Probabilistic models

Bayesian Regression

Marylou Gabrié Slides based on Lecture 08b from David Rosenberg's course materials (https://github.com/davidrosenberg/mlcourse)

CDS, NYU

March 16, 2021

Contents

1 Recap: Conditional Probability Models

- 2 Bayesian Conditional Probability Models
- 3 Gaussian Regression Example
- ④ Gaussian Regression Continued

Table of Contents

1 Recap: Conditional Probability Models

2 Bayesian Conditional Probability Models

3 Gaussian Regression Example

4 Gaussian Regression Continued

- Input space $\boldsymbol{\mathfrak{X}}$
- Outcome space \mathcal{Y}
- Action space $\mathcal{A} = \{ p(y) \mid p \text{ is a probability distribution on } \mathcal{Y} \}.$

- \bullet Input space ${\mathfrak X}$
- Outcome space \mathcal{Y}
- Action space $\mathcal{A} = \{ p(y) \mid p \text{ is a probability distribution on } \mathcal{Y} \}.$
- Hypothesis space \mathcal{F} contains prediction functions $f: \mathcal{X} \to \mathcal{A}$.
- Prediction function $f \in \mathcal{F}$ takes input $x \in \mathcal{X}$ and produces a distribution on \mathcal{Y}

- \bullet Input space ${\mathfrak X}$
- Outcome space \mathcal{Y}
- Action space $\mathcal{A} = \{ p(y) \mid p \text{ is a probability distribution on } \mathcal{Y} \}.$
- Hypothesis space \mathcal{F} contains prediction functions $f: \mathfrak{X} \to \mathcal{A}$.
- Prediction function $f \in \mathcal{F}$ takes input $x \in \mathcal{X}$ and produces a distribution on \mathcal{Y}
- A parametric family of conditional densities is a set

 $\{p(y \mid x, \theta) : \theta \in \Theta\},\$

- where $p(y | x, \theta)$ is a density on **outcome space** \mathcal{Y} for each x in **input space** \mathcal{X} , and
- θ is a parameter in a [finite dimensional] parameter space Θ .

- \bullet Input space ${\mathfrak X}$
- Outcome space \mathcal{Y}
- Action space $\mathcal{A} = \{ p(y) \mid p \text{ is a probability distribution on } \mathcal{Y} \}.$
- Hypothesis space \mathcal{F} contains prediction functions $f: \mathfrak{X} \to \mathcal{A}$.
- Prediction function $f \in \mathcal{F}$ takes input $x \in \mathcal{X}$ and produces a distribution on \mathcal{Y}
- A parametric family of conditional densities is a set

 $\{p(y \mid x, \theta) : \theta \in \Theta\},\$

- where $p(y | x, \theta)$ is a density on **outcome space** \mathcal{Y} for each x in **input space** \mathcal{X} , and
- θ is a parameter in a [finite dimensional] parameter space Θ .
- This is the common starting point for a treatment of classical or Bayesian statistics.

Likelihood Function

- **Data:** $D = (y_1, ..., y_n)$
- $\bullet\,$ The probability density for our data ${\mathcal D}$ is

$$p(\mathcal{D} \mid x_1, \ldots, x_n, \theta) = \prod_{i=1}^n p(y_i \mid x_i, \theta).$$

Likelihood Function

- **Data:** $\mathcal{D} = (y_1, ..., y_n)$
- $\bullet\,$ The probability density for our data ${\mathcal D}$ is

$$p(\mathcal{D} | x_1, \ldots, x_n, \theta) = \prod_{i=1}^n p(y_i | x_i, \theta).$$

• For fixed \mathcal{D} , the function $\theta \mapsto p(\mathcal{D} \mid x, \theta)$ is the likelihood function:

$$L_{\mathcal{D}}(\theta) = \boldsymbol{p}(\mathcal{D} \mid \boldsymbol{x}, \theta),$$

where $x = (x_1, ..., x_n)$.

Maximum Likelihood Estimator

• The maximum likelihood estimator (MLE) for θ in the family $\{p(y | x, \theta) | \theta \in \Theta\}$ is

```
\hat{\theta}_{\mathsf{MLE}} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} L_{\mathcal{D}}(\theta).
```

• MLE corresponds to ERM for the negative log-likelihood loss (discussed previously).

