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Recap: statistic and point estimator

@ Observe data D = (xq,x2,...,x,) sampled i.i.d. from a parametric distribution p(- | 0).

@ A statistic s = s(D) is any function of the data.
o E.g., sample mean, sample variance, histogram, empirical data distribution

o A statistic 6 =0(D) is a point estimator of 0 if 6 ~ 0.

Review questions
In frequentist statistics,

o Is O random?
o Is 6 random?

@ Is the function s(-) random?
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Recap: bias and variance of an estimator

@ Statistics are random, so they have probability distributions.
@ The distribution of a statistic is called a sampling distribution.

e © @ sampine ¢ 0 =4
@ The standard deviation of the sampling distribution is called the standard error.

@ What are some parameters of the sampling distribution we might be interested in?
Bias Bias(0) =) [é} —0.
Variance Var(8) ) [éz] — 2 [é]
e [discussion|ls bias and variance random?
e [discussion|Why do we care about variance?

X~ N(«M/az)
D:f(x, BN Mh.ﬁ
LAY = ¥,
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Variance of a Mean

Using a single estimate may have large standard error

o Let 6(D) be an unbiased estimator: E [é} =0, Var() =
o We could use a single estimate 8 = 8(D) to estimate 0.
o The standard error is 1/Var(0) =

Average of estimates has smaller standard error

A

o Consider a new estimator that takes the average of i.i.d. 81,...,0, where 8; = 6(D').

@ Average has the same expected value but smaller standard error:
2
o eduead Vox.
. z 6 == " 1
n

Ze]e Var 4
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Averaging Independent Prediction Functions

Let's apply averaging to reduce variance of prediction functions.
@ Suppose we have B independent training sets from the same distribution (D ~ p(- | 0)).

@ Learning algorithm (estimator) gives B prediction functions: ﬁ(x), fr(x),..., fg(x)

@ Define the average prediction function as:

podef 1
f;\vgéE

Mo
o

()

o
[

1

e [discussion|What's random here?

o Concept check: What's the distribution of f called? What do we know about the
distribution?

He He (CDS, NYU) DS-GA 1003 April 6, 2021 6/20



Averaging reduce variance of predictions

@ The average prediction on xg is
B
avg (xo0) Z fp(x0).
b:
° fa\,g(xo) and #,(xg) have the same expected value, but

° fa\,g(xo) has smaller variance (see 1):

Var(favg(Xo)) = évar (ﬁl (XO))

@ Problem: in practice we don't have B independent training sets...
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The Bootstrap Sample

How do we simulate multiple samples when we only have one?

o A bootstrap sample from D, = (x1,...,x,) is a sample of size n drawn with replacement
from D,,.

@ Some elements of D, will show up multiple times, and some won’t show up at all.
[discussion|How similar are the bootstrap samples?
@ Each x; has a probability of (1—1/n)" of not being selected.

@ Recall from analysis that for large n,

1\" 1
<1—> ~ =~ .368. (3)

n (S

@ So we expect 763.2% of elements of D, will show up at least once.
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The Bootstrap Method

Definition
A bootstrap method is when you simulate having B independent samples from P by taking B
bootstrap samples from the sample D,,.

o Given original data D, compute B bootstrap samples D}, ... DE.
@ For each bootstrap sample, compute some function
¢(Dy).....$(Dy)
o Work with these values as though D},..., DB were i.i.d. samples from P.

e Amazing fact: This is often very close to what we'd get with independent samples from
P.
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Independent vs Bootstrap Samples
@ Want to estimate o = o(P) for some unknown P and some complicated «.
@ Point estimator & = &(D1qg) for samples of size 100.

e Histogram of & based on
e 1000 independent samples of size 100, vs

o 1000 bootstrap samples of size 100
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Figure 5.10 from ISLR (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Side note: Bootstrap in Practice

We can use bootstrap to get error bars in a cheap way.
@ Suppose we have an estimator 6 = 8(D,,).
@ To get error bars, we can compute the “bootstrap variance’.
o Draw B bootstrap samples.
o Compute sample variance of é(D},), .. .,é(D,’,g)..

o Could report

8(D,) + v/Bootstrap Variance
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Ensemble methods
Key ideas:
@ Averaging i.i.d. estimates reduces variance without making bias worse.

@ Can use bootstrap to simulate multiple data samples.

Ensemble methods:
e Combine outputs from multiple models.
o Same learner on different datasets: ensemble + bootstrap = bagging.

o Different learners on one dataset: they may make similar errors.
@ Parallel ensemble: models are built independently, e.g., bagging

@ Sequential ensemble: models are built sequentially, e.g., boosting
o Try to add new learners that do well where previous learners lack
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Bagging

@ Draw B bootstrap samples D!, ..., DB from original data D.

B

o Let A, f,..., 7?5 be the prediction functions from training on D!,..., DB, respectively.

@ The bagged prediction function is a combination of these:
fivg () = Combine (£(x), B(x)...... ()

@ [discussion|How might we combine
o prediction functions for regression?

o binary class predictions?
o binary probability predictions?

o multiclass predictions?
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Out-of-Bag Error Estimation

e Each bagged predictor is trained on about 63% of the data.
@ Remaining 37% are called out-of-bag (OOB) observations.

For ith training point, let

Si = {b| D" does not contain ith point}.

The OOB prediction on x; is

@ The OOB error is a good estimate of the test error.

@ OOB error is similar to cross validation error — both are computed on training set.
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Bagging Classification Trees

@ Input space X = R® and output space Y ={—1,1}. Sample size n = 30.

Original Tree b=1 b=2

w10 o Each bootstrap tree is quite different: different
| | | splitting variable at the root
F = . . : L
SRR ﬁ o T o High variance: high degree of model variability
from small perturbations of the training data.
recos oo — o Conventional wisdom: Bagging helps most when
| ‘l‘ ! 4;‘—‘ base learners are relatively unbiased but has high
: % o Lo variance / low stability = decision trees.

From HTF Figure 8.9
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Variance of a Mean of Correlated Variables
Recall the motivating principle of bagging:

o For0y,....0, iid with E [é} — 0 and Var [é} _—y

e What if 8's are correlated?

@ Suppose Vi # j, Corr(é;,éj) =p . Then

1« ~ 1—
Zei] :pc72+—p02.
n n

i=1

Var

o For large n, the po? term dominates — limits benefit of averaging.
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Correlation between bootstrap samples

Averaging fi, ..., fg reduces variance if they're based on i.i.d. samples from Px xy

Bootstrap samples are
o independent samples from the training set, but

e are not independent samples from Py yy.

This dependence limits the amount of variance reduction we can get.

e Solution: reduce the dependence between f's by randomization.
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Random Forest

Key idea

Use bagged decision trees, but modify the tree-growing procedure to reduce the dependence
between trees.

@ Build a collection of trees independently (in parallel).

@ When constructing each tree node, restrict choice of splitting variable to a randomly

chosen subset of features of size m. e
o Avoid dominance by strong features. \O 3T ST € rand
Sub A
o Typically choose m = ,/p, where p is the number of features. of feare

@ Can choose m using cross validation.
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Random Forest: Effect of m size
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From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten,
T. Hastie and R. Tibshirani.
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Review

Usual approach is to build very deep trees—Ilow bias but high variance

Ensembling many models reduces variance
o Motivation: Mean of i.i.d. estimates has smaller variance than single estimate.

Use bootstrap to simulate many data samples from one dataset
o — Bagged decision trees

But bootstrap samples (and the induced models) are correlated.

Bagging seems to work better when we are combining a diverse set of prediction functions.

o — random forests (randomized tree building)
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