Probabilistic models

Bayesian Methods

#### Marylou Gabrié Slides based on Lecture 08a from David Rosenberg's course materials (https://github.com/davidrosenberg/mlcourse)

CDS, NYU

March 9, 2021

### Contents

Classical Statistics

- 2 Bayesian Statistics: Introduction
- Bayesian Decision Theory



### Table of Contents

#### Classical Statistics

- 2 Bayesian Statistics: Introduction
- 3 Bayesian Decision Theory



• A parametric family of densities is a set

- where  $p(y | \theta)$  is a density on a **sample space**  $\mathcal{Y}$ , and
- $\theta$  is a **parameter** in a [finite dimensional] **parameter space**  $\Theta$ .

• A parametric family of densities is a set

- where  $p(y \mid \theta)$  is a density on a **sample space**  $\mathcal{Y}$ , and
- $\theta$  is a **parameter** in a [finite dimensional] **parameter space**  $\Theta$ .
- This is the common starting point for a treatment of classical or Bayesian statistics.

- In this lecture, whenever we say "density", we could replace it with "mass function."
- Corresponding integrals would be replaced by summations.
- (In more advanced, measure-theoretic treatments, they are each considered densities w.r.t. different base measures.)

Frequentist or "Classical" Statistics

• Parametric family of densities

### Frequentist or "Classical" Statistics

• Parametric family of densities

 $\{p(y \mid \theta) \mid \theta \in \Theta\}.$ 

• Assume that  $p(y | \theta)$  governs the world we are observing, for some  $\theta \in \Theta$ .

• Parametric family of densities

- Assume that  $p(y \mid \theta)$  governs the world we are observing, for some  $\theta \in \Theta$ .
- If we knew the right  $\theta\in\Theta,$  there would be no need for statistics.

• Parametric family of densities

- Assume that  $p(y \mid \theta)$  governs the world we are observing, for some  $\theta \in \Theta$ .
- If we knew the right  $\theta\in\Theta,$  there would be no need for statistics.
- Instead of  $\theta$ , we have data  $\mathcal{D}$ :  $y_1, \ldots, y_n$  sampled i.i.d.  $p(y \mid \theta)$ .

• Parametric family of densities

- Assume that  $p(y \mid \theta)$  governs the world we are observing, for some  $\theta \in \Theta$ .
- If we knew the right  $\theta\in\Theta,$  there would be no need for statistics.
- Instead of  $\theta$ , we have data  $\mathcal{D}$ :  $y_1, \ldots, y_n$  sampled i.i.d.  $p(y \mid \theta)$ .
- Statistics is about how to get by with  ${\mathcal D}$  in place of  $\theta.$

• One type of statistical problem is **point estimation**.

- One type of statistical problem is **point estimation**.
- A statistic  $s = s(\mathcal{D})$  is any function of the data.

- One type of statistical problem is **point estimation**.
- A statistic  $s = s(\mathcal{D})$  is any function of the data.
- A statistic  $\hat{\theta} = \hat{\theta}(\mathcal{D})$  taking values in  $\Theta$  is a point estimator of  $\theta$ .

- One type of statistical problem is **point estimation**.
- A statistic  $s = s(\mathcal{D})$  is any function of the data.
- A statistic  $\hat{\theta} = \hat{\theta}(\mathcal{D})$  taking values in  $\Theta$  is a **point estimator of**  $\theta$ .
- A good point estimator will have  $\hat{\theta} \approx \theta.$
- Desirable statistical properties of point estimators:

- One type of statistical problem is **point estimation**.
- A statistic  $s = s(\mathcal{D})$  is any function of the data.
- A statistic  $\hat{\theta} = \hat{\theta}(\mathcal{D})$  taking values in  $\Theta$  is a **point estimator of**  $\theta$ .
- A good point estimator will have  $\hat{\theta} \approx \theta.$
- Desirable statistical properties of point estimators:
  - **Consistency:** As data size  $n \to \infty$ , we get  $\hat{\theta}_n \to \theta$ .

- One type of statistical problem is **point estimation**.
- A statistic  $s = s(\mathcal{D})$  is any function of the data.
- A statistic  $\hat{\theta} = \hat{\theta}(\mathcal{D})$  taking values in  $\Theta$  is a **point estimator of**  $\theta$ .
- A good point estimator will have  $\hat{\theta} \approx \theta$ .
- Desirable statistical properties of point estimators:
  - **Consistency:** As data size  $n \to \infty$ , we get  $\hat{\theta}_n \to \theta$ .
  - Efficiency: (Roughly speaking)  $\hat{\theta}_n$  is as accurate as we can get from a sample of size n.