Maximum Likelihood Estimator

• The maximum likelihood estimator (MLE) for θ in the family $\{p(y | x, \theta) | \theta \in \Theta\}$ is

$$\hat{\theta}_{\mathsf{MLE}} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} L_{\mathcal{D}}(\theta).$$

- MLE corresponds to ERM for the negative log-likelihood loss (discussed previously).
- The corresponding prediction function is

$$\hat{f}(x) = p(y \mid x, \hat{\theta}_{\mathsf{MLE}}).$$

Maximum Likelihood Estimator

• The maximum likelihood estimator (MLE) for θ in the family $\{p(y | x, \theta) | \theta \in \Theta\}$ is

$$\hat{\theta}_{\mathsf{MLE}} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} L_{\mathcal{D}}(\theta).$$

- MLE corresponds to ERM for the negative log-likelihood loss (discussed previously).
- The corresponding prediction function is

$$\hat{f}(x) = p(y \mid x, \hat{\theta}_{\mathsf{MLE}}).$$

• We can think of this as a choice of a particular function from the hypothesis space

$$\mathcal{F} = \{ p(y \mid x, \theta) : \theta \in \Theta \}.$$

Table of Contents

1 Recap: Conditional Probability Models

2 Bayesian Conditional Probability Models

3 Gaussian Regression Example

4 Gaussian Regression Continued

• Input space $\mathfrak{X} = \mathbf{R}^d$ Outcome space $\mathfrak{Y} = \mathbf{R}$

- Input space $\mathfrak{X} = \mathbf{R}^d$ Outcome space $\mathfrak{Y} = \mathbf{R}$
- Two components to Bayesian conditional model:
 - A parametric family of conditional densities:

 $\{p(y \mid x, \theta) : \theta \in \Theta\}$

- Input space $\mathfrak{X} = \mathbf{R}^d$ Outcome space $\mathfrak{Y} = \mathbf{R}$
- Two components to Bayesian conditional model:
 - A parametric family of conditional densities:

 $\{p(y \mid x, \theta) : \theta \in \Theta\}$

• A prior distribution $p(\theta)$ on $\theta \in \Theta$.

• The prior distribution $p(\theta)$ represents our beliefs about θ before seeing \mathcal{D} .

- The prior distribution $p(\theta)$ represents our beliefs about θ before seeing \mathcal{D} .
- \bullet The posterior distribution for θ is

 $p(\theta \mid \mathcal{D}, x)$

- The prior distribution $p(\theta)$ represents our beliefs about θ before seeing \mathcal{D} .
- \bullet The posterior distribution for θ is

 $p(\theta \mid \mathcal{D}, x) \propto p(\mathcal{D} \mid \theta, x) p(\theta)$

- The prior distribution $p(\theta)$ represents our beliefs about θ before seeing \mathcal{D} .
- The posterior distribution for θ is

$$p(\theta \mid \mathcal{D}, x) \propto p(\mathcal{D} \mid \theta, x) p(\theta)$$
$$= \underbrace{\mathcal{L}_{\mathcal{D}}(\theta)}_{\text{likelihood prior}} \underbrace{p(\theta)}_{\text{prior}}$$

- The prior distribution $p(\theta)$ represents our beliefs about θ before seeing \mathcal{D} .
- \bullet The posterior distribution for θ is

$$p(\theta \mid \mathcal{D}, x) \propto p(\mathcal{D} \mid \theta, x) p(\theta)$$
$$= \underbrace{\mathcal{L}_{\mathcal{D}}(\theta)}_{\text{likelihood prior}} \underbrace{p(\theta)}_{\text{prior}}$$

 \bullet Posterior represents the rationally "updated" beliefs after seeing $\mathcal{D}.$

- The prior distribution $p(\theta)$ represents our beliefs about θ before seeing \mathcal{D} .
- The posterior distribution for $\boldsymbol{\theta}$ is

$$p(\theta \mid \mathcal{D}, x) \propto p(\mathcal{D} \mid \theta, x) p(\theta)$$
$$= \underbrace{\mathcal{L}_{\mathcal{D}}(\theta)}_{\text{likelihood prior}} \underbrace{p(\theta)}_{\text{prior}}$$

- \bullet Posterior represents the rationally "updated" beliefs after seeing $\mathcal{D}.$
- Each $\boldsymbol{\theta}$ corresponds to a prediction function,
 - i.e. the conditional distribution function $p(y | x, \theta)$.

