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Conditional Probability Modeling

Input space X

Outcome space Y

Action space A= {p(y) | p is a probability distribution on Y}.

Hypothesis space F contains prediction functions f : X→A.
Prediction function f ∈ F takes input x ∈ X and produces a distribution on Y

A parametric family of conditional densities is a set

{p(y | x ,θ) : θ ∈Θ} ,

where p(y | x ,θ) is a density on outcome space Y for each x in input space X, and
θ is a parameter in a [finite dimensional] parameter space Θ.

This is the common starting point for a treatment of classical or Bayesian statistics.
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Likelihood Function

Data: D= (y1, . . . , ,yn)

The probability density for our data D is

p(D | x1, . . . ,xn,θ) =

n∏
i=1

p(yi | xi ,θ).

For fixed D, the function θ 7→ p(D | x ,θ) is the likelihood function:

LD(θ) = p(D | x ,θ),

where x = (x1, . . . ,xn).
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Maximum Likelihood Estimator

The maximum likelihood estimator (MLE) for θ in the family {p(y | x ,θ) | θ ∈Θ} is

θ̂MLE = argmax
θ∈Θ

LD(θ).

MLE corresponds to ERM for the negative log-likelihood loss (discussed previously).

The corresponding prediction function is

f̂ (x) = p(y | x , θ̂MLE).

We can think of this as a choice of a particular function from the hypothesis space

F = {p(y | x ,θ) : θ ∈Θ} .

Marylou Gabrié Slides based on Lecture 08b from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 March 16, 2021 6 / 27

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/08b.bayesian-regression.pdf
https://github.com/davidrosenberg/mlcourse


Maximum Likelihood Estimator

The maximum likelihood estimator (MLE) for θ in the family {p(y | x ,θ) | θ ∈Θ} is

θ̂MLE = argmax
θ∈Θ

LD(θ).

MLE corresponds to ERM for the negative log-likelihood loss (discussed previously).
The corresponding prediction function is

f̂ (x) = p(y | x , θ̂MLE).

We can think of this as a choice of a particular function from the hypothesis space

F = {p(y | x ,θ) : θ ∈Θ} .

Marylou Gabrié Slides based on Lecture 08b from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 March 16, 2021 6 / 27

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/08b.bayesian-regression.pdf
https://github.com/davidrosenberg/mlcourse


Maximum Likelihood Estimator

The maximum likelihood estimator (MLE) for θ in the family {p(y | x ,θ) | θ ∈Θ} is

θ̂MLE = argmax
θ∈Θ

LD(θ).

MLE corresponds to ERM for the negative log-likelihood loss (discussed previously).
The corresponding prediction function is

f̂ (x) = p(y | x , θ̂MLE).

We can think of this as a choice of a particular function from the hypothesis space

F = {p(y | x ,θ) : θ ∈Θ} .

Marylou Gabrié Slides based on Lecture 08b from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 March 16, 2021 6 / 27

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/08b.bayesian-regression.pdf
https://github.com/davidrosenberg/mlcourse


Table of Contents

1 Recap: Conditional Probability Models

2 Bayesian Conditional Probability Models

3 Gaussian Regression Example

4 Gaussian Regression Continued

Marylou Gabrié Slides based on Lecture 08b from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 March 16, 2021 7 / 27

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/08b.bayesian-regression.pdf
https://github.com/davidrosenberg/mlcourse


Bayesian Conditional Models

Input space X= Rd Outcome space Y= R

Two components to Bayesian conditional model:
A parametric family of conditional densities:

{p(y | x ,θ) : θ ∈Θ}

A prior distribution p(θ) on θ ∈Θ.
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The Posterior Distribution

The prior distribution p(θ) represents our beliefs about θ before seeing D.

The posterior distribution for θ is

p(θ | D,x) ∝ p(D | θ,x)p(θ)

= LD(θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

Posterior represents the rationally “updated” beliefs after seeing D.
Each θ corresponds to a prediction function,

i.e. the conditional distribution function p(y | x ,θ).
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Point Estimates of Parameter

Suppose for some reason we want point estimates of θ.

