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Today’s lecture

Another way to get non-linear models in a linear form—adaptive basis function models.

A general algorithm for greedy function approximation—gradient boosting machine.
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Motivation
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Recap: Adaboost

From ESL Figure 10.1
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AdaBoost: Algorithm

Given training set D= {(x1,y1) , . . . ,(xn,yn)}.

1 Initialize observation weights wi = 1, i = 1,2, . . . ,n.
2 For m = 1 to M:

1 Base learner fits weighted training data and returns Gm(x)
2 Compute weighted empirical 0-1 risk:

errm =
1
W

nX

i=1

wi1(yi 6= Gm(xi )) where W =
nX

i=1

wi .

3 Compute classifier weight: ↵m = ln
⇣

1-errm
errm

⌘
.

4 Update example weight: wi  wi · exp [↵m1(yi 6= Gm(xi ))]

3 Return voted classifier: G (x) = sign
hPM

m=1↵mGm(x)
i
. Why not learn G (x) directly?
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Nonlinear Regression

How do we fit the following data?
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Linear Model with Basis Functions

Fit a linear combination of transformations of the input:

f (x) =
MX

m=1

vmhm(x),

where hm’s are called basis functions (or feature functions in ML):

h1, . . . ,hM : X! R

Example: polynomial regression where hm(x) = xm.

Can we use this model for classification?

Can fit this using standard methods for linear models (e.g. least squares, lasso, ridge, etc.)
Note that hm’s are fixed and known, i.e. chosen ahead of time.
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Adaptive Basis Function Model

What if we want to learn the basis functions? (hence adaptive)

Base hypothesis space H consisting of functions h : X! R.

An adaptive basis function expansion over H is an ensemble model:

f (x) =
MX

m=1

vmhm(x), (1)

where vm 2 R and hm 2H.

Combined hypothesis space:

FM =

�
MX

m=1

vmhm(x) | vm 2 R, hm 2H, m = 1, . . . ,M

✏

What are the learnable?
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Empirical Risk Minimization

What’s our learning objective?

f̂ = argmin
f2FM

1
n

nX

i=1

`(yi , f (xi )) ,

for some loss function `.

Write ERM objective function as

J(v1, . . . ,vM ,h1, . . . ,hM) =
1
n

nX

i=1

`

 

yi ,
MX

m=1

vmhm(x)

!

.

How to optimize J? i.e. how to learn?

He He (CDS, NYU) DS-GA 1003 April 13, 2021 9 / 25

ERM

-
fox)



Gradient-Based Methods

Suppose our base hypothesis space is parameterized by ⇥= Rb:

J(v1, . . . ,vM ,✓1, . . . ,✓M) =
1
n

nX

i=1

`

 

yi ,
MX

m=1

vmh(x ;✓m)

!

.

Can we optimize it with SGD?
Can we differentiate J w.r.t. vm’s and ✓m’s?

For some hypothesis spaces and typical loss functions, yes!
Neural networks fall into this category! (h1, . . . ,hM are neurons of last hidden layer.)
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What if Gradient Based Methods Don’t Apply?

What if base hypothesis space H consists of decision trees?

Can we even parameterize trees with ⇥= Rb?

Even if we could, predictions would not change continuously w.r.t. ✓ 2⇥, so certainly not
differentiable.

What about a greedy algorithm similar to Adaboost?
Applies to non-parametric or non-differentiable basis functions.

But is it optimizing our objective using some loss function?

Today we’ll discuss gradient boosting.
Gradient descent in the function space.

It applies whenever
our loss function is [sub]differentiable w.r.t. training predictions f (xi ), and
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History

Kearns, Valiant (1989): Can weak learners (e.g., 51% accuracy) be trans-
formed to strong learners (e.g., 99.9% accuracy)?

Schapire (1990) & Freund (1995): Yes, weak learners can be iteratively improved to a
strong learner.

Freund, Schapire (1996): And here is a practical algorithm—Adaboost.
Breiman (1996 & 1998): Yes, it works! Boosting is the best off-the-shelf

classifier in the world.
(Attempts to explain why Adaboost works and improvements)

Friedman, Hastie, Tibshirani (2000): Actually, boosting fits an additive model.
Friedman (2001): Furthermore, it can be considered as gradient de-

scent in the function space.
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Forward Stagewise Additive Modeling
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Forward Stagewise Additive Modeling (FSAM)

Goal fit model f (x) =
PM

m=1 vmhm(x) given some loss function.
Approach Greedily fit one function at a time without adjusting previous functions, hence

“forward stagewise”.

After m-1 stages, we have

fm-1 =
m-1X

i=1

vihi .

In m’th round, we want to find hm 2H (i.e. a basis function) and vm > 0 such that

fm = fm-1|{z}
fixed

+vmhm

improves objective function value by as much as possible.
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Forward Stagewise Additive Modeling for ERM

Let’s plug in our objective function.

