Backpropagation J

He He
Slides based on Lecture 12b from David Rosenberg's course materials
(https://github.com/davidrosenberg/mlcourse)

CDS, NYU

April 20, 2021

He He Slides based on Lecture from David Ro DS-GA 1003 April 20, 2021 1/23

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12b.backpropagation.pdf
https://github.com/davidrosenberg/mlcourse
https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12b.backpropagation.pdf
https://github.com/davidrosenberg/mlcourse

Back-propagation J

He He (CDS, NYU) DS-GA 1003 April 20, 2021 2/23

A brief history of artificial neural networks

early 1940s—late 1960s

@ Initial idea from neuroscience: create a computational model of neural networks.
@ Development: perceptron [Rosenblatt, 1958], networks with many layers.
e Optimization: automatic differentiation [Linnainmaa, 1970].

late 1960s—Iate 1980s
e Computers didn't have enough processing power [Minsky and Papert, 1969].

@ Back-propagation invented [Werbos, 1975] (but still hard to train).
o Al research focused on expert systems and symbolic systems.

late 1980s—early 2000s
@ SVMs and linear models dominated ML.

He He (CDS, NYU) DS-GA 1003 April 20, 2021 3/23

Example: MLP Regression

@ Input space: X =R
@ Action Space / Output space: A=Y =R
@ Hypothesis space: MLPs with a single 3-node hidden layer:
f(x) = wo +wrh1(x) +waha(x) + wsh3(x),

where
hi(x) =o(vix+b;) for i =1,2,3,

for some fixed activation function 0: R — R.
@ What are the parameters we need to fit?

b1, by, b3, v1, v, v3, wo, wi, wo, w3 € R

He He (CDS, NYU) DS-GA 1003 April 20, 2021 4/23

How to choose the best hypothesis?

@ As usual, choose our prediction function using empirical risk minimization.
@ Our hypothesis space is parameterized by
0= (bl, by, b3, vi, vo, v3, wp, Wy, wo, W3) €= Rlo

@ For a training set (x1,y1),...,(xn, ya), find
n

A 1
0= argmian (F(x;;0) —yi)?.
0cR10 ni:1

o Gradient descent:
o Is it differentiable w.r.t. 87 f(x) = Wo—i—Z _y witanh(v;x 4+ b;).

o Is it convex in 87 Might converge to a local minimum.

He He (CDS, NYU) DS-GA 1003 April 20, 2021 5/23

Gradient descent for (large) neural networks

o Mathematically, it's just partial derivatives, which you can compute by hand using the
chain rule.

o In practice, this could be time-consuming and error-prone.

@ How do we compute gradients in a systematic and efficient way?
o Back-propagation (a special case of automatic differentiation).

o Not limited to neural networks.
o Visualize with computation graphs.
o Avoid long equations.

o Structure of the computation (modularity and dependency), which allows for modern
computation frameworks such as Tensorflow/Pytorch/MXNet/etc.

He He (CDS, NYU) DS-GA 1003 April 20, 2021 6/23

Function as a graph

@ Function as a node that takes in a set of inputs and produces a set of outputs.

e Example: g:RP — R".

@ Typical computation graph:

a L
R R

He He (CDS, NYU)

@ Broken out into components:

a; b'
Q
2
; 2
. G,
A (S
ae LekR
DS-GA 1003 April 20, 2021

7/23

Partial Derivatives of an affine function

@ Define the affine function g(x) = Mx+c, for M € R"*P and c € R.

o Let b=g(a) = Ma+c. What is b;?

a
! @ b; depends on the ith row of M:
az . ;
. v £ b,'ZZM,'kak—i-C,'.
ai’ —_— k=1
L

L:é[Kw o If aj < a;j+0, what is b;?

Dbi b;(—b,'—l-M,'j5.

9&5

Partial derivative/gradient measures sensitivity: If we perturb an input a little bit, how much
does an output change?

He He (CDS, NYU) DS-GA 1003 April 20, 2021 8/23

Partial Derivatives in general

o Consider a function g:RP — R".

o Partial derivative g:’f is the instantaneous
a, b rate of change of b; as we change aj.
|
3 b o If we change a; slightly to
. 2
" lo aj+9o,
a
n .
‘ P | 1 ,) ° ;I';pernox(iﬁ;:gsjll d), b; changes to
ae LeR
0b;
b; + —29.
aaj

He He (CDS, NYU) DS-GA 1003 April 20, 2021 9/23

Compose multiple functions

@ Compose two functions g: RP — R"” and f : R" — R™.

e How does change in a; affect ¢;?

@ Visualize chain rule:

o Sum changes induced on all paths
from aj to ¢;.

o Changes on one path is the product
of changes on each edge along the
path.

d¢; - 0¢i by

aaj N kzlabk aaj .

He He (CDS, NYU) DS-GA 1003 April 20, 2021 10/23

Example: Linear least squares

e Hypothesis space {f(x) =w’x+b|w eR? beR}.

e Data set (x1,y1),....(Xn yn) € RY x R.

@ Define)
¢i(w,b) = [(WTX,-—i—b) —y,-])
@ In SGD, in each round we'd choose a random index i € 1,...,n and take a gradient step
oli(w, b) ,
Wi — wi— forj=1,..., d
J J aVVJ
0l;i(w, b)
b b—
- ob

for some step size 11 > 0.