We can use Bayesian decision theory to derive point estimates.
As discussed in last video, we may want to use

θ̂= E [θ | D,x ] (the posterior mean estimate)
θ̂=median[θ | D,x ]
θ̂= argmaxθ∈Θ p(θ | D,x) (the MAP estimate)

depending on our loss function.
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Back to the basic question - Bayesian Prediction Function

Find a function takes input x ∈ X and produces a distribution on Y?

Recall frequentist approach:
Choose family of conditional probability densities (hypothesis space).

Select one conditional probability from family, e.g. by MLE.

In Bayesian setting:
We chose a parametric family of conditional densities

{p(y | x ,θ) : θ ∈Θ} ,

and a prior distribution p(θ) on this set.

Having set our Bayesian model, how do we predict a distribution on y for input x?
There is no selection from hypothesis space.
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The Prior Predictive Distribution

Suppose we have not yet observed any data.

In Bayesian setting, we can still produce a prediction function.

The prior predictive distribution is given by

x 7→ p(y | x) =

∫
p(y | x ;θ)p(θ)dθ.

This is an average of all conditional densities in our family, weighted by the prior.
Such an average is also called a mixture distribution.
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Such an average is also called a mixture distribution.
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Comparison to Frequentist Approach

In Bayesian statistics we have two distributions on Θ:
the prior distribution p(θ)
the posterior distribution p(θ | D).

We also think of these as distributions on the hypothesis space

{p(y | x ,θ) : θ ∈Θ} .

In frequentist approach, we choose θ̂ ∈Θ, and predict

p(y | x , θ̂(D)).

In Bayesian approach, we integrate out over Θ w.r.t. p(θ | D) and predict with

p(y | x ,D) =

∫
p(y | x ;θ)p(θ | D)dθ
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What if we don’t want a full distribution on y?

Once we have a predictive distribution p(y | x ,D),
we can easily generate single point predictions.

x 7→ E [y | x ,D], to minimize expected square error.

x 7→median[y | x ,D], to minimize expected absolute error

x 7→ argmaxy∈Y p(y | x ,D), to minimize expected 0/1 loss

Each of these can be derived from p(y | x ,D).
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Example in 1-Dimension: Setup

Input space X= [−1,1] Output space Y= R
Given x , the world generates y as

y = w0+w1x +ε,

where ε ∼ N(0,0.22).

Written another way, the conditional probability model is

y | x ,w0,w1 ∼ N
(
w0+w1x , 0.22) .

What’s the parameter space? R2.
Prior distribution: w = (w0,w1) ∼ N

(
0, 1

2 I
)
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Example in 1-Dimension: Prior Situation

Prior distribution: w = (w0,w1) ∼ N
(
0, 1

2 I
)
(Illustrated on left)

On right, y(x) = E [y | x ,w ] = w0+w1x , for randomly chosen w ∼ p(w) =N
(
0, 1

2 I
)
.

Bishop’s PRML Fig 3.7
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Example in 1-Dimension: 1 Observation

On left: posterior distribution; white ’+’ indicates true parameters
On right:

blue circle indicates the training observation
red lines, y(x) = E [y | x ,w ] = w0+w1x , for randomly chosen w ∼ p(w |D) (posterior)

Bishop’s PRML Fig 3.7

Marylou Gabrié Slides based on Lecture 08b from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 March 16, 2021 19 / 27

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/08b.bayesian-regression.pdf
https://github.com/davidrosenberg/mlcourse


Example in 1-Dimension: 2 and 20 Observations

Bishop’s PRML Fig 3.7
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Closed Form for Posterior

Model:

w ∼ N (0,Σ0)

yi | x ,w i.i.d. N(wT xi ,σ
2)

Design matrix X Response column vector y
Posterior distribution is a Gaussian distribution:

w | D ∼ N(µP ,ΣP)