• Suppose for some reason we want point estimates of θ .

- Suppose for some reason we want point estimates of $\boldsymbol{\theta}.$
- We can use Bayesian decision theory to derive point estimates.

- $\bullet\,$ Suppose for some reason we want point estimates of $\theta.$
- We can use Bayesian decision theory to derive point estimates.
- As discussed in last video, we may want to use
 - $\hat{\theta} = \mathbb{E}[\theta \mid \mathcal{D}, x]$ (the posterior mean estimate)
 - $\hat{\theta} = \text{median}[\theta \mid \hat{D}, x]$
 - $\hat{\theta} = \arg \max_{\theta \in \Theta} p(\theta \mid \mathcal{D}, x)$ (the MAP estimate)
- depending on our loss function.

• Find a function takes input $x \in \mathcal{X}$ and produces a distribution on \mathcal{Y} ?

- Find a function takes input $x \in \mathcal{X}$ and produces a **distribution** on \mathcal{Y} ?
- Recall frequentist approach:
 - Choose family of conditional probability densities (hypothesis space).
 - Select one conditional probability from family, e.g. by MLE.

- Find a function takes input $x \in \mathcal{X}$ and produces a **distribution** on \mathcal{Y} ?
- Recall frequentist approach:
 - Choose family of conditional probability densities (hypothesis space).
 - Select one conditional probability from family, e.g. by MLE.
- In Bayesian setting:

- Find a function takes input $x \in \mathcal{X}$ and produces a **distribution** on \mathcal{Y} ?
- Recall frequentist approach:
 - Choose family of conditional probability densities (hypothesis space).
 - Select one conditional probability from family, e.g. by MLE.
- In Bayesian setting:
 - We chose a parametric family of conditional densities

 $\{p(y \mid x, \theta) : \theta \in \Theta\},\$

• and a prior distribution $p(\theta)$ on this set.

- Find a function takes input $x \in \mathcal{X}$ and produces a **distribution** on \mathcal{Y} ?
- Recall frequentist approach:
 - Choose family of conditional probability densities (hypothesis space).
 - Select one conditional probability from family, e.g. by MLE.
- In Bayesian setting:
 - We chose a parametric family of conditional densities

 $\{p(y \mid x, \theta) : \theta \in \Theta\},\$

- and a prior distribution $p(\theta)$ on this set.
- Having set our Bayesian model, how do we predict a distribution on y for input x?
- There is no selection from hypothesis space.

• Suppose we have not yet observed any data.

- Suppose we have not yet observed any data.
- In Bayesian setting, we can still produce a prediction function.

- Suppose we have not yet observed any data.
- In Bayesian setting, we can still produce a prediction function.
- The prior predictive distribution is given by

$$x \mapsto p(y \mid x)$$

- Suppose we have not yet observed any data.
- In Bayesian setting, we can still produce a prediction function.
- The prior predictive distribution is given by

$$x \mapsto p(y \mid x) = \int p(y \mid x; \theta) p(\theta) d\theta.$$

- Suppose we have not yet observed any data.
- In Bayesian setting, we can still produce a prediction function.
- The prior predictive distribution is given by

$$x \mapsto p(y \mid x) = \int p(y \mid x; \theta) p(\theta) d\theta.$$

• This is an average of all conditional densities in our family, weighted by the prior.

- Suppose we have not yet observed any data.
- In Bayesian setting, we can still produce a prediction function.
- The prior predictive distribution is given by

$$x \mapsto p(y \mid x) = \int p(y \mid x; \theta) p(\theta) d\theta.$$

- This is an average of all conditional densities in our family, weighted by the prior.
- Such an average is also called a mixture distribution.
• Suppose we've already seen data \mathcal{D} .

