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Probabilistic Model for Clustering

Problem setup:

There are k clusters (or mixture
components).

We have a probability distribution for each

cluster.

Generative story of a mixture distribution:

1 Choose a random cluster z 2 {1,2, . . . ,k}.
2 Choose a point from the distribution for

cluster z .

Example:

1 Choose z 2 {1,2,3} with

p(1) = p(2) = p(3) = 1
3 .

2 Choose x | z ⇠N (X | µz ,⌃z).
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Gaussian mixture model (GMM)

Generative story of GMM with k mixture components:

1 Choose cluster z ⇠ Categorical(⇡1, . . . ,⇡k).

2 Choose x | z ⇠N(µz ,⌃z).

Probability density of x :

Sum over (marginalize) the latent variable z .

p(x) =
X

z

p(x ,z) (1)

=
X

z

p(x | z)p(z) (2)

=
X

k

⇡kN(µk ,⌃k) (3)
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Learning GMMs

How to learn the parameters ⇡k ,µk ,⌃k?

MLE (also called maximize marginal likelihood).

Log likelihood of data:

L(✓) =
nX

i=1

logp(xi ;✓) (4)

=
nX

i=1

log
X

z

p(x ,z ;✓) (5)

Cannot push log into the sum... z and x are coupled.

No closed-form solution for GMM—try to compute the gradient yourself!
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Learning GMMs: observable case

Suppose we observe cluster assignments z . Then MLE is easy:

nz =
nX

i=1

1(zi = z) # examples in each cluster (6)

⇡̂(z) =
nz
n

fraction of examples in each cluster (7)

µ̂z =
1

nz

X

i :zi=z

xi empirical cluster mean (8)

⌃̂z =
1

nz

X

i :zi=z

(xi - µ̂z)(xi - µ̂z)
T . empirical cluster covariance (9)
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Learning GMMs: inference

The inference problem: observe x , want to know z .

p(z = j | xi ) = p(x ,z = j)/p(x) (10)

=
p(x | z = j)p(z = j)P
k p(x | z = k)p(z = k)

(11)

=
⇡jN(xi | µj ,⌃j)P
k ⇡kN(xi | µk ,⌃k)

(12)

p(z | x) is a soft assignment.

If we know the parameters µ,⌃,⇡, this would be easy to compute.
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EM for GMM

Let’s compute the cluster assignments and the parameters iteratively.

The expectation-minimization (EM) algorithm:

1 Initialize parameters µ,⌃,⇡ randomly.

2 Run until convergence:

1 E-step: fill in latent variables by inference.

compute soft assignments p(z | xi ) for all i .
2 M-step: standard MLE for µ,⌃,⇡ given “observed” variables.

Equivalent to MLE in the observable case on data weighted by p(z | xi ).
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M-step for GMM

Let p(z | x) be the soft assignments:

�j
i =

⇡old
j N

⇣
xi | µold

j ,⌃old
j

⌘

Pk
c=1⇡

old
c N (xi | µold

c ,⌃old
c )

.

Exercise: show that

µnew
c =

1

nc

nX

i=1

�c
i xi

⌃new
c =

1

nc

nX

i=1

�c
i (xi -µnew

c )(xi -µnew
c )T

⇡new
c =

nc
n
.
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EM for GMM

Initialization

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

First soft assignment:

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

First soft assignment:

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

After 5 rounds of EM:

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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EM for GMM

After 20 rounds of EM:

From Bishop’s Pattern recognition and machine learning, Figure 9.8.
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EM for GMM: Summary

EM is a general algorithm for learning latent variable models.

Key idea: if data was fully observed, then MLE is easy.

E-step: fill in latent variables by computing p(z | x ,✓).

M-step: standard MLE given fully observed data.

Simpler and more efficient than gradient methods.

Can prove that EM monotonically improves the likelihood and converges to a local

minimum.

k-means is a special case of EM for GMM with hard assignments, also called hard-EM.
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