
Backpropagation

He He
Slides based on Lecture 12b from David Rosenberg’s course materials

(https://github.com/davidrosenberg/mlcourse)

CDS, NYU

April 20, 2021

He He Slides based on Lecture 12b from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 1 / 23

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12b.backpropagation.pdf
https://github.com/davidrosenberg/mlcourse
https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12b.backpropagation.pdf
https://github.com/davidrosenberg/mlcourse

Back-propagation

He He (CDS, NYU) DS-GA 1003 April 20, 2021 2 / 23

A brief history of artificial neural networks

early 1940s–late 1960s
Initial idea from neuroscience: create a computational model of neural networks.

Development: perceptron [Rosenblatt, 1958], networks with many layers.

Optimization: automatic differentiation [Linnainmaa, 1970].

late 1960s–late 1980s
Computers didn’t have enough processing power [Minsky and Papert, 1969].

Back-propagation invented [Werbos, 1975] (but still hard to train).

AI research focused on expert systems and symbolic systems.

late 1980s–early 2000s
SVMs and linear models dominated ML.

Continual developments in ANN: Schmidhuber, Hinton, Lecun etc.He He (CDS, NYU) DS-GA 1003 April 20, 2021 3 / 23

Example: MLP Regression

Input space: X= R

Action Space / Output space: A= Y= R

Hypothesis space: MLPs with a single 3-node hidden layer:

f (x) = w0+w1h1(x)+w2h2(x)+w3h3(x),

where
hi (x) = �(vix +bi) for i = 1,2,3,

for some fixed activation function � : R! R.

What are the parameters we need to fit?

b1,b2,b3,v1,v2,v3,w0,w1,w2,w3 2 R

He He (CDS, NYU) DS-GA 1003 April 20, 2021 4 / 23

How to choose the best hypothesis?

As usual, choose our prediction function using empirical risk minimization.

Our hypothesis space is parameterized by

✓= (b1,b2,b3,v1,v2,v3,w0,w1,w2,w3) 2⇥= R10

For a training set (x1,y1), . . . ,(xn,yn), find

✓̂= argmin
✓2R10

1
n

nX

i=1

(f (xi ;✓)- yi)
2 .

Gradient descent:
Is it differentiable w.r.t. ✓? f (x) = w0+

P3
i=1wi tanh(vix +bi).

Is it convex in ✓? Might converge to a local minimum.

He He (CDS, NYU) DS-GA 1003 April 20, 2021 5 / 23

Gradient descent for (large) neural networks

Mathematically, it’s just partial derivatives, which you can compute by hand using the
chain rule.

In practice, this could be time-consuming and error-prone.

How do we compute gradients in a systematic and efficient way?
Back-propagation (a special case of automatic differentiation).

Not limited to neural networks.

Visualize with computation graphs.
Avoid long equations.

Structure of the computation (modularity and dependency), which allows for modern
computation frameworks such as Tensorflow/Pytorch/MXNet/etc.

He He (CDS, NYU) DS-GA 1003 April 20, 2021 6 / 23

Function as a graph

Function as a node that takes in a set of inputs and produces a set of outputs.

Example: g : Rp! Rn.

Typical computation graph: Broken out into components:

He He (CDS, NYU) DS-GA 1003 April 20, 2021 7 / 23

Partial Derivatives of an affine function

Define the affine function g(x) =Mx + c , for M 2 Rn⇥p and c 2 R.

Let b = g(a) =Ma+ c . What is bi?

bi depends on the ith row of M:

bi =
pX

k=1

Mikak + ci .

If aj aj +�, what is bi?

bi bi +Mij�.

Partial derivative/gradient measures sensitivity: If we perturb an input a little bit, how much
does an output change?

He He (CDS, NYU) DS-GA 1003 April 20, 2021 8 / 23

-1%1*41"

:÷.

Partial Derivatives in general

Consider a function g : Rp! Rn.

Partial derivative @bi
@aj

is the instantaneous
rate of change of bi as we change aj .

If we change aj slightly to

aj +�,

Then (for small �), bi changes to
approximately

bi +
@bi
@aj

�.

He He (CDS, NYU) DS-GA 1003 April 20, 2021 9 / 23

Compose multiple functions

Compose two functions g : Rp! Rn and f : Rn! Rm.

b = g(a), c = f (b).

How does change in aj affect ci?

Visualize chain rule:
Sum changes induced on all paths
from aj to ci .

Changes on one path is the product
of changes on each edge along the
path.

@ci
@aj

=
nX

k=1

@ci
@bk

@bk
@aj

.

. He He (CDS, NYU) DS-GA 1003 April 20, 2021 10 / 23

e±¥ É÷ -e

Example: Linear least squares

Hypothesis space
�
f (x) = wT x +b | w 2 Rd ,b 2 R

.

Data set (x1,y1) , . . . ,(xn,yn) 2 Rd ⇥R.

Define
`i (w ,b) =

⇥�
wT xi +b

�
- yi

⇤2
.

In SGD, in each round we’d choose a random index i 2 1, . . . ,n and take a gradient step

wj wj -⌘
@`i (w ,b)

@wj
, for j = 1, . . . ,d

b b-⌘
@`i (w ,b)

@b
,

for some step size ⌘> 0.