- $\bullet\,$ Suppose we've already seen data $\mathcal{D}.$
- The posterior predictive distribution is given by

$$x \mapsto p(y \mid x, \mathcal{D})$$

- Suppose we've already seen data $\ensuremath{\mathcal{D}}.$
- The posterior predictive distribution is given by

$$x \mapsto p(y \mid x, \mathcal{D}) = \int p(y \mid x; \theta) p(\theta \mid \mathcal{D}) d\theta$$

- Suppose we've already seen data $\ensuremath{\mathcal{D}}.$
- The posterior predictive distribution is given by

$$x \mapsto p(y \mid x, \mathcal{D}) = \int p(y \mid x; \theta) p(\theta \mid \mathcal{D}) d\theta.$$

• This is an average of all conditional densities in our family, weighted by the posterior.

- $\bullet\,$ In Bayesian statistics we have two distributions on Θ :
 - the prior distribution $p(\theta)$
 - the posterior distribution $p(\theta \mid D)$.

- In Bayesian statistics we have two distributions on Θ :
 - the prior distribution $p(\theta)$
 - the posterior distribution $p(\theta \mid D)$.
- We also think of these as distributions on the hypothesis space

 $\{p(y \mid x, \theta) : \theta \in \Theta\}.$

- $\bullet\,$ In Bayesian statistics we have two distributions on Θ :
 - the prior distribution $p(\theta)$
 - the posterior distribution $p(\theta \mid D)$.
- We also think of these as distributions on the hypothesis space

 $\{p(y \mid x, \theta) : \theta \in \Theta\}.$

 \bullet In frequentist approach, we choose $\hat{\theta}\in\Theta,$ and predict

 $p(y \mid x, \hat{\theta}(\mathcal{D})).$

- In Bayesian statistics we have two distributions on Θ :
 - the prior distribution $p(\theta)$
 - the posterior distribution $p(\theta \mid D)$.
- We also think of these as distributions on the hypothesis space

 $\{p(y \mid x, \theta) : \theta \in \Theta\}.$

 \bullet In frequentist approach, we choose $\hat{\theta}\in\Theta,$ and predict

 $p(y \mid x, \hat{\theta}(\mathcal{D})).$

• In Bayesian approach, we integrate out over Θ w.r.t. $p(\theta \mid D)$ and predict with

$$p(y \mid x, \mathcal{D}) = \int p(y \mid x; \theta) p(\theta \mid \mathcal{D}) d\theta$$

- Once we have a predictive distribution p(y | x, D),
 - we can easily generate single point predictions.

- Once we have a predictive distribution p(y | x, D),
 - we can easily generate single point predictions.
- $x \mapsto \mathbb{E}[y \mid x, \mathcal{D}]$, to minimize expected square error.

- Once we have a predictive distribution p(y | x, D),
 - we can easily generate single point predictions.
- $x \mapsto \mathbb{E}[y \mid x, \mathcal{D}]$, to minimize expected square error.
- $x \mapsto \text{median}[y \mid x, \mathcal{D}]$, to minimize expected absolute error

- Once we have a predictive distribution p(y | x, D),
 - we can easily generate single point predictions.
- $x \mapsto \mathbb{E}[y \mid x, \mathcal{D}]$, to minimize expected square error.
- $x \mapsto \text{median}[y \mid x, \mathcal{D}]$, to minimize expected absolute error
- $x \mapsto \arg \max_{y \in \mathcal{Y}} p(y \mid x, \mathcal{D})$, to minimize expected 0/1 loss

- Once we have a predictive distribution p(y | x, D),
 - we can easily generate single point predictions.
- $x \mapsto \mathbb{E}[y \mid x, \mathcal{D}]$, to minimize expected square error.
- $x \mapsto \text{median}[y \mid x, \mathcal{D}]$, to minimize expected absolute error
- $x \mapsto \arg \max_{y \in \mathcal{Y}} p(y \mid x, \mathcal{D})$, to minimize expected 0/1 loss
- Each of these can be derived from p(y | x, D).

Table of Contents

1 Recap: Conditional Probability Models

2 Bayesian Conditional Probability Models

3 Gaussian Regression Example

4 Gaussian Regression Continued

- Input space $\mathfrak{X} = [-1, 1]$ Output space $\mathfrak{Y} = \mathbf{R}$
- Given x, the world generates y as

$$y = w_0 + w_1 x + \varepsilon,$$

where $\varepsilon \sim \mathcal{N}(0, 0.2^2)$.

