence lower bound:

ELBO = £(q,0) = —KL(q(2)|[p(z | x;0)) +log p(x; 0)

Why does it work?

q*(z) =p(z1x;0) VOcO
L(q",0%) = mgX'ng(x;e)
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EM algorithm

Coordinate ascent on £(q,0)
@ Random initialization: 8°4 « 9,
@ Repeat until convergence
@ q(z)+arg maqu(q,GO'd)

Expectation (the E-step): g*(z) = p(z]| x; 9°9)

@ 0"« argmaxgy L(g*,0)

0" < argmax J(0)

0

Maximization (the M-step):
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EM Algorithm

© Expectation Step
o Let g*(z) = p(z|x,0°9). [g* gives best lower bound at 9°'9]

o Let
J(0) :=L(q",0) Zq Iog<:(zz|)e)>

expectation w.r.t. z~g*(z)

© Maximization Step

enew

=argmaxJ(0).
)

[Equivalent to maximizing expected complete log-likelihood.]

EM puts no constraint on g in the E-step and assumes the M-step is easy. In general, both
steps can be hard.
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[discussion|Monotonically increasing likelihood

Inp(X|6)

L (q,9)

\

: . Tgold gV :
Exercise: prove that EM increases the marginal likelihood monotonically

log p(x; 0™) > log p(x; 6°) .

Does EM converge to a global maximum?
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Variations on EM J
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EM Gives Us Two New Problems

@ The "E" Step: Computing

o=t = Lo es (g )

@ The “M" Step: Computing

enew

=argmaxJ(0).
0

o Either of these can be too hard to do in practice.
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Generalized EM (GEM)

o Addresses the problem of a difficult “M" step.

@ Rather than finding

0" = argmax J(0),
0

find any "W for which
J(enew) >J(90|d)

@ Can use a standard nonlinear optimization strategy
o e.g. take a gradient step on J.

@ We still get monotonically increasing likelihood.
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EM and More General Variational Methods

@ Suppose “E" step is difficult:
o Hard to take expectation w.r.t. ¢*(z) = p(z | x,0°9).

@ Solution: Restrict to distributions Q that are easy to work with.

o Lower bound now looser:

q* =argminKLI[q(z), p(z | x,0°9)]
qeqQ
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