Adaboost

He He Slides based on Lecture 11c from David Rosenberg's course materials (https://github.com/davidrosenberg/mlcourse)

CDS, NYU

April 6, 2021

Boosting

Overview

Bagging Reduce variance of a low bias, high variance estimator by ensembling many estimators trained in parallel.

Boosting Reduce the error rate of a high bias estimator by ensembling many estimators trained in sequential.

- A weak/base learner is a classifier that does slightly better than chance.
- Weak learners are like "rules of thumb":
 - "Viagra" \implies spam
 - $\bullet \ {\sf From a friend} \implies {\sf not spam}$
- Key idea:
 - Each weak learner focuses on different examples (*reweighted data*)
 - Weak learners have different contributions to the final prediction (*reweighted classifier*)

He He (CDS, NYU)

AdaBoost: Setting

- Binary classification: $\mathcal{Y} = \{-1, 1\}$
- Base hypothesis space $\mathcal{H} = \{h : \mathcal{X} \to \{-1, 1\}\}.$
- Typical base hypothesis spaces:
 - Decision stumps (tree with a single split)
 - Trees with few terminal nodes
 - Linear decision functions

Weighted Training Set

Each base learner is trained on weighted data.

- Training set $\mathcal{D} = ((x_1, y_1), \dots, (x_n, y_n)).$
- Weights (w_1, \ldots, w_n) associated with each example.
- Weighted empirical risk:

$$\hat{R}_{n}^{w}(f) \stackrel{\text{def}}{=} \underbrace{1}_{i=1}^{n} \underbrace{w_{i}}_{i=1}^{n} \ell(f(x_{i}), y_{i}) \quad \text{where } W = \sum_{i=1}^{n} w_{i}$$

• Examples with larger weights have more influence on the loss.

AdaBoost - Rough Sketch

- Training set $\mathcal{D} = ((x_1, y_1), \dots, (x_n, y_n)).$
- Start with equal weight on all training points $w_1 = \cdots = w_n = 1$.
- Repeat for $m = 1, \ldots, M$:
 - Find base classifier $G_m(x)$ that tries to fit weighted training data (but may not do that well)
 - Increase weight on the points $G_m(x)$ misclassifies
- So far, we've generated *M* classifiers: $G_1, \ldots, G_M : \mathfrak{X} \to \{-1, 1\}$.

AdaBoost: Schematic

From ESL Figure 10.1

He He (CDS, NYU)

AdaBoost - Rough Sketch

- Training set $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- Start with equal weight on all training points $w_1 = \cdots = w_n = 1$.
- Repeat for $m = 1, \ldots, M$:
 - Base learner fits weighted training data and returns $G_m(x)$
 - Increase weight on the points $G_m(x)$ misclassifies

• Final prediction
$$G(x) = \operatorname{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$$
. (recall $G_m(x) \in \{-1, 1\}$)

- What are desirable α_m 's?
 - nonnegative
 - larger when G_m fits its weighted $\mathcal D$ well
 - \bullet smaller when ${\it G}_m$ fits weighted ${\mathcal D}$ less well

Adaboost: Weighted Classification Error

- Weights of base learners depend on their performance. How to evaluate each base learner?
- In round *m*, base learner gets a weighted training set.
 - Returns a base classifier $G_m(x)$ that minimizes weighted 0-1 error.
- The weighted 0-1 error of $G_m(x)$ is

$$\operatorname{err}_{m} = \frac{1}{W} \sum_{i=1}^{n} w_{i} \mathbb{1}(y_{i} \neq G_{m}(x_{i})) \quad \text{where } W = \sum_{i=1}^{n} w_{i}.$$

• Notice: $\operatorname{err}_m \in [0, 1]$.

AdaBoost: Classifier Weights

• The weight of classifier $G_m(x)$ is $\alpha_m = \ln\left(\frac{1 - \text{err}_m}{\text{err}_m}\right)$.

- $\bullet\,$ Higher weighted error $\implies\,$ lower weight
- When is $\alpha_m < 0$?

He He (CDS, NYU)

< |

Adaboost: Example Reweighting

• We train G_m to minimize weighted error, and it achieves m.

• Then
$$\alpha_m = \ln\left(\frac{1 - \operatorname{err}_m}{\operatorname{err}_m}\right)$$
 is the weight of G_m in final ensemble.

We want the base learner to focus more on examples misclassified by the previous learner.

- Suppose *w_i* is weight of example *i* before training:
 - If G_m classfies x_i correctly, then w_i is unchanged.
 - Otherwise, w_i is increased as

eased as

$$w_i \leftarrow w_i e^{\alpha_m}$$
 \Rightarrow dm is large
 $= w_i \left(\frac{1 - \operatorname{err}_m}{\operatorname{err}_m}\right)$ \Rightarrow if m_i is misclassified
then its weight is
increased more
learner), this always increases the weight.

.....

• For $\operatorname{err}_m < 0.5$ (weak

AdaBoost: Algorithm

Given training set $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}.$

- Initialize observation weights $w_i = 1, i = 1, 2, ..., n$.
- 2 For m = 1 to M:
 - Base learner fits weighted training data and returns $G_m(x)$
 - Occupie weighted empirical 0-1 risk:

$$\operatorname{err}_m = \frac{1}{W} \sum_{i=1}^n w_i \mathbb{1}(y_i \neq G_m(x_i)) \quad \text{where } W = \sum_{i=1}^n w_i.$$

- Compute classifier weight: $\alpha_m = \ln\left(\frac{1 \operatorname{err}_m}{\operatorname{err}_m}\right)$. • Update example weight: $w_i \leftarrow w_i \cdot \exp\left[\alpha_m 1(y_i \neq G_m(x_i))\right]$
- Solution Return voted classifier: $G(x) = \operatorname{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right].$

AdaBoost with Decision Stumps

• After 1 round:

Figure: Plus size represents weight. Blackness represents score for red class.

KPM Figure 16.10

AdaBoost with Decision Stumps

• After 3 rounds:

Figure: Plus size represents weight. Blackness represents score for red class.

KPM Figure 16.10

AdaBoost with Decision Stumps

• After 120 rounds:

Figure: Plus size represents weight. Blackness represents score for red class.

KPM Figure 16.10

Typical Train / Test Learning Curves

• Might expect too many rounds of boosting to overfit:

From Rob Schapire's NIPS 2007 Boosting tutorial.

Learning Curves for AdaBoost

- In typical performance, AdaBoost is surprisingly resistant to overfitting.
- Test continues to improve even after training error is zero!

He He (CDS, NYU)

- Shallow decision tree + boosting
 - "best off-the-shelf classifier in the world"-Leo Brieman
 - Used in the first successful real-time face detector (Viola and Jones, 2001)
 - XGBoost: very popular in competitions
- Next week
 - What is the objective function of Adaboost?
 - Generalize to other loss functions.