- Input space $\mathfrak{X} = [-1, 1]$ Output space $\mathfrak{Y} = \mathbf{R}$
- Given x, the world generates y as

$$y = w_0 + w_1 x + \varepsilon,$$

where $\varepsilon \sim \mathcal{N}(0, 0.2^2)$.

• Written another way, the conditional probability model is

$$y \mid x, w_0, w_1 \sim \mathcal{N}(w_0 + w_1 x, 0.2^2).$$

• What's the parameter space?

- Input space $\mathfrak{X} = [-1, 1]$ Output space $\mathfrak{Y} = \mathbf{R}$
- Given x, the world generates y as

$$y = w_0 + w_1 x + \varepsilon,$$

where $\varepsilon \sim \mathcal{N}(0, 0.2^2)$.

• Written another way, the conditional probability model is

$$y \mid x, w_0, w_1 \sim \mathcal{N}(w_0 + w_1 x, 0.2^2).$$

• What's the parameter space? \mathbf{R}^2 .

- Input space $\mathfrak{X} = [-1, 1]$ Output space $\mathfrak{Y} = \mathbf{R}$
- Given x, the world generates y as

$$y = w_0 + w_1 x + \varepsilon,$$

where $\varepsilon \sim \mathcal{N}(0, 0.2^2)$.

• Written another way, the conditional probability model is

$$y \mid x, w_0, w_1 \sim \mathcal{N}(w_0 + w_1 x, 0.2^2).$$

- What's the parameter space? \mathbf{R}^2 .
- Prior distribution: $w = (w_0, w_1) \sim \mathcal{N}(0, \frac{1}{2}I)$

Example in 1-Dimension: Prior Situation

• Prior distribution: $w = (w_0, w_1) \sim \mathcal{N}\left(0, \frac{1}{2}I\right)$ (Illustrated on left)

Bishop's PRML Fig 3.7

Example in 1-Dimension: Prior Situation

• Prior distribution: $w = (w_0, w_1) \sim \mathcal{N}\left(0, \frac{1}{2}I\right)$ (Illustrated on left)

• On right, $y(x) = \mathbb{E}[y | x, w] = w_0 + w_1 x$, for randomly chosen $w \sim p(w) = \mathcal{N}(0, \frac{1}{2}I)$.

Bishop's PRML Fig 3.7

Example in 1-Dimension: 1 Observation

- On left: posterior distribution; white '+' indicates true parameters
- On right:
 - blue circle indicates the training observation
 - red lines, $y(x) = \mathbb{E}[y | x, w] = w_0 + w_1 x$, for randomly chosen $w \sim p(w | D)$ (posterior)

Bishop's PRML Fig 3.7

Example in 1-Dimension: 2 and 20 Observations

Bishop's PRML Fig 3.7

Table of Contents

1 Recap: Conditional Probability Models

2 Bayesian Conditional Probability Models

3 Gaussian Regression Example

④ Gaussian Regression Continued

• Model:

$$w \sim \mathcal{N}(0, \Sigma_0)$$

• Model:

$$w \sim \mathcal{N}(0, \Sigma_0)$$

 $y_i \mid x, w$ i.i.d. $\mathcal{N}(w^T x_i, \sigma^2)$

• Model:

$$w \sim \mathcal{N}(0, \Sigma_0)$$

$$y_i \mid x, w \text{ i.i.d. } \mathcal{N}(w^T x_i, \sigma^2)$$

• Design matrix X Response column vector y

• Model:

$$w \sim \mathcal{N}(0, \Sigma_0)$$

 $y_i \mid x, w$ i.i.d. $\mathcal{N}(w^T x_i, \sigma^2)$

- Design matrix X Response column vector y
- Posterior distribution is a Gaussian distribution:

$$w \mid \mathcal{D} \sim$$

• Model:

$$w \sim \mathcal{N}(0, \Sigma_0)$$

 $y_i \mid x, w$ i.i.d. $\mathcal{N}(w^T x_i, \sigma^2)$

- Design matrix X Response column vector y
- Posterior distribution is a Gaussian distribution:

$$w \mid \mathcal{D} \sim \mathcal{N}(\mu_{P}, \Sigma_{P})$$

$$\mu_{P} = (X^{T}X + \sigma^{2}\Sigma_{0}^{-1})^{-1}X^{T}y$$

$$\Sigma_{P} = (\sigma^{-2}X^{T}X + \Sigma_{0}^{-1})^{-1}$$

• Model:

