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Today’s lecture

Neural networks: huge empirical success but poor theoretical understanding

Key idea: representation learning

Optimization: backpropagation + SGD
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Overview
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Feature engineering

Learning non-linear models in a linear form:

f (x) = wTφ(x). (1)

What are possible φ’s we have seen?
Feature maps that define a kernel, e.g., polynomials of x

Feature templates, e.g., xi AND xi−1

Basis functions, e.g., (shallow) decision trees
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Decompose the problem

Example:
Task Predict popularity of restaurants.

Raw features #dishes, price, wine option, zip code, #seats, size

Decompose into subproblems:
h1([#dishes, price, wine option]) = food quality

h2([zip code]) = walkable

h3([#seats, size]) = nosie

Final linear predictor uses intermediate features computed by hi ’s:

w1 · food quality+w2 ·walkable+w3 ·nosie
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Predefined subproblems
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Learned intermediate features
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Neural networks

Key idea: automatically learn the intermediate features.

Feature engineering Manually specify φ(x) based on domain knowledge and learn the weights:

f (x) = wTφ(x). (2)

Feature learning Automatically learn both the features (K hidden units) and the weights:

h(x) = [h1(x), . . . ,hK (x)] , (3)

f (x) = wTh(x) (4)
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Activation function

How should we parametrize hi ’s? Can it be linear?

hi (x) = σ(v
T
i x). (5)

σ is the nonlinear activation function.

What might be some activation functions we want to use?
sign function? Non-differentiable.
Differentiable approximations: sigmoid functions.

E.g., logistic function, hyperbolic tangent function.

Two-layer neural network (one hidden layer and one output layer) with K hidden units:

f (x) =
K∑

k=1

wkhk(x) =
K∑

k=1

wkσ(vk
T x) (6)

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 9 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse


Activation Functions

The hyperbolic tangent is a common activation function:

σ(x) = tanh(x) .
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Activation Functions

More recently, the rectified linear (ReLU) function has been very popular:

σ(x) =max(0,x).

Much faster to calculate, and to calculate its derivatives.

Also often seems to work better.
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Approximation Ability: f (x) = x2

3 hidden units; tanh activation functions

Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3
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Approximation Ability: f (x) = sin(x)

3 hidden units; logistic activation function

Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 13 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse


Approximation Ability: f (x) = |x |

3 hidden units; logistic activation functions

Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3
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Approximation Ability: f (x) = 1(x > 0)

3 hidden units; logistic activation function

Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3
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Universal approximation theorems

How much expressive power do we gain from the nonlinearity?

Theorem (Universal approximation theorem)

A neural network with one possibly huge hidden layer F̂ (x) can approximate any continuous
function F (x) on a closed and bounded subset of Rd under mild assumptions on the activation
function, i.e. ∀ε > 0, there exists an integer N s.t.

F̂ (x) =
N∑
i=1

wiσ(v
T
i x +bi ) (7)

satisfies |F̂ (x)−F (x)|< ε.

Number of hidden units needs to be exponential in d .

Doesn’t say how to learn these parameters.
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Multilayer perceptron / Feed-forward neural networks

Wider: more hidden units.

Deeper: more hidden layers.
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Multilayer Perceptron: Standard Recipe

Input space: X= Rd Action space A= Rk (for k-class classification).

Let σ : R→ R be an activation function (e.g. tanh or ReLU).

Let’s consider an MLP of L hidden layers, each having m hidden units.

First hidden layer is given by

h(1)(x) = σ
(
W (1)x +b(1)

)
,

for parameters W (1) ∈ Rm×d and b ∈ Rm, and where σ(·) is applied to each entry of its
argument.
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Multilayer Perceptron: Standard Recipe

Each subsequent hidden layer takes the output o ∈ Rm of previous layer and produces

h(j)(o(j−1)) = σ
(
W (j)o(j−1)+b(j)

)
, for j = 2, . . . ,L

where W (j) ∈ Rm×m, b(j) ∈ Rm.

Last layer is an affine mapping (no activation function):

a(o(L)) =W (L+1)o(L)+b(L+1),

where W (L+1) ∈ Rk×m and b(L+1) ∈ Rk .

The full neural network function is given by the composition of layers:

f (x) =
(
a◦h(L) ◦ · · · ◦h(1)

)
(x) (8)

Last layer typically gives us a score. How to do classification?
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Multinomial Logistic Regression

From each x , we compute a linear score function for each class:

x 7→ (〈w1,x〉 , . . . ,〈wk ,x〉) ∈ Rk

We need to map this Rk vector into a probability vector θ.

The softmax function maps scores s = (s1, . . . ,sk) ∈ Rk to a categorical distribution:

(s1, . . . ,sk) 7→ θ= Softmax(s1, . . . ,sk) =

(
exp(s1)∑k
i=1 exp(si )

, . . . ,
exp(sk)∑k
i=1 exp(si )

)
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Nonlinear Generalization of Multinomial Logistic Regression

From each x , we compute a non-linear score function for each class:

x 7→ (f1(x), . . . , fk(x)) ∈ Rk

where fi ’s are outputs of the last hidden layer of a neural network.

Learning: Maximize the log-likelihood of training data

argmax
f1,...,fk

n∑
i=1

log
[
Softmax(f1(x), . . . , fk(x))yi

]
.
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Neural network as a feature extractor

OverFeat is a neural network for object classification, localization, and detection.
Trained on the huge ImageNet dataset

Lots of computing resources used for training the network.

All those hidden layers of the network are very valuable features.
Paper: “CNN Features off-the-shelf: an Astounding Baseline for Recognition”

Showed that using features from OverFeat makes it easy to achieve state-of-the-art
performance on new vision tasks.

OverFeat code is at https://github.com/sermanet/OverFeat
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Review

We’ve seen

Key idea: automatically discover useful features from raw data—feature/representation
learning.

Building blocks:
Input layer no learnable parameters

Hidden layer(s) perceptron + nonlinear activation function
Output layer affine (+ transformation)

A single hidden layer is sufficient to approximate any function.

In practice, often have multiple hidden layers.

Next, how to learn the parameters.
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