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Recap: statistic and point estimator

Observe data D= (x1,x2, . . . ,xn) sampled i.i.d. from a parametric distribution p(· | ✓).

A statistic s = s(D) is any function of the data.
E.g., sample mean, sample variance, histogram, empirical data distribution

A statistic ✓̂= ✓̂(D) is a point estimator of ✓ if ✓̂⇡ ✓.

Review questions
In frequentist statistics,

Is ✓ random?

Is ✓̂ random?

Is the function s(·) random?
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Recap: bias and variance of an estimator

Statistics are random, so they have probability distributions.
The distribution of a statistic is called a sampling distribution.
The standard deviation of the sampling distribution is called the standard error.
What are some parameters of the sampling distribution we might be interested in?

Bias Bias(✓̂) def
= E

h
✓̂
i
-✓.

Variance Var(✓̂) def
= E

h
✓̂2

i
-E2

h
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i
.

[discussion]Is bias and variance random?
[discussion]Why do we care about variance?
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Variance of a Mean

Using a single estimate may have large standard error

Let ✓̂(D) be an unbiased estimator: E
h
✓̂
i
= ✓, Var(✓̂) = �2.

We could use a single estimate ✓̂= ✓̂(D) to estimate ✓.

The standard error is
q

Var(✓̂) = �.

Average of estimates has smaller standard error

Consider a new estimator that takes the average of i.i.d. ✓̂1, . . . , ✓̂n where ✓̂i = ✓̂(Di ).

Average has the same expected value but smaller standard error:
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Averaging Independent Prediction Functions

Let’s apply averaging to reduce variance of prediction functions.

Suppose we have B independent training sets from the same distribution (D ⇠ p(· | ✓)).

Learning algorithm (estimator) gives B prediction functions: f̂1(x), f̂2(x), . . . , f̂B(x)

Define the average prediction function as:

f̂avg
def
=

1
B

BX

b=1

f̂b (2)

[discussion]What’s random here?

Concept check: What’s the distribution of f̂ called? What do we know about the
distribution?
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Averaging reduce variance of predictions

The average prediction on x0 is

f̂avg(x0) =
1
B

BX

b=1

f̂b(x0).

f̂avg(x0) and f̂b(x0) have the same expected value, but

f̂avg(x0) has smaller variance (see 1):

Var(f̂avg(x0)) =
1
B

Var
⇣
f̂1(x0)

⌘

Problem: in practice we don’t have B independent training sets...
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The Bootstrap Sample

How do we simulate multiple samples when we only have one?
A bootstrap sample from Dn = (x1, . . . ,xn) is a sample of size n drawn with replacement
from Dn.

Some elements of Dn will show up multiple times, and some won’t show up at all.

[discussion]How similar are the bootstrap samples?
Each xi has a probability of (1-1/n)n of not being selected.

Recall from analysis that for large n,
✓

1-
1
n

◆n

⇡ 1
e
⇡ .368. (3)

So we expect ~63.2% of elements of Dn will show up at least once.
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The Bootstrap Method

Definition
A bootstrap method is when you simulate having B independent samples from P by taking B
bootstrap samples from the sample Dn.

Given original data Dn, compute B bootstrap samples D1
n , . . . ,D

B
n .

For each bootstrap sample, compute some function

�(D1

n), . . . ,�(D
B
n )

Work with these values as though D1
n , . . . ,D

B
n were i.i.d. samples from P .

Amazing fact: This is often very close to what we’d get with independent samples from
P .
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Independent vs Bootstrap Samples

Want to estimate ↵= ↵(P) for some unknown P and some complicated ↵.

Point estimator ↵̂= ↵̂(D100) for samples of size 100.

Histogram of ↵̂ based on
1000 independent samples of size 100, vs

1000 bootstrap samples of size 100
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Figure 5.10 from ISLR (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.
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Side note: Bootstrap in Practice

We can use bootstrap to get error bars in a cheap way.

Suppose we have an estimator ✓̂= ✓̂(Dn).