$$w \sim \mathcal{N}(0, \Sigma_0)$$

 $y_i \mid x, w$ i.i.d. $\mathcal{N}(w^T x_i, \sigma^2)$

- Design matrix X Response column vector y
- Posterior distribution is a Gaussian distribution:

$$w \mid \mathcal{D} \sim \mathcal{N}(\mu_{P}, \Sigma_{P})$$

$$\mu_{P} = (X^{T}X + \sigma^{2}\Sigma_{0}^{-1})^{-1}X^{T}y$$

$$\Sigma_{P} = (\sigma^{-2}X^{T}X + \Sigma_{0}^{-1})^{-1}$$

• Posterior Variance Σ_P gives us a natural uncertainty measure.

• Posterior distribution is a Gaussian distribution:

$$w \mid \mathcal{D} \sim$$

• Posterior distribution is a Gaussian distribution:

$$w \mid \mathcal{D} \sim \mathcal{N}(\mu_{P}, \Sigma_{P})$$

$$\mu_{P} = (X^{T}X + \sigma^{2}\Sigma_{0}^{-1})^{-1}X^{T}y$$

$$\Sigma_{P} = (\sigma^{-2}X^{T}X + \Sigma_{0}^{-1})^{-1}$$

• Posterior distribution is a Gaussian distribution:

$$w \mid \mathcal{D} \sim \mathcal{N}(\mu_{P}, \Sigma_{P})$$

$$\mu_{P} = (X^{T}X + \sigma^{2}\Sigma_{0}^{-1})^{-1}X^{T}y$$

$$\Sigma_{P} = (\sigma^{-2}X^{T}X + \Sigma_{0}^{-1})^{-1}$$

• If we want point estimates of w, MAP estimator and the posterior mean are given by

• Posterior distribution is a Gaussian distribution:

$$w \mid \mathcal{D} \sim \mathcal{N}(\mu_{P}, \Sigma_{P})$$

$$\mu_{P} = (X^{T}X + \sigma^{2}\Sigma_{0}^{-1})^{-1}X^{T}y$$

$$\Sigma_{P} = (\sigma^{-2}X^{T}X + \Sigma_{0}^{-1})^{-1}$$

• If we want point estimates of w, MAP estimator and the posterior mean are given by

$$\hat{w} = \mu_P = \left(X^T X + \sigma^2 \Sigma_0^{-1}\right)^{-1} X^T y$$

• Posterior distribution is a Gaussian distribution:

$$w \mid \mathcal{D} \sim \mathcal{N}(\mu_{P}, \Sigma_{P})$$

$$\mu_{P} = (X^{T}X + \sigma^{2}\Sigma_{0}^{-1})^{-1}X^{T}y$$

$$\Sigma_{P} = (\sigma^{-2}X^{T}X + \Sigma_{0}^{-1})^{-1}$$

• If we want point estimates of w, MAP estimator and the posterior mean are given by

$$\hat{w} = \mu_P = \left(X^T X + \sigma^2 \Sigma_0^{-1}\right)^{-1} X^T y$$

• For the prior variance $\Sigma_0 = \frac{\sigma^2}{\lambda} I$, we get

$$\hat{w} = \mu_P = \left(X^T X + \lambda I\right)^{-1} X^T y,$$

• Posterior distribution is a Gaussian distribution:

$$w \mid \mathcal{D} \sim \mathcal{N}(\mu_{P}, \Sigma_{P})$$

$$\mu_{P} = (X^{T}X + \sigma^{2}\Sigma_{0}^{-1})^{-1}X^{T}y$$

$$\Sigma_{P} = (\sigma^{-2}X^{T}X + \Sigma_{0}^{-1})^{-1}$$

• If we want point estimates of w, MAP estimator and the posterior mean are given by

$$\hat{w} = \mu_P = \left(X^T X + \sigma^2 \Sigma_0^{-1}\right)^{-1} X^T y$$

• For the prior variance $\Sigma_0 = \frac{\sigma^2}{\lambda} I$, we get

$$\hat{w} = \mu_P = \left(X^T X + \lambda I\right)^{-1} X^T y,$$

which is of course the ridge regression solution.

