
Feature Learning

He He
Slides based on Lecture 12a from David Rosenberg’s course materials

(https://github.com/davidrosenberg/mlcourse)

CDS, NYU

April 20, 2021

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 1 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse
https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Today’s lecture

Neural networks: huge empirical success but poor theoretical understanding

Key idea: representation learning

Optimization: backpropagation + SGD

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 2 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Overview

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 3 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Feature engineering

Learning non-linear models in a linear form:

f (x) = wTφ(x). (1)

What are possible φ’s we have seen?
Feature maps that define a kernel, e.g., polynomials of x

Feature templates, e.g., xi AND xi−1

Basis functions, e.g., (shallow) decision trees

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 4 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Decompose the problem

Example:
Task Predict popularity of restaurants.

Raw features #dishes, price, wine option, zip code, #seats, size

Decompose into subproblems:
h1([#dishes, price, wine option]) = food quality

h2([zip code]) = walkable

h3([#seats, size]) = nosie

Final linear predictor uses intermediate features computed by hi ’s:

w1 · food quality+w2 ·walkable+w3 ·nosie

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 5 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Predefined subproblems

#dishes

price

wine option

zip code

#seats

size

Popularity

Intermediate
features

Input
features

Output

h1

h2

h3

food quality

walkable

noise

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 6 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Learned intermediate features

#dishes

price

wine option

zip code

#seats

size

Popularity

Hidden
layer

Input
layer

Output
layer

h1

h2

h3

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 7 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Neural networks

Key idea: automatically learn the intermediate features.

Feature engineering Manually specify φ(x) based on domain knowledge and learn the weights:

f (x) = wTφ(x). (2)

Feature learning Automatically learn both the features (K hidden units) and the weights:

h(x) = [h1(x), . . . ,hK (x)] , (3)

f (x) = wTh(x) (4)

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 8 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Activation function

How should we parametrize hi ’s? Can it be linear?

hi (x) = σ(v
T
i x). (5)

σ is the nonlinear activation function.

What might be some activation functions we want to use?
sign function? Non-differentiable.
Differentiable approximations: sigmoid functions.

E.g., logistic function, hyperbolic tangent function.

Two-layer neural network (one hidden layer and one output layer) with K hidden units:

f (x) =
K∑

k=1

wkhk(x) =
K∑

k=1

wkσ(vk
T x) (6)

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 9 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Activation Functions

The hyperbolic tangent is a common activation function:

σ(x) = tanh(x) .

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 10 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Activation Functions

More recently, the rectified linear (ReLU) function has been very popular:

σ(x) =max(0,x).

Much faster to calculate, and to calculate its derivatives.

Also often seems to work better.

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 11 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Approximation Ability: f (x) = x2

3 hidden units; tanh activation functions

Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 12 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Approximation Ability: f (x) = sin(x)

3 hidden units; logistic activation function

Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 13 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Approximation Ability: f (x) = |x |

3 hidden units; logistic activation functions

Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 14 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Approximation Ability: f (x) = 1(x > 0)

3 hidden units; logistic activation function

Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop’s Pattern Recognition and Machine Learning, Fig 5.3

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 15 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Universal approximation theorems

How much expressive power do we gain from the nonlinearity?

Theorem (Universal approximation theorem)

A neural network with one possibly huge hidden layer F̂ (x) can approximate any continuous
function F (x) on a closed and bounded subset of Rd under mild assumptions on the activation
function, i.e. ∀ε > 0, there exists an integer N s.t.

F̂ (x) =
N∑
i=1

wiσ(v
T
i x +bi) (7)

satisfies |F̂ (x)−F (x)|< ε.

Number of hidden units needs to be exponential in d .

Doesn’t say how to learn these parameters.
He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 16 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Multilayer perceptron / Feed-forward neural networks

Wider: more hidden units.

Deeper: more hidden layers.

x1

x2

...

xd−1

xd

score

Hidden
layers

Input
layer

Output
layer

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 17 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Multilayer Perceptron: Standard Recipe

Input space: X= Rd Action space A= Rk (for k-class classification).

Let σ : R→ R be an activation function (e.g. tanh or ReLU).

Let’s consider an MLP of L hidden layers, each having m hidden units.

First hidden layer is given by

h(1)(x) = σ
(
W (1)x +b(1)

)
,

for parameters W (1) ∈ Rm×d and b ∈ Rm, and where σ(·) is applied to each entry of its
argument.

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 18 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Multilayer Perceptron: Standard Recipe

Each subsequent hidden layer takes the output o ∈ Rm of previous layer and produces

h(j)(o(j−1)) = σ
(
W (j)o(j−1)+b(j)

)
, for j = 2, . . . ,L

where W (j) ∈ Rm×m, b(j) ∈ Rm.

Last layer is an affine mapping (no activation function):

a(o(L)) =W (L+1)o(L)+b(L+1),

where W (L+1) ∈ Rk×m and b(L+1) ∈ Rk .

The full neural network function is given by the composition of layers:

f (x) =
(
a◦h(L) ◦ · · · ◦h(1)

)
(x) (8)

Last layer typically gives us a score. How to do classification?
He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 19 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Multinomial Logistic Regression

From each x , we compute a linear score function for each class:

x 7→ (〈w1,x〉 , . . . ,〈wk ,x〉) ∈ Rk

We need to map this Rk vector into a probability vector θ.

The softmax function maps scores s = (s1, . . . ,sk) ∈ Rk to a categorical distribution:

(s1, . . . ,sk) 7→ θ= Softmax(s1, . . . ,sk) =

(
exp(s1)∑k
i=1 exp(si)

, . . . ,
exp(sk)∑k
i=1 exp(si)

)

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 20 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Nonlinear Generalization of Multinomial Logistic Regression

From each x , we compute a non-linear score function for each class:

x 7→ (f1(x), . . . , fk(x)) ∈ Rk

where fi ’s are outputs of the last hidden layer of a neural network.

Learning: Maximize the log-likelihood of training data

argmax
f1,...,fk

n∑
i=1

log
[
Softmax(f1(x), . . . , fk(x))yi

]
.

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 21 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Neural network as a feature extractor

OverFeat is a neural network for object classification, localization, and detection.
Trained on the huge ImageNet dataset

Lots of computing resources used for training the network.

All those hidden layers of the network are very valuable features.
Paper: “CNN Features off-the-shelf: an Astounding Baseline for Recognition”

Showed that using features from OverFeat makes it easy to achieve state-of-the-art
performance on new vision tasks.

OverFeat code is at https://github.com/sermanet/OverFeat

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 22 / 1

https://arxiv.org/pdf/1312.6229.pdf
https://github.com/sermanet/OverFeat
https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

Review

We’ve seen

Key idea: automatically discover useful features from raw data—feature/representation
learning.

Building blocks:
Input layer no learnable parameters

Hidden layer(s) perceptron + nonlinear activation function
Output layer affine (+ transformation)

A single hidden layer is sufficient to approximate any function.

In practice, often have multiple hidden layers.

Next, how to learn the parameters.

He He Slides based on Lecture 12a from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 April 20, 2021 23 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/12a.neural-networks.pdf
https://github.com/davidrosenberg/mlcourse

