Feature Learning

He He Slides based on Lecture 12a from David Rosenberg's course materials (https://github.com/davidrosenberg/mlcourse)

CDS, NYU

April 20, 2021

- Neural networks: huge empirical success but poor theoretical understanding
- Key idea: representation learning
- Optimization: backpropagation + SGD

Overview

• Learning non-linear models in a linear form:

$$f(x) = w^{T} \phi(x).$$
(1)

- What are possible ϕ 's we have seen?
 - Feature maps that define a kernel, e.g., polynomials of x
 - Feature templates, e.g., x_i AND x_{i-1}
 - Basis functions, e.g., (shallow) decision trees

Decompose the problem

• Example:

Task Predict popularity of restaurants. Raw features #dishes, price, wine option, zip code, #seats, size

- Decompose into subproblems:
 - $h_1([\#dishes, price, wine option]) = food quality$
 - *h*₂([zip code]) = walkable
 - h₃([#seats, size]) = nosie
- Final *linear* predictor uses **intermediate features** computed by *h_i*'s:

```
w_1 \cdot \text{food quality} + w_2 \cdot \text{walkable} + w_3 \cdot \text{nosie}
```

Predefined subproblems

He He Slides based on Lecture 12a from David Ro

Learned intermediate features

He He Slides based on Lecture 12a from David Ro

Neural networks

Key idea: automatically learn the intermediate features.

Feature engineering Manually specify $\phi(x)$ based on domain knowledge and learn the weights:

$$f(x) = \mathbf{w}^{T} \mathbf{\Phi}(x). \tag{2}$$

Feature learning Automatically learn both the features (K hidden units) and the weights:

$$h(x) = [h_1(x), \dots, h_K(x)], \qquad (3)$$

$$f(x) = \mathbf{w}^T h(x) \tag{4}$$

Activation function

• How should we parametrize h_i 's? Can it be linear?

$$h_i(x) = \sigma(v_i^T x).$$
(5)

- σ is the nonlinear activation function.
- What might be some activation functions we want to use?
 - sign function? Non-differentiable.
 - Differentiable approximations: sigmoid functions.
 - E.g., logistic function, hyperbolic tangent function.
- Two-layer neural network (one hidden layer and one output layer) with K hidden units:

$$f(x) = \sum_{k=1}^{K} w_k h_k(x) = \sum_{k=1}^{K} w_k \sigma(v_k^{T} x)$$
(6)

Activation Functions

• The hyperbolic tangent is a common activation function:

 $\sigma(x) = \tanh(x).$

Activation Functions

He He Slides based on Lecture

• More recently, the rectified linear (ReLU) function has been very popular:

 $\sigma(x) = \max(0, x).$

- Much faster to calculate, and to calculate its derivatives.
- Also often seems to work better.

Approximation Ability: $f(x) = x^2$

- 3 hidden units; tanh activation functions
- Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop's Pattern Recognition and Machine Learning, Fig 5.3

Approximation Ability: f(x) = sin(x)

- 3 hidden units; logistic activation function
- Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop's Pattern Recognition and Machine Learning, Fig 5.3

Approximation Ability: f(x) = |x|

- 3 hidden units; logistic activation functions
- Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop's Pattern Recognition and Machine Learning, Fig 5.3

Approximation Ability: f(x) = 1(x > 0)

- 3 hidden units; logistic activation function
- Blue dots are training points; Dashed lines are hidden unit outputs; Final output in Red.

From Bishop's Pattern Recognition and Machine Learning, Fig 5.3

Universal approximation theorems

How much expressive power do we gain from the nonlinearity?

Theorem (Universal approximation theorem)

A neural network with one possibly huge hidden layer $\hat{F}(x)$ can approximate any continuous function F(x) on a closed and bounded subset of \mathbb{R}^d under mild assumptions on the activation function, i.e. $\forall \epsilon > 0$, there exists an integer N s.t.

$$\hat{F}(x) = \sum_{i=1}^{N} w_i \sigma(v_i^T x + b_i)$$
(7)

satisfies $|\hat{F}(x) - F(x)| < \epsilon$.

• Number of hidden units needs to be exponential in *d*.