Posterior Mean and Posterior Mode (MAP)

• Let's find \hat{w}_{MAP} another way to elaborate on connection to ridge.
- Let's find \hat{w}_{MAP} another way to elaborate on connection to ridge.
- Posterior density on w for $\Sigma_0 = \frac{\sigma^2}{\lambda} I$:

$$p(w \mid \mathcal{D}) \propto \underbrace{\exp\left(-\frac{\lambda}{2\sigma^2} \|w\|^2\right)}_{\text{prior}} \underbrace{\prod_{i=1}^{n} \exp\left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2}\right)}_{\text{likelihood}}$$

- Let's find \hat{w}_{MAP} another way to elaborate on connection to ridge.
- Posterior density on w for $\Sigma_0 = \frac{\sigma^2}{\lambda} I$:

$$p(w \mid \mathcal{D}) \propto \underbrace{\exp\left(-\frac{\lambda}{2\sigma^2} \|w\|^2\right)}_{\text{prior}} \underbrace{\prod_{i=1}^{n} \exp\left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2}\right)}_{\text{likelihood}}$$

• To find MAP, sufficient to minimize the negative log posterior:

$$\hat{w}_{MAP} = \operatorname*{arg\,min}_{w \in \mathbf{R}^d} [-\log p(w \mid \mathcal{D})]$$

- Let's find \hat{w}_{MAP} another way to elaborate on connection to ridge.
- Posterior density on w for $\Sigma_0 = \frac{\sigma^2}{\lambda} I$:

$$p(w \mid \mathcal{D}) \propto \underbrace{\exp\left(-\frac{\lambda}{2\sigma^2} \|w\|^2\right)}_{\text{prior}} \underbrace{\prod_{i=1}^n \exp\left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2}\right)}_{\text{likelihood}}$$

• To find MAP, sufficient to minimize the negative log posterior:

$$\hat{w}_{\mathsf{MAP}} = \underset{w \in \mathbf{R}^{d}}{\operatorname{arg\,min}} \begin{bmatrix} -\log p(w \mid \mathcal{D}) \end{bmatrix}$$
$$= \underset{w \in \mathbf{R}^{d}}{\operatorname{arg\,min}} \underbrace{\sum_{i=1}^{n} (y_{i} - w^{T} x_{i})^{2}}_{\operatorname{log-likelihood}} + \underbrace{\lambda \|w\|^{2}}_{\operatorname{log-prior}}$$

- Let's find \hat{w}_{MAP} another way to elaborate on connection to ridge.
- Posterior density on w for $\Sigma_0 = \frac{\sigma^2}{\lambda} I$:

$$p(w \mid \mathcal{D}) \propto \underbrace{\exp\left(-\frac{\lambda}{2\sigma^2} \|w\|^2\right)}_{\text{prior}} \underbrace{\prod_{i=1}^{n} \exp\left(-\frac{(y_i - w^T x_i)^2}{2\sigma^2}\right)}_{\text{likelihood}}$$

• To find MAP, sufficient to minimize the negative log posterior:

$$\hat{w}_{MAP} = \underset{w \in \mathbf{R}^{d}}{\operatorname{arg\,min}} \begin{bmatrix} -\log p(w \mid \mathcal{D}) \end{bmatrix}$$
$$= \underset{w \in \mathbf{R}^{d}}{\operatorname{arg\,min}} \underbrace{\sum_{i=1}^{n} (y_{i} - w^{T} x_{i})^{2}}_{\operatorname{log-prior}} + \underbrace{\lambda \|w\|^{2}}_{\operatorname{log-prior}}$$

• Which is the ridge regression objective.

Marylou Gabrié Slides based on Lecture 08b from

• Given a new input point x_{new} , how to predict y_{new} ?