µP =
(
XTX +σ2Σ−1

0
)−1

XT y

ΣP =
(
σ−2XTX +Σ−1

0
)−1

Posterior Variance ΣP gives us a natural uncertainty measure.
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Closed Form for Posterior

Posterior distribution is a Gaussian distribution:

w | D ∼

N(µP ,ΣP)

µP =
(
XTX +σ2Σ−1

0
)−1

XT y

ΣP =
(
σ−2XTX +Σ−1

0
)−1

If we want point estimates of w , MAP estimator and the posterior mean are given by

ŵ = µP =
(
XTX +σ2Σ−1

0
)−1

XT y

For the prior variance Σ0 =
σ2

λ I , we get

ŵ = µP =
(
XTX +λI

)−1
XT y ,

which is of course the ridge regression solution.
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XTX +σ2Σ−1

0
)−1

XT y

ΣP =
(
σ−2XTX +Σ−1

0
)−1

If we want point estimates of w , MAP estimator and the posterior mean are given by

ŵ = µP =
(
XTX +σ2Σ−1

0
)−1

XT y

For the prior variance Σ0 =
σ2

λ I , we get

ŵ = µP =
(
XTX +λI

)−1
XT y ,

which is of course the ridge regression solution.
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Posterior Mean and Posterior Mode (MAP)

Let’s find ŵMAP another way to elaborate on connection to ridge.

Posterior density on w for Σ0 =
σ2

λ I :

p(w | D) ∝ exp

(
−
λ

2σ2 ‖w‖2
)

︸ ︷︷ ︸
prior

n∏
i=1

exp

(
−
(yi −wT xi )

2

2σ2

)
︸ ︷︷ ︸

likelihood

To find MAP, sufficient to minimize the negative log posterior:

ŵMAP = argmin
w∈Rd

[− logp(w | D)]

= argmin
w∈Rd

n∑
i=1

(yi −wT xi )
2

︸ ︷︷ ︸
log-likelihood

+λ‖w‖2︸ ︷︷ ︸
log-prior

Which is the ridge regression objective.

Marylou Gabrié Slides based on Lecture 08b from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 March 16, 2021 24 / 27

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/08b.bayesian-regression.pdf
https://github.com/davidrosenberg/mlcourse


Posterior Mean and Posterior Mode (MAP)
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Let’s find ŵMAP another way to elaborate on connection to ridge.
Posterior density on w for Σ0 =

σ2

λ I :

p(w | D) ∝ exp

(
−
λ

2σ2 ‖w‖2
)

︸ ︷︷ ︸
prior

n∏
i=1

exp

(
−
(yi −wT xi )

2

2σ2

)
︸ ︷︷ ︸

likelihood

To find MAP, sufficient to minimize the negative log posterior:
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Predictive Distribution

Given a new input point xnew, how to predict ynew ?

Predictive distribution

p(ynew | xnew,D) =

∫
p(ynew | xnew,w ,D)p(w | D)dw

=

∫
p(ynew | xnew,w)p(w | D)dw

For Gaussian regression, predictive distribution has closed form.
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Closed Form for Predictive Distribution

Model:

w ∼ N (0,Σ0)

yi | x ,w i.i.d. N(wT xi ,σ
2)

Predictive Distribution

p(ynew | xnew,D) =

∫
p(ynew | xnew,w)p(w | D)dw .

Averages over prediction for each w , weighted by posterior distribution.
Closed form:

ynew | xnew,D ∼ N
(
ηnew , σ

2
new

)
ηnew = µTP xnew

σ2
new = xTnewΣPxnew︸ ︷︷ ︸

from variance in w

+ σ2︸︷︷︸
inherent variance in y

Marylou Gabrié Slides based on Lecture 08b from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 March 16, 2021 26 / 27

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/08b.bayesian-regression.pdf
https://github.com/davidrosenberg/mlcourse


Closed Form for Predictive Distribution

Model:

w ∼ N (0,Σ0)

yi | x ,w i.i.d. N(wT xi ,σ
2)

Predictive Distribution

p(ynew | xnew,D) =

∫
p(ynew | xnew,w)p(w | D)dw .

