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Today's lecture

@ Neural networks: huge empirical success but poor theoretical understanding
o Key idea: representation learning

e Optimization: backpropagation + SGD
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Overview
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Feature engineering

@ Learning non-linear models in a linear form:

@ What are possible ¢'s we have seen?
o Feature maps that define a kernel, e.g., polynomials of x

o Feature templates, e.g., x; AND x;_1

o Basis functions, e.g., (shallow) decision trees
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Decompose the problem

o Example:

Task Predict popularity of restaurants.
Raw features #dishes, price, wine option, zip code, #seats, size

@ Decompose into subproblems:
o hi([#tdishes, price, wine option]) = food quality

o hy([zip code]) = walkable

o h3([#seats, size]) = nosie
o Final linear predictor uses intermediate features computed by h;'s:

ws - food quality + ws, - walkable + w3 - nosie
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Predefined subproblems
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Learned intermediate features
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Neural networks

Key idea: automatically learn the intermediate features.

Feature engineering Manually specify ¢(x) based on domain knowledge and learn the weights:

F(x)=w'd(x). (2)

Feature learning Automatically learn both the features (K hidden units) and the weights:
h(x) = [h1(x),..., hi (X)], (3)
f(x)=wTh(x) (4)
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Activation function

@ How should we parametrize h;'s? Can it be linear?

hi(x) = U(ViTX)- (5)

@ 0o is the nonlinear activation function.

@ What might be some activation functions we want to use?
o sign function? Non-differentiable.

o Differentiable approximations: sigmoid functions.
e E.g., logistic function, hyperbolic tangent function.

@ Two-layer neural network (one hidden layer and one output layer) with K hidden units:

Z Wi hy(x Z wio(vi " x) (6)
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Activation Functions

@ The hyperbolic tangent is a common activation function:

o(x) =tanh(x).
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Activation Functions

@ More recently, the rectified linear (ReLU) function has been very popular:
o(x) = max(0, x).
@ Much faster to calculate, and to calculate its derivatives.

@ Also often seems to work better.
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Approximation Ability: f(x) = x?

@ 3 hidden units; tanh activation functions

@ Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop's Pattern Recognition and Machine Learning, Fig 5.3
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Approximation Ability: f(x) =sin(x)

@ 3 hidden units; logistic activation function

@ Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop's Pattern Recognition and Machine Learning, Fig 5.3
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Approximation Ability: f(x) = |x|

@ 3 hidden units; logistic activation functions

@ Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop's Pattern Recognition and Machine Learning, Fig 5.3
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Approximation Ability: f(x) =1(x > 0)

@ 3 hidden units; logistic activation function

@ Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop's Pattern Recognition and Machine Learning, Fig 5.3
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Universal approximation theorems

How much expressive power do we gain from the nonlinearity?
Theorem (Universal approximation theorem)

A neural network with one possibly huge hidden layer F(x) can approximate any continuous

function F(x) on a closed and bounded subset of RY under mild assumptions on the activation
function, i.e. Ve > 0, there exists an integer N s.t.

N
Flx)=> wio(v x+b) (7)
i=1
satisfies |F(x) — F(x)| < €.

@ Number of hidden units needs to be exponential in d.

@ Doesn't say how to learn these parameters.
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Multilayer perceptron / Feed-forward neural networks
@ Wider: more hidden units.

@ Deeper: more hidden layers.
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Multilayer Perceptron: Standard Recipe

Input space: X =R? Action space A = R¥ (for k-class classification).

o Let 0: R — R be an activation function (e.g. tanh or ReLU).

@ Let's consider an MLP of L hidden layers, each having m hidden units.

First hidden layer is given by
() = o (W x+ 1),

for parameters W(1) € R™*9 and b € R™, and where o (-) is applied to each entry of its
argument.
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Multilayer Perceptron: Standard Recipe
@ Each subsequent hidden layer takes the output o € R™ of previous layer and produces
B (0l ) = (WWoli 1 4 b)), for j=2,...,L
where WU) ¢ Rm>xm pl) ¢ RM,
@ Last layer is an affine mapping (no activation function):
a(olL)y = WL (L) 4 p(Ls1)
where W(EH1) ¢ RkXm and p(L+1) ¢ Rk,
@ The full neural network function is given by the composition of layers:
f(x) = <aoh<L> o-~-oh(1)) (x)

@ Last layer typically gives us a score. How to do classification?
DS-GA 1003 April 20, 2021
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Multinomial Logistic Regression

@ From each x, we compute a linear score function for each class:
x5 (W, x), ..., (Wi, x)) € RK

@ We need to map this R¥ vector into a probability vector 6.

@ The softmax function maps scores s = (sy,...,s,) € R to a categorical distribution:
exp (s exp (s
(s1,...,5¢) — 0 = Softmax(sy,...,sx) = p P(s1) R P (sk)
2 _i—1exp(si) 2 i—1exp(si)
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Nonlinear Generalization of Multinomial Logistic Regression

@ From each x, we compute a non-linear score function for each class:
x = (A(x),.... fil(x)) € R¥
where f;'s are outputs of the last hidden layer of a neural network.

e Learning: Maximize the log-likelihood of training data

a;g m?xZ log [Softmax (A(x),..., fk(X))yi
Lol o
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Neural network as a feature extractor

@ OverFeat is a neural network for object classification, localization, and detection.
o Trained on the huge ImageNet dataset

o Lots of computing resources used for training the network.
@ All those hidden layers of the network are very valuable features.
o Paper: “CNN Features off-the-shelf: an Astounding Baseline for Recognition”

o Showed that using features from OverFeat makes it easy to achieve state-of-the-art
performance on new vision tasks.

OverFeat code is at https://github.com/sermanet/0OverFeat
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Review

We've seen

o Key idea: automatically discover useful features from raw data—feature/representation
learning.

@ Building blocks:

Input layer no learnable parameters
Hidden layer(s) perceptron + nonlinear activation function
Output layer affine (4 transformation)

@ A single hidden layer is sufficient to approximate any function.
@ In practice, often have multiple hidden layers.

Next, how to learn the parameters.
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