@ Let's see how to calculate these partial derivatives on a computation graph.

He He (CDS, NYU) DS-GA 1003 April 20, 2021 11/23

Computation Graph and Intermediate Variables

@ For a generic training point (x,y), denote the loss by

Uw, b) = [(WTX—i—b) —y]z.

@ Let's break this down into some intermediate computations:

?‘mﬂ/\ﬁr—f Tammg Olo]eo’ﬁ\/£

wjx; + b
L) S D2
(residual) r =

(loss) £ = r? * Y
T -
romny Exaw\f]e

He He (CDS, NYU) DS-GA 1003 April 20, 2021 12/23

M=

(prediction) y =

S < 'ﬂ
| =
<>

Partial Derivatives on Computation Graph

o We'll work our way from graph output £ back to the parameters w and b:

o1
or
ol
oy
of
b
ol
aw

He He (CDS, NYU) DS-GA 1003

oedr N
——=(2r)(-1)=-2r
or oy
oL oy
— ~ 9
apop ") d
oL oy

April 20, 2021

13 /23

Example: Ridge Regression

e For training point (x,y), the {>-regularized objective function is
J(w,b) = [(WTX—I—b) —y]2—|—}\WTW.

@ Let's break this down into some intermediate computations:

(prediction) y

(residual) r
(loss) ¢ r Y
(regularization) R = AwTw Trainir\a Examr]e

(objective) J = (+R
DS-GA 1003 April 20, 2021 14 /23

Partial Derivatives on Computation Graph

o We'll work our way from graph output £ back to the parameters w and b:

(P 0J
avamefevs &
y oJ

b oy

¥ 9J
Trainir\ o] Ex;?qr)a aaj)

ow;

He He (CDS, NYU) DS-GA 1003

Exercise

April 20, 2021 15 /23

Backpropagation overview

@ Learning: run gradient descent to find the parameters that minimize our objective J.

e Backpropagation: compute gradient w.r.t. each (trainable) parameter gej,.

Forward pass Compute intermediate function
values, i.e. output of each node

Backward pass Compute the partial derivative of J
w.r.t. all intermediate variables and
the model parameters

Bvame*’evs

How to save computation?

-) .
Training Exavple @ Path sharing: each node needs to cache the
intermediate results.

@ Think dynamic programming.

He He (CDS, NYU) DS-GA 1003 April 20, 2021 16 /23

Forward pass

@ Order nodes by topological sort (every node appears before its children)
@ For each node, compute the output given the input (output of its parents).

e Forward at intermediate node f; and f;:

a C b=fi(a) c=f(b) "

He He (CDS, NYU) DS-GA 1003 April 20, 2021 17 /23

Backward pass

@ Order nodes in reverse topological order (every node appear after its children)

@ For each node, compute the partial derivative of its output w.r.t. its input, multiplied by
the partial derivative from its children (chain rule).

@ Backward at intermediate node f;:

— OO
a b="f(a) c=Ff(b) "
ob _ 0J _oJ
8 =& 32~ 9da & = 3b (MKLMM\D‘*‘W)

He He (CDS, NYU) DS-GA 1003 April 20, 2021 18 /23

Multiple children

@ First sum partial derivatives from all children, then multiply.

He He (CDS, NYU)

e Backprop for node f:

o Input:

oJ

dp)r-rry ob

9J
(N)

(Partials w.r.t. inputs to all children)

o Output:

DS-GA 1003

oJ
ob

0J
da

B i dJ

- k

k=1 9b(k)
9J db

9bda

April 20, 2021

19 /23

Backpropagation in practice

@ Inputs and outputs of nodes are generally vectorized (efficient to compute on GPUs).

e Computation graphs can be composed from a set of basic operation nodes, e.g.,
addition/multiplication, dot product, logistic function etc.

@ Programming paradigms:

Symbolic Specify all computation before data—efficient, e.g., Tensorflow.
Imperative Specify the computation step by step—flexible/easier to write, e.g., Pytorch.
Hybrid Can use either paradigm for computation subgraphs, e.g., MXNet.

He He (CDS, NYU) DS-GA 1003 April 20, 2021 20/23

Non-convex optimization

@ Left: convex loss function. Right: non-convex loss function.

He He (CDS, NYU) DS-GA 1003 April 20, 2021 21/23

Non-convex optimization: challenges

Optimization of neural networks is generally hard.

o Converge to a bad local minimum.
o Try different initialization and rerun.

@ Saddle point.
o Doesn't often happen with SGD.

AR

RN
NN
O
Q\‘\“\\\ \

o Second partial derivative test.

NN

o "“Flat” region: low gradient magnitude

o Use ReLU instead of sigmoid as activation
functions.

@ High curvature: high gradient magnitude

o Gradient clipping.

A . .
He He (CDS, NYU) DS-GA 1003 April 20, 2021 22/23

Review

Backpropagation is an algorithm to compute gradient (partial derivatives + chain rule)
efficiently.

It is used in gradient descent optimization with neural networks.

o Key idea: function composition and dynamic programming

@ In practice, efficient software exists (backpropagation, neural network building blocks,
optimization algorithms etc.).

He He (CDS, NYU) DS-GA 1003 April 20, 2021 23 /23