1 Initialize f0(x) = 0.
2 For m = 1 to M:

1 Compute:

(vm,hm) = argmin
v2R,h2H

1
n

nX

i=1

`

0

B@yi , fm-1(xi )+vh(xi )| {z }
new piece

1

CA .

2 Set fm = fm-1+ vmhm.
3 Return: fM .
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Recap: margin-based classifier

Binary classification
Outcome space Y= {-1,1}

Action space A= R (model outoput)

Score function f : X!A.

Margin for example (x ,y) is m = yf (x).
m > 0 () classification correct

Larger m is better.

Concept check: What are margin-based loss functions we’ve seen?
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Exponential Loss

Introduce the exponential loss: `(y , f (x)) = exp

0

B@-yf (x)| {z }
margin

1

CA .
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Forward Stagewise Additive Modeling with exponential loss

Recall that we want to do FSAM with exponential loss.

1 Initialize f0(x) = 0.
2 For m = 1 to M:

1 Compute:

(vm,hm) = argmin
v2R,h2H

1
n

nX

i=1

`exp

0

B@yi , fm-1(xi )+vh(xi )| {z }
new piece

1

CA .

2 Set fm = fm-1+ vmhm.
3 Return: fM .
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FSAM with Exponential Loss: objective function

Base hypothesis: H = {h : X! {-1,1}}.

Objective function in the m’th round:

J(v ,h) =
nX

i=1

exp [-yi (fm-1(xi )+ vh(xi ))] (2)

=
nX

i=1

wm
i exp [-yivh(xi )] wm

i
def
= exp [-yi fm-1(xi )] (3)

=
nX

i=1

wm
i

⇥
I(yi = h(xi ))e

-v + I(yi 6= h(xi ))e
v
⇤

h(xi ) 2 {1,-1} (4)

=
nX

i=1

wm
i

⇥
(ev - e-v )I(yi 6= h(xi ))+ e-v

⇤
I(yi = h(xi )) = 1- I(yi 6= h(xi ))

(5)
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FSAM with Exponential Loss: basis function

Objective function in the m’th round:

J(v ,h) =
nX

i=1

wm
i

⇥
(ev - e-v )I(yi 6= h(xi ))+ e-v

⇤
. (6)

If v > 0, then

argmin
h2H

J(v ,h) = argmin
h2H

nX

i=1

wm
i I(yi 6= h(xi )) (7)

hm = argmin
h2H

nX

i=1

wm
i I(yi 6= h(xi )) (8)

= argmin
h2H

1Pn
i=1w

m
i

nX

i=1

wm
i I(yi 6= h(xi )) multiply by a positive constant

(9)

i.e. hm is the minimizer of the weighted zero-one loss.
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FSAM with Exponential Loss: classifier weights

Define the weighted zero-one error:

errm =

Pn
i=1w

m
i I(yi 6= h(xi ))Pn
i=1w

m
i

. (10)

Exercise: show that the optimal v is:

vm =
1
2
log

1- errm
errm

(11)

Same as the classifier weights in Adaboost (differ by a constant).

If errm < 0.5 (better than chance), then vm > 0.
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FSAM with Exponential Loss: example weights

Weights in the next round:

wm+1
i

def
= exp [-yi fm(xi )] (12)
= wm

i exp [-yivmhm(xi )] fm(xi ) = fm-1(xi )+ vmhm(xi ) (13)
= wm

i exp [-vmI(yi = hm(xi ))+ vmI(yi 6= hm(xi ))] (14)
= wm

i exp [2vmI(yi 6= hm(xi ))]exp
-vm

| {z }
scaler

(15)

The constant scaler will cancel out during normalization.

2vm = ↵m in Adaboost.
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Why Exponential Loss

`exp(y , f (x)) = exp(-yf (x)).

Exercise: show that the optimal estimate is

f ⇤(x) =
1
2
log

p(y = 1 | x)

p(y = 0 | x)
. (16)

How is it different from other losses?
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AdaBoost / Exponential Loss: Robustness Issues

Exponential loss puts a high penalty on misclassified examples.
=) not robust to outliers / noise.

Empirically, AdaBoost has degraded performance in situations with
high Bayes error rate (intrinsic randomness in the label)

Logistic/Log loss performs better in settings with high Bayes error.

Exponential loss has some computational advantages over log loss though.
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Review

We’ve seen

Use basis function to obtain nonlinear models: f (x) =
PM

i=1 vmhm(x) with known hm’s.

Adaptive basis function models: f (x) =
PM

i=1 vmhm(x) with unknown hm’s.

Forward stagewise additive modeling: greedily fit hm’s to minimize the average loss.

But,

We only know how to do FSAM for certain loss functions.

Need to derive new algorithms for different loss functions.

Next, how to do FSAM in general.
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