- Given a new input point x_{new} , how to predict y_{new} ?
- Predictive distribution

 $p(y_{new} | x_{new}, \mathcal{D}) =$

- Given a new input point x_{new} , how to predict y_{new} ?
- Predictive distribution

$$p(y_{\text{new}} | x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} | x_{\text{new}}, w, \mathcal{D}) p(w | \mathcal{D}) dw$$

- Given a new input point x_{new} , how to predict y_{new} ?
- Predictive distribution

$$p(y_{\text{new}} | x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} | x_{\text{new}}, w, \mathcal{D}) p(w | \mathcal{D}) dw$$
$$= \int p(y_{\text{new}} | x_{\text{new}}, w) p(w | \mathcal{D}) dw$$

- Given a new input point x_{new} , how to predict y_{new} ?
- Predictive distribution

$$p(y_{\text{new}} | x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} | x_{\text{new}}, w, \mathcal{D}) p(w | \mathcal{D}) dw$$
$$= \int p(y_{\text{new}} | x_{\text{new}}, w) p(w | \mathcal{D}) dw$$

• For Gaussian regression, predictive distribution has closed form.

• Model:

$$w \sim \mathcal{N}(0, \Sigma_0)$$

• Model:

$$w \sim \mathcal{N}(0, \Sigma_0)$$

 $y_i \mid x, w$ i.i.d. $\mathcal{N}(w^T x_i, \sigma^2)$

• Model:

$$w \sim \mathcal{N}(0, \Sigma_0)$$

 $y_i \mid x, w$ i.i.d. $\mathcal{N}(w^T x_i, \sigma^2)$

• Predictive Distribution

$$p(y_{\text{new}} | x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} | x_{\text{new}}, w) p(w | \mathcal{D}) dw.$$

• Averages over prediction for each w, weighted by posterior distribution.

• Model:

$$w \sim \mathcal{N}(0, \Sigma_0)$$

 $y_i \mid x, w$ i.i.d. $\mathcal{N}(w^T x_i, \sigma^2)$

• Predictive Distribution

$$p(y_{\text{new}} | x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} | x_{\text{new}}, w) p(w | \mathcal{D}) dw.$$

Averages over prediction for each w, weighted by posterior distribution.
Closed form:

$$y_{\text{new}} \mid x_{\text{new}}, \mathfrak{D} \quad \sim \quad \mathfrak{N}\left(\eta_{\text{new}}, \, \sigma_{\text{new}}^2\right)$$

• Model:

$$w \sim \mathcal{N}(0, \Sigma_0)$$

 $y_i \mid x, w$ i.i.d. $\mathcal{N}(w^T x_i, \sigma^2)$

• Predictive Distribution

$$p(y_{\text{new}} | x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} | x_{\text{new}}, w) p(w | \mathcal{D}) dw.$$

Averages over prediction for each w, weighted by posterior distribution.
Closed form:

$$\begin{array}{lll} y_{\text{new}} \mid x_{\text{new}}, \mathcal{D} & \sim & \mathcal{N}\left(\eta_{\text{new}}, \, \sigma_{\text{new}}^2\right) \\ \eta_{\text{new}} & = & \mu_{\text{P}}^{\mathcal{T}} x_{\text{new}} \end{array}$$

• Model:

$$w \sim \mathcal{N}(0, \Sigma_0)$$

 $y_i \mid x, w$ i.i.d. $\mathcal{N}(w^T x_i, \sigma^2)$

• Predictive Distribution

$$p(y_{\text{new}} | x_{\text{new}}, \mathcal{D}) = \int p(y_{\text{new}} | x_{\text{new}}, w) p(w | \mathcal{D}) dw.$$

Averages over prediction for each w, weighted by posterior distribution.
Closed form:

$$\begin{array}{rcl} y_{\text{new}} \mid x_{\text{new}}, \mathcal{D} & \sim & \mathcal{N}\left(\eta_{\text{new}}, \sigma_{\text{new}}^2\right) \\ \eta_{\text{new}} & = & \mu_{\text{P}}^{\mathcal{T}} x_{\text{new}} \\ \sigma_{\text{new}}^2 & = & \underbrace{x_{\text{new}}^{\mathcal{T}} \Sigma_{\text{P}} x_{\text{new}}}_{\text{from variance in } w} + \underbrace{\sigma_{\text{variance in } y}^2}_{\text{inherent variance in } y} \end{array}$$

Marylou Gabrié Slides based on Lecture 08b from

Predictive Distributions

• With predictive distributions, can give mean prediction with error bands:

Rasmussen and Williams' Gaussian Processes for Machine Learning, Fig.2.1(b)