To get error bars, we can compute the “bootstrap variance”.
Draw B bootstrap samples.

Compute sample variance of ✓̂(D1
n), . . . , ✓̂(D

B
n )..

Could report
✓̂(Dn)±

p
Bootstrap Variance
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Ensemble methods

Key ideas:
Averaging i.i.d. estimates reduces variance without making bias worse.

Can use bootstrap to simulate multiple data samples.

Ensemble methods:
Combine outputs from multiple models.

Same learner on different datasets: ensemble + bootstrap = bagging.

Different learners on one dataset: they may make similar errors.

Parallel ensemble: models are built independently, e.g., bagging

Sequential ensemble: models are built sequentially, e.g., boosting
Try to add new learners that do well where previous learners lack
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Bagging

Draw B bootstrap samples D1, . . . ,DB from original data D.

Let f̂1, f̂2, . . . , f̂B be the prediction functions from training on D1, . . . ,DB , respectively.

The bagged prediction function is a combination of these:

f̂avg(x) = Combine
⇣
f̂1(x), f̂2(x), . . . , f̂B(x)

⌘

[discussion]How might we combine
prediction functions for regression?

binary class predictions?

binary probability predictions?

multiclass predictions?
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Out-of-Bag Error Estimation

Each bagged predictor is trained on about 63% of the data.

Remaining 37% are called out-of-bag (OOB) observations.

For ith training point, let

Si =
�
b | Db does not contain ith point

 
.

The OOB prediction on xi is

f̂OOB(xi ) =
1
|Si |

X

b2Si

f̂b(xi ).

The OOB error is a good estimate of the test error.

OOB error is similar to cross validation error – both are computed on training set.
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Bagging Classification Trees

Input space X= R5 and output space Y= {-1,1}. Sample size n = 30.

Each bootstrap tree is quite different: different
splitting variable at the root

High variance: high degree of model variability
from small perturbations of the training data.

Conventional wisdom: Bagging helps most when
base learners are relatively unbiased but has high
variance / low stability =) decision trees.

From HTF Figure 8.9
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Variance of a Mean of Correlated Variables

Recall the motivating principle of bagging:

For ✓̂1, . . . , ✓̂n i.i.d. with E
h
✓̂
i
= ✓ and Var

h
✓̂
i
= �2,
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What if ✓̂’s are correlated?

Suppose 8i 6= j , Corr(✓̂i , ✓̂j) = ⇢ . Then

Var

"
1
n

nX
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#

= ⇢�2+
1-⇢

n
�2.

For large n, the ⇢�2 term dominates – limits benefit of averaging.
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Correlation between bootstrap samples

Averaging f̂1, . . . , f̂B reduces variance if they’re based on i.i.d. samples from PX⇥Y

Bootstrap samples are
independent samples from the training set, but

are not independent samples from PX⇥Y.

This dependence limits the amount of variance reduction we can get.

Solution: reduce the dependence between f̂i ’s by randomization.
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Random Forest

Key idea
Use bagged decision trees, but modify the tree-growing procedure to reduce the dependence
between trees.

Build a collection of trees independently (in parallel).

When constructing each tree node, restrict choice of splitting variable to a randomly
chosen subset of features of size m.

Avoid dominance by strong features.

Typically choose m ⇡p
p, where p is the number of features.

Can choose m using cross validation.
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Random Forest: Effect of m size

From An Introduction to Statistical Learning, with applications in R (Springer, 2013) with permission from the authors: G. James, D. Witten,

T. Hastie and R. Tibshirani.
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Review

Usual approach is to build very deep trees—low bias but high variance

Ensembling many models reduces variance
Motivation: Mean of i.i.d. estimates has smaller variance than single estimate.

Use bootstrap to simulate many data samples from one dataset
=) Bagged decision trees

But bootstrap samples (and the induced models) are correlated.

Bagging seems to work better when we are combining a diverse set of prediction functions.

=) random forests (randomized tree building)
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