- One type of statistical problem is **point estimation**.
- A statistic  $s = s(\mathcal{D})$  is any function of the data.
- A statistic  $\hat{\theta} = \hat{\theta}(\mathcal{D})$  taking values in  $\Theta$  is a point estimator of  $\theta$ .
- A good point estimator will have  $\hat{\theta} \approx \theta$ .
- Desirable statistical properties of point estimators:
  - **Consistency:** As data size  $n \to \infty$ , we get  $\hat{\theta}_n \to \theta$ .
  - Efficiency: (Roughly speaking)  $\hat{\theta}_n$  is as accurate as we can get from a sample of size n.
- Maximum likelihood estimators are consistent and efficient under reasonable conditions.

# Example: Coin Flipping

• Parametric family of mass functions:

 $p(\text{Heads} | \theta) = \theta$ ,

for  $\theta \in \Theta = (0, 1)$ .

• Parametric family of mass functions:

 $p(\text{Heads} | \theta) = \theta$ ,

for  $\theta \in \Theta = (0, 1)$ .

• Note that every  $\theta\in\Theta$  gives us a different probability model for a coin.

- Data  $\mathcal{D} = (H, H, T, T, T, T, T, H, \dots, T)$ , assumed i.i.d. flips.
  - *n<sub>h</sub>*: number of heads
  - *n<sub>t</sub>*: number of tails

- Data  $\mathcal{D} = (H, H, T, T, T, T, T, H, \dots, T)$ , assumed i.i.d. flips.
  - *n<sub>h</sub>*: number of heads
  - *n<sub>t</sub>*: number of tails

• Likelihood function for data  $\mathcal{D}:$  probability of getting the flips in received order

$$L_{\mathcal{D}}(\theta) =$$

- Data  $\mathcal{D} = (H, H, T, T, T, T, T, H, \dots, T)$ , assumed i.i.d. flips.
  - *n<sub>h</sub>*: number of heads
  - *n<sub>t</sub>*: number of tails
- Likelihood function for data  $\mathcal{D}$ : probability of getting the flips in received order

$$L_{\mathcal{D}}(\theta) = \boldsymbol{p}(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

• As usual, easier to maximize the log-likelihood function:

$$\begin{split} \hat{\theta}_{\mathsf{MLE}} &= \arg \max_{\substack{\theta \in \Theta \\ \theta \in \Theta}} \log \mathcal{L}_{\mathcal{D}}(\theta) \\ &= \arg \max_{\substack{\theta \in \Theta \\ \theta \in \Theta}} [n_h \log \theta + n_t \log(1 - \theta)] \end{split}$$

- Data  $\mathcal{D} = (H, H, T, T, T, T, T, H, \dots, T)$ , assumed i.i.d. flips.
  - *n<sub>h</sub>*: number of heads
  - *n<sub>t</sub>*: number of tails
- Likelihood function for data  $\mathcal{D}:$  probability of getting the flips in received order

$$L_{\mathcal{D}}(\theta) = \boldsymbol{p}(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

• As usual, easier to maximize the log-likelihood function:

$$\hat{\theta}_{\mathsf{MLE}} = \underset{\substack{\theta \in \Theta \\ \theta \in \Theta}}{\operatorname{arg\,max}} \log L_{\mathcal{D}}(\theta)$$

$$= \underset{\substack{\theta \in \Theta \\ \theta \in \Theta}}{\operatorname{arg\,max}} [n_h \log \theta + n_t \log(1 - \theta)]$$

• First order condition:

$$\frac{n_h}{\theta} - \frac{n_t}{1 - \theta} = 0 \iff \theta = \frac{n_h}{n_h + n_t}$$

- Data  $\mathcal{D} = (H, H, T, T, T, T, T, H, \dots, T)$ , assumed i.i.d. flips.
  - *n<sub>h</sub>*: number of heads
  - *n<sub>t</sub>*: number of tails
- Likelihood function for data  $\mathcal{D}$ : probability of getting the flips in received order

$$L_{\mathcal{D}}(\theta) = \boldsymbol{\rho}(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

• As usual, easier to maximize the log-likelihood function:

$$\hat{\vartheta}_{\mathsf{MLE}} = \underset{\substack{\theta \in \Theta \\ \theta \in \Theta}}{\operatorname{arg\,max}} \log \mathcal{L}_{\mathcal{D}}(\theta)$$

$$= \underset{\substack{\theta \in \Theta \\ \theta \in \Theta}}{\operatorname{arg\,max}} [n_h \log \theta + n_t \log(1 - \theta)]$$

• First order condition:

$$\frac{n_h}{\theta} - \frac{n_t}{1 - \theta} = 0 \iff \theta = \frac{n_h}{n_h + n_t} \qquad \hat{\theta}_{\mathsf{MLE}} \text{ is the empirical fraction of heads.}$$

### Table of Contents

Classical Statistics

#### 2 Bayesian Statistics: Introduction

3 Bayesian Decision Theory



• Introduces a new ingredient: the prior distribution.

- Introduces a new ingredient: the prior distribution.
- A prior distribution  $p(\theta)$  is a distribution on parameter space  $\Theta$ .

- Introