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Today's lecture

@ Another way to get non-linear models in a linear form—adaptive basis function models.

@ A general algorithm for greedy function approximation—gradient boosting machine.
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Motivation J
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Recap: Adaboost

FINAL CLASSIFIER
G(z) = sign [ni_; amGrm(a)]
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AdaBoost: Algorithm

Given training set D ={(x1,y1),..., (Xn, yn)}-

@ Initialize observation weights w; =1, i =1,2,...,n.
@ Form=1to M:

© Base learner fits weighted training data and returns G, (x)
® Compute weighted empirical 0-1 risk:

1 n n
errm, = Wzl w;il(y; # Gm(x;)) where W = Zl w;.

\

© Compute classifier weight: oy, = In <1_ﬂ

errm

@ Update example weight: w; < w;-exp [&m1(yi # Gm(x;))]
© Return voted classifier: G(x) = sign [anﬂzl ocme(x)] Why not learn G(x) directly?
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Nonlinear Regression

@ How do we fit the following data?
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Linear Model with Basis Functions

@ Fit a linear combination of transformations of the input:

Iy /VDVMGA\D-

m=

[y

where hy,'s are called basis functions (or feature functions in ML):
h1,...,hM:I)C—>R
@ Example: polynomial regression where h,,(x) = x™.
e Can we use this model for classification?

e Can fit this using standard methods for linear models (e.g. least squares, lasso, ridge, etc.)
o Note that h,,'s are fixed and known, i.e. chosen ahead of time.
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Adaptive Basis Function Model

e What if we want to learn the basis functions? (hence adaptive)
@ Base hypothesis space J consisting of functions h: X — R.

e An adaptive basis function expansion over H is an ensemble model:

M

f(x) = Z Vmhm(x), (1)

m=1

where v, € R and h,,, € H.

@ Combined hypothesis space:

@ What are the learnable?
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Empirical Risk Minimization

@ What's our learning objective?

. 1¢
— i ,E : : —_RM
f argmlnn Ly, f(x)), &

feIm Wiy
for some loss function £.

@ Write ERM objective function as

Jvi,....vpma b, .o hy) =

@ How to optimize J7 i.e. how to learn?
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Gradient-Based Methods

@ Suppose our base hypothesis space is parameterized by © = R?:

1 n M
Jvi,...,vp 01,....0m) = EZE (y,-, Z vmh(x;em)> :
i=1 m=1

@ Can we optimize it with SGD?
o Can we differentiate J w.r.t. v,,'s and 0,,'s?

@ For some hypothesis spaces and typical loss functions, yes!
o Neural networks fall into this category! (hy,..., hy are neurons of last hidden layer.)
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What if Gradient Based Methods Don't Apply?

What if base hypothesis space H consists of decision trees?

o Can we even parameterize trees with ® = R??

@ Even if we could, predictions would not change continuously w.r.t. 6 € ©, so certainly not
differentiable.

What about a greedy algorithm similar to Adaboost?
@ Applies to non-parametric or non-differentiable basis functions.

@ But is it optimizing our objective using some loss function?

Today we'll discuss gradient boosting.

@ Gradient descent in the function space.

@ It applies whenever
o our loss function is [sub]differentiable w.r.t. training predictions f(x;), and
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History

Kearns, Valiant (1989):
Schapire (1990) & Freund (1995):

Freund, Schapire (1996):
Breiman (1996 & 1998):

Can weak learners (e.g., 51% accuracy) be trans-
formed to strong learners (e.g., 99.9% accuracy)?
Yes, weak learners can be iteratively improved to a
strong learner.

And here is a practical algorithm—Adaboost.

Yes, it works! Boosting is the best off-the-shelf
classifier in the world.

(Attempts to explain why Adaboost works and improvements)

Friedman, Hastie, Tibshirani (2000):
Friedman (2001):
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Actually, boosting fits an additive model.
Furthermore, it can be considered as gradient de-
scent in the function space.

DS-GA 1003 April 13, 2021

12 /25



Forward Stagewise Additive Modeling J
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Forward Stagewise Additive Modeling (FSAM)

Goal fit model f(x) = Z,Agzl Vmhm(x) given some loss function.

Approach Greedily fit one function at a time without adjusting previous functions, hence
“forward stagewise’.

o After m—1 stages, we have
m—1

fm,1 = Z V,'h,'.

i=1

@ In m'th round, we want to find hp,, € 3 (i.e. a basis function) and v, > 0 such that

fm = fm—1+Vmhm
——
fixed

improves objective function value by as much as possible.
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Forward Stagewise Additive Modeling for ERM

Let’s plug in our objective function.

@ |Initialize fy(x) =0.
Q@ For m=1to M:
© Compute:

fieed

1
(Vi hm) = argmin = > €| yi, fn1(xi) +vh(x Hvhix)
veRheH M=
new plece

@ Set f, =fm—1+ Vmhm.
© Return: fy.
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Recap: margin-based classifier

Binary classification

@ Outcome space Y ={-1,1}
@ Action space A =R (model outoput)

@ Score function f: X — A.

Margin for example (x,y) is m = yf(x).
e m>0 <= classification correct

o Larger mis better.

Concept check: What are margin-based loss functions we've seen?
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Exponential Loss

@ Introduce the exponential loss: £(y,f(x)) =exp | —yf(x)

margin

s Loss
=== Zero_One
=== Hinge
. === | ogistic_Rescaled

=== Exponential

-1 0
Margin m=yf(x)
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Forward Stagewise Additive Modeling with exponential loss

Recall that we want to do FSAM with exponential loss.

@ |Initialize fy(x) =0.
Q@ Form=1to M:
© Compute:

10
(mehm) = argmin 7Z€exp y;,fm,l(x,-)—i—vh(x,-)
veRhed M= ~—

new piece
@ Set = fm—1+ Vmhm.
© Return: fy.
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FSAM with Exponential Loss: objective function

@ Base hypothesis: H ={h: X — {—1,1}}.

@ Objective function in the m'th round:

J(v,h) =) expl—yi(fm1(xi) + vh(x;))] (2)
i=1

= Z w;" exp [—y;vh(x;)] W € exp[—yifm 1(x)] \ (3)
i=1

= Zw (vi =h(x) e +1(yi # h(x)) €] hix) e (1,~1) (4)

= Z Wi [(e" — e )L(y; # h(x)) +e ] I(y; = h(x)) = 1—1(y; # h(x))
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FSAM with Exponential Loss: basis function

@ Objective function in the m'th round:

= wm | (e2="e"")(y; # h(x;))+e]. (6)
Yl v

o If v>0, then

argminJ(v, h) = argmmZW I(y; # h(x;)) (7)
heX hedt
him —argmme I(y; # h(x;)) (8)
he¥t 4
=argmin =5—— Wi Z w"l(y; # h(x;)) multiply by a positive constant
heJ i=1W
(9)

i.e. hp is the minimizer of the weighted zero-one loss.
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FSAM with Exponential Loss: classifier weights

@ Define the weighted zero-one error:

Si i iy;V-i h(x)) (10)

err, =

@ Exercise: show that the optimal v is:

1 1—erry
Vm = = log
2 erry,

o Same as the classifier weights in Adaboost (differ by a constant).

o If errp, < 0.5 (better than chance), then v,, > 0.
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FSAM with Exponential Loss: example weights

@ Weights in the next round:

W p [y o (7)) (12)
= w;" exp [=YiVmhm(x;)] fm(Xi) = fn—1(Xi) + Vi hm(Xi) (13)

= w,;" exp =Vl (yi = hm(xi)) + Vil (yi # hm(xi))] (14)

(15)

= w;" exp [2vimI (y;j # hm(xi))lexp™ "

scaler

@ The constant scaler will cancel out during normalization.

@ 2v,, = &, in Adaboost.
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Why Exponential Loss
® lexply, f(x)) =exp(—yf(x)).
@ Exercise: show that the optimal estimate is

00 = Liog PY =11

og—— . (16)
2 "ply=0|x)
o How is it different from other losses?
Loss
8 = Zero_One
=== Hinge
== Logistic_Rescaled
87 == Exponential
E
&4
)
o |¥
; ; ; ; ; ;
Margin m=yf(x)
DS-GA 1003
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AdaBoost / Exponential Loss: Robustness Issues

Exponential loss puts a high penalty on misclassified examples.
o = not robust to outliers / noise.

Empirically, AdaBoost has degraded performance in situations with
o high Bayes error rate (intrinsic randomness in the label)

Logistic/Log loss performs better in settings with high Bayes error.

Exponential loss has some computational advantages over log loss though.
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Review

We've seen

@ Use basis function to obtain nonlinear models: f(x) = ZMl Vmhm(x) with known h,,'s.

=
@ Adaptive basis function models: f(x) = Z,’\il Vmhm(x) with unknown h,,'s.

@ Forward stagewise additive modeling: greedily fit hp,'s to minimize the average loss.

But,
@ We only know how to do FSAM for certain loss functions.

@ Need to derive new algorithms for different loss functions.

Next, how to do FSAM in general.
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