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Probabilistic Model for Clustering

Example:
@ Choose z €{1,2,3} with
p(1)=p(2) =p(3) =3.
@ Choose x| z~N (X | 1z Z;).

@ Problem setup:
o There are k clusters (or mixture
components).

o We have a probability distribution for each .- Mixture of Three Gaussians

cluster. R
@ Generative story of a mixture distribution: " s

Past!
@ Choose a random cluster z €{1,2, ..., k}. -

@ Choose a point from the distribution for ’ '. .. |
cluster z. . ' . N(Mfz.a)
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Gaussian mixture model (GMM)

Generative story of GMM with k mixture components:
@ Choose cluster z ~ Categorical(my,. .., ).
@ Choose x| z~N(u1z Z5).

Probability density of x:

@ Sum over (marginalize) the latent variable z.

px)=) plxz2) (1)
=Y plxl2)p(2) (2)
= Nk Zi) 3)

k
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Learning GMMs

How to learn the parameters 71, py, Zx?

e MLE (also called maximize marginal likelihood).

@ Log likelihood of data:

L(8) =) logp(x;;0) (4)
i=1

:Z|ogZp(x,z;6) (5)
i=1 z

@ Cannot push log into the sum... z and x are coupled.

@ No closed-form solution for GMM—try to compute the gradient yourself!
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Learning GMMs: observable case

Suppose we observe cluster assignments z. Then MLE is easy:

# examples in each cluster

i=1
~ nz . .
fi(z) = — fraction of examples in each cluster
n
N 1 ..
;= — E X; empirical cluster mean
nz .
i:zi=z
.1 - . .
 ,= - E (xi— ) (xi—{17) " . empirical cluster covariance
z
i:zji=z
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Learning GMMs: inference

The inference problem: observe x, want to know z.

plz=jl|x;)=p(x,z=j)/p(x) (10)
_ pxlz=j)plz=])
= S eplxlz=kplz=k) (1)
_ N, )
> TN (i | g, Zk)

@ p(z|x) is a soft assignment.

@ If we know the parameters p, X, 7, this would be easy to compute.
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EM for GMM

Let's compute the cluster assignments and the parameters iteratively.

The expectation-minimization (EM) algorithm:
@ Initialize parameters u, X, 7t randomly.

@ Run until convergence:
© E-step: fill in latent variables by inference.
e compute soft assignments p(z | x;) for all i.
® M-step: standard MLE for p, Z, 7t given “observed” variables.
o Equivalent to MLE in the observable case on data weighted by p(z | x;).
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M-step for GMM

@ Let p(z|x) be the soft assignments:

thc;ldN (Xi | Mj:ld, Z})Id)
3Ky N (x; | od, £old)

c=1

P(z =) | %) =vi=

@ Exercise: show that
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EM for GMM

o Initialization

2
0
o .o~
-2 1
-2 0 (a) 2

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

o First soft assignment:

2
0
o .0‘
-2 12
-2 0 (b) 2

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

o First soft assignment:

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

@ After 5 rounds of EM:

-2 0 (e) 2

From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

@ After 20 rounds of EM:
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From Bishop's Pattern recognition and machine learning, Figure 9.8.
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EM for GMM: Summary

EM is a general algorithm for learning latent variable models.

Key idea: if data was fully observed, then MLE is easy.
o E-step: fill in latent variables by computing p(z | x, 0).

o M-step: standard MLE given fully observed data.

Simpler and more efficient than gradient methods.

Can prove that EM monotonically improves the likelihood and converges to a local
minimum.

@ k-means is a special case of EM for GMM with hard assignments, also called hard-EM.
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