Let’s see how to calculate these partial derivatives on a computation graph.
He He (CDS, NYU) DS-GA 1003 April 20, 2021 11 / 23

Computation Graph and Intermediate Variables

For a generic training point (x ,y), denote the loss by

`(w ,b) =
⇥�
wT x +b

�
- y

⇤2
.

Let’s break this down into some intermediate computations:

(prediction) ŷ =
dX

j=1

wjxj +b

(residual) r = y - ŷ

(loss) ` = r2

He He (CDS, NYU) DS-GA 1003 April 20, 2021 12 / 23

Partial Derivatives on Computation Graph

We’ll work our way from graph output ` back to the parameters w and b:

@`

@r
= 2r

@`

@ŷ
=

@`

@r

@r

@ŷ
= (2r)(-1) =-2r

@`

@b
=

@`

@ŷ

@ŷ

@b
= (-2r)(1) =-2r

@`

@wj
=

@`

@ŷ

@ŷ

@wj
= (-2r)xj =-2rxj

He He (CDS, NYU) DS-GA 1003 April 20, 2021 13 / 23

b- r2

T

F

Example: Ridge Regression

For training point (x ,y), the `2-regularized objective function is

J(w ,b) =
⇥�
wT x +b

�
- y

⇤2
+�wTw .

Let’s break this down into some intermediate computations:

(prediction) ŷ =
dX

j=1

wjxj +b

(residual) r = y - ŷ

(loss) ` = r2

(regularization) R = �wTw

(objective) J = `+R

He He (CDS, NYU) DS-GA 1003 April 20, 2021 14 / 23

Partial Derivatives on Computation Graph

We’ll work our way from graph output ` back to the parameters w and b:

@J

@`
=

@J

@R
= 1

@J

@ŷ
=

@J

@`

@`

@r

@r

@ŷ
= (1)(2r)(-1) =-2r

@J

@b
=

@J

@ŷ

@ŷ

@b
= (-2r)(1) =-2r

@J

@wj
= Exercise

He He (CDS, NYU) DS-GA 1003 April 20, 2021 15 / 23

Backpropagation overview

Learning: run gradient descent to find the parameters that minimize our objective J.

Backpropagation: compute gradient w.r.t. each (trainable) parameter @J
@✓i

.

Forward pass Compute intermediate function
values, i.e. output of each node

Backward pass Compute the partial derivative of J
w.r.t. all intermediate variables and
the model parameters

How to save computation?
Path sharing: each node needs to cache the
intermediate results.

Think dynamic programming.

He He (CDS, NYU) DS-GA 1003 April 20, 2021 16 / 23

Forward pass

Order nodes by topological sort (every node appears before its children)

For each node, compute the output given the input (output of its parents).

Forward at intermediate node fi and fj :

. . . fi fj . . .

a b = fi (a) c = fj(b)

He He (CDS, NYU) DS-GA 1003 April 20, 2021 17 / 23

Backward pass

Order nodes in reverse topological order (every node appear after its children)

For each node, compute the partial derivative of its output w.r.t. its input, multiplied by
the partial derivative from its children (chain rule).

Backward at intermediate node fi :

. . . fi fj . . .

a b = fi (a) c = fj(b)

gi = gj · @b@a = @J
@a gj =

@J
@b

He He (CDS, NYU) DS-GA 1003 April 20, 2021 18 / 23

(at the output layer)

Multiple children

First sum partial derivatives from all children, then multiply.

Backprop for node f :

Input: @J
@b(1)

, . . . , @J
@b(N)

(Partials w.r.t. inputs to all children)

Output:

@J

@b
=

NX

k=1

@J

@b(k)

@J

@a
=

@J

@b

@b

@a

He He (CDS, NYU) DS-GA 1003 April 20, 2021 19 / 23

Backpropagation in practice

Inputs and outputs of nodes are generally vectorized (efficient to compute on GPUs).

Computation graphs can be composed from a set of basic operation nodes, e.g.,
addition/multiplication, dot product, logistic function etc.

Programming paradigms:
Symbolic Specify all computation before data—efficient, e.g., Tensorflow.

Imperative Specify the computation step by step—flexible/easier to write, e.g., Pytorch.
Hybrid Can use either paradigm for computation subgraphs, e.g., MXNet.

He He (CDS, NYU) DS-GA 1003 April 20, 2021 20 / 23

Non-convex optimization

Left: convex loss function. Right: non-convex loss function.
He He (CDS, NYU) DS-GA 1003 April 20, 2021 21 / 23

Non-convex optimization: challenges

Optimization of neural networks is generally hard.

Converge to a bad local minimum.
Try different initialization and rerun.

Saddle point.
Doesn’t often happen with SGD.

Second partial derivative test.

“Flat” region: low gradient magnitude
Use ReLU instead of sigmoid as activation
functions.

High curvature: high gradient magnitude
Gradient clipping.

Adaptive step sizes.
Reference: Chris De Sa’s slides (CS6787 Lecture 7).

He He (CDS, NYU) DS-GA 1003 April 20, 2021 22 / 23

Review

Backpropagation is an algorithm to compute gradient (partial derivatives + chain rule)
efficiently.

It is used in gradient descent optimization with neural networks.

Key idea: function composition and dynamic programming

In practice, efficient software exists (backpropagation, neural network building blocks,
optimization algorithms etc.).

He He (CDS, NYU) DS-GA 1003 April 20, 2021 23 / 23