Averages over prediction for each w , weighted by posterior distribution.
Closed form:

ynew | xnew,D ∼ N
(
ηnew , σ

2
new

)
ηnew = µTP xnew

σ2
new = xTnewΣPxnew︸ ︷︷ ︸

from variance in w

+ σ2︸︷︷︸
inherent variance in y

Marylou Gabrié Slides based on Lecture 08b from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 March 16, 2021 26 / 27

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/08b.bayesian-regression.pdf
https://github.com/davidrosenberg/mlcourse


Closed Form for Predictive Distribution

Model:

w ∼ N (0,Σ0)

yi | x ,w i.i.d. N(wT xi ,σ
2)

Predictive Distribution

p(ynew | xnew,D) =

∫
p(ynew | xnew,w)p(w | D)dw .

Averages over prediction for each w , weighted by posterior distribution.

Closed form:

ynew | xnew,D ∼ N
(
ηnew , σ

2
new

)
ηnew = µTP xnew

σ2
new = xTnewΣPxnew︸ ︷︷ ︸

from variance in w

+ σ2︸︷︷︸
inherent variance in y

Marylou Gabrié Slides based on Lecture 08b from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 March 16, 2021 26 / 27

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/08b.bayesian-regression.pdf
https://github.com/davidrosenberg/mlcourse


Closed Form for Predictive Distribution

Model:

w ∼ N (0,Σ0)

yi | x ,w i.i.d. N(wT xi ,σ
2)

Predictive Distribution

p(ynew | xnew,D) =

∫
p(ynew | xnew,w)p(w | D)dw .

Averages over prediction for each w , weighted by posterior distribution.
Closed form:

ynew | xnew,D ∼ N
(
ηnew , σ

2
new

)

ηnew = µTP xnew

σ2
new = xTnewΣPxnew︸ ︷︷ ︸

from variance in w

+ σ2︸︷︷︸
inherent variance in y

Marylou Gabrié Slides based on Lecture 08b from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 March 16, 2021 26 / 27

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/08b.bayesian-regression.pdf
https://github.com/davidrosenberg/mlcourse


Closed Form for Predictive Distribution

Model:

w ∼ N (0,Σ0)

yi | x ,w i.i.d. N(wT xi ,σ
2)

Predictive Distribution

p(ynew | xnew,D) =

∫
p(ynew | xnew,w)p(w | D)dw .

Averages over prediction for each w , weighted by posterior distribution.
Closed form:

ynew | xnew,D ∼ N
(
ηnew , σ

2
new

)
ηnew = µTP xnew

σ2
new = xTnewΣPxnew︸ ︷︷ ︸

from variance in w

+ σ2︸︷︷︸
inherent variance in y

Marylou Gabrié Slides based on Lecture 08b from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 March 16, 2021 26 / 27

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/08b.bayesian-regression.pdf
https://github.com/davidrosenberg/mlcourse


Closed Form for Predictive Distribution

Model:

w ∼ N (0,Σ0)

yi | x ,w i.i.d. N(wT xi ,σ
2)

Predictive Distribution

p(ynew | xnew,D) =

∫
p(ynew | xnew,w)p(w | D)dw .

Averages over prediction for each w , weighted by posterior distribution.
Closed form:

ynew | xnew,D ∼ N
(
ηnew , σ

2
new

)
ηnew = µTP xnew

σ2
new = xTnewΣPxnew︸ ︷︷ ︸

from variance in w

+ σ2︸︷︷︸
inherent variance in y

Marylou Gabrié Slides based on Lecture 08b from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 March 16, 2021 26 / 27

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/08b.bayesian-regression.pdf
https://github.com/davidrosenberg/mlcourse


Predictive Distributions

With predictive distributions, can give mean prediction with error bands:

Rasmussen and Williams’ Gaussian Processes for Machine Learning, Fig.2.1(b)
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