• Doesn't say how to learn these parameters.

Multilayer perceptron / Feed-forward neural networks

- Wider: more hidden units.
- Deeper: more hidden layers.

Multilayer Perceptron: Standard Recipe

- Input space: $\mathfrak{X} = \mathbb{R}^d$ Action space $\mathcal{A} = \mathbb{R}^k$ (for k-class classification).
- Let $\sigma : \mathbf{R} \to \mathbf{R}$ be an activation function (e.g. tanh or ReLU).
- Let's consider an MLP of L hidden layers, each having m hidden units.
- First hidden layer is given by

$$h^{(1)}(x) = \sigma\left(W^{(1)}x + b^{(1)}\right),$$

for parameters $W^{(1)} \in \mathbb{R}^{m \times d}$ and $b \in \mathbb{R}^m$, and where $\sigma(\cdot)$ is applied to each entry of its argument.

Multilayer Perceptron: Standard Recipe

• Each subsequent hidden layer takes the *output* $o \in \mathbf{R}^m$ of previous layer and produces

$$h^{(j)}(o^{(j-1)}) = \sigma\left(W^{(j)}o^{(j-1)} + b^{(j)}\right)$$
, for $j = 2, ..., L$

where $W^{(j)} \in \mathbb{R}^{m \times m}$, $b^{(j)} \in \mathbb{R}^m$.

• Last layer is an *affine* mapping (no activation function):

$$a(o^{(L)}) = W^{(L+1)}o^{(L)} + b^{(L+1)},$$

where $W^{(L+1)} \in \mathbb{R}^{k \times m}$ and $b^{(L+1)} \in \mathbb{R}^k$.

• The full neural network function is given by the *composition* of layers:

$$f(x) = \left(a \circ h^{(L)} \circ \dots \circ h^{(1)}\right)(x) \tag{8}$$

• Last layer typically gives us a score. How to do classification?

• From each x, we compute a linear score function for each class:

$$x\mapsto (\langle extsf{w}_1, x
angle$$
 , \dots , $\langle extsf{w}_k, x
angle)\in \mathsf{R}^k$

- We need to map this \mathbf{R}^k vector into a probability vector $\boldsymbol{\theta}$.
- The softmax function maps scores $s = (s_1, ..., s_k) \in \mathbb{R}^k$ to a categorical distribution:

$$(s_1,\ldots,s_k)\mapsto \theta = \operatorname{Softmax}(s_1,\ldots,s_k) = \left(\frac{\exp(s_1)}{\sum_{i=1}^k \exp(s_i)},\ldots,\frac{\exp(s_k)}{\sum_{i=1}^k \exp(s_i)}\right)$$

Nonlinear Generalization of Multinomial Logistic Regression

• From each x, we compute a non-linear score function for each class:

$$x \mapsto (f_1(x), \ldots, f_k(x)) \in \mathbf{R}^k$$

where f_i 's are outputs of the last hidden layer of a neural network.

• Learning: Maximize the log-likelihood of training data

$$\underset{f_1,\ldots,f_k}{\operatorname{arg\,max}} \sum_{i=1}^n \log \left[\operatorname{Softmax} \left(f_1(x),\ldots,f_k(x) \right)_{y_i} \right].$$

Neural network as a feature extractor

- OverFeat is a neural network for object classification, localization, and detection.
 - Trained on the huge ImageNet dataset
 - Lots of computing resources used for training the network.
- All those hidden layers of the network are very valuable *features*.
 - Paper: "CNN Features off-the-shelf: an Astounding Baseline for Recognition"
 - Showed that using features from OverFeat makes it easy to achieve state-of-the-art performance on new vision tasks.

He He Slides based on Lecture 12a from David Ro

OverFeat code is at https://github.com/sermanet/OverFeat

Review

We've seen

- Key idea: automatically discover useful features from raw data—*feature/representation learning*.
- Building blocks:

Input layer no learnable parameters Hidden layer(s) perceptron + *nonlinear* activation function Output layer affine (+ transformation)

- A single hidden layer is sufficient to approximate any function.
- In practice, often have multiple hidden layers.

Next, how to learn the parameters.