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Overview

Bagging Reduce variance of a low bias, high variance estimator by ensembling many
estimators trained in parallel.

Boosting Reduce the error rate of a high bias estimator by ensembling many estimators
trained in sequential.

A weak/base learner is a classifier that does slightly better than chance.

Weak learners are like “rules of thumb”:
“Viagra” =) spam

From a friend =) not spam

Key idea:
Each weak learner focuses on different examples (reweighted data)

Weak learners have different contributions to the final prediction
(reweighted classifier)
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AdaBoost: Setting

Binary classification: Y= {-1,1}

Base hypothesis space H = {h : X! {-1,1}}.

Typical base hypothesis spaces:
Decision stumps (tree with a single split)

Trees with few terminal nodes

Linear decision functions
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Weighted Training Set

Each base learner is trained on weighted data.

Training set D= ((x1,y1) , . . . ,(xn,yn)).

Weights (w1, . . . ,wn) associated with each example.

Weighted empirical risk:

R̂w
n (f )

def
=

1
W

nX

i=1

wi `(f (xi ),yi ) where W =
nX

i=1

wi

Examples with larger weights have more influence on the loss.
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AdaBoost - Rough Sketch

Training set D= ((x1,y1) , . . . ,(xn,yn)).

Start with equal weight on all training points w1 = · · ·= wn = 1.

Repeat for m = 1, . . . ,M:
Find base classifier Gm(x) that tries to fit weighted training data (but may not do
that well)

Increase weight on the points Gm(x) misclassifies

So far, we’ve generated M classifiers: G1, . . . ,GM : X! {-1,1}.
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AdaBoost: Schematic

From ESL Figure 10.1
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AdaBoost - Rough Sketch

Training set D= {(x1,y1) , . . . ,(xn,yn)}.

Start with equal weight on all training points w1 = · · ·= wn = 1.

Repeat for m = 1, . . . ,M:
Base learner fits weighted training data and returns Gm(x)

Increase weight on the points Gm(x) misclassifies

Final prediction G (x) = sign
hPM

m=1↵mGm(x)
i
. (recall Gm(x) 2 {-1,1})

What are desirable ↵m’s?
nonnegative

larger when Gm fits its weighted D well

smaller when Gm fits weighted D less well
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Adaboost: Weighted Classification Error

Weights of base learners depend on their performance. How to evaluate each base learner?

In round m, base learner gets a weighted training set.
Returns a base classifier Gm(x) that minimizes weighted 0-1 error.

The weighted 0-1 error of Gm(x) is

errm =
1
W

nX

i=1

wi1(yi 6= Gm(xi )) where W =
nX

i=1

wi .

Notice: errm 2 [0,1].
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AdaBoost: Classifier Weights

The weight of classifier Gm(x) is ↵m = ln
⇣

1-errm
errm

⌘
.

Higher weighted error =) lower weight

When is ↵m < 0?
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Adaboost: Example Reweighting

We train Gm to minimize weighted error, and it achieves m.

Then ↵m = ln
⇣

1-errm
errm

⌘
is the weight of Gm in final ensemble.

We want the base learner to focus more on examples misclassified by the previous learner.

Suppose wi is weight of example i before training:
If Gm classfies xi correctly, then wi is unchanged.

Otherwise, wi is increased as

wi  wie
↵m

= wi

✓
1- errm

errm

◆

For errm < 0.5 (weak learner), this always increases the weight.
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AdaBoost: Algorithm

Given training set D= {(x1,y1) , . . . ,(xn,yn)}.

1 Initialize observation weights wi = 1, i = 1,2, . . . ,n.
2 For m = 1 to M:

1 Base learner fits weighted training data and returns Gm(x)
2 Compute weighted empirical 0-1 risk:

errm =
1
W

nX

i=1

wi1(yi 6= Gm(xi )) where W =
nX

i=1

wi .

3 Compute classifier weight: ↵m = ln
⇣

1-errm
errm

⌘
.

4 Update example weight: wi  wi · exp [↵m1(yi 6= Gm(xi ))]

3 Return voted classifier: G (x) = sign
hPM

m=1↵mGm(x)
i
.
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AdaBoost with Decision Stumps

After 1 round:

Figure: Plus size represents weight. Blackness represents score for red class.

KPM Figure 16.10
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AdaBoost with Decision Stumps

After 3 rounds:

Figure: Plus size represents weight. Blackness represents score for red class.

KPM Figure 16.10
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AdaBoost with Decision Stumps

After 120 rounds:

Figure: Plus size represents weight. Blackness represents score for red class.

KPM Figure 16.10
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Typical Train / Test Learning Curves

Might expect too many rounds of boosting to overfit:

From Rob Schapire’s NIPS 2007 Boosting tutorial.
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Learning Curves for AdaBoost

In typical performance, AdaBoost is surprisingly resistant to overfitting.

Test continues to improve even after training error is zero!

From Rob Schapire’s NIPS 2007 Boosting tutorial.
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Summary

Shallow decision tree + boosting
“best off-the-shelf classifier in the world”—Leo Brieman

Used in the first successful real-time face detector (Viola and Jones, 2001)

XGBoost: very popular in competitions

Next week
What is the objective function of Adaboost?

Generalize to other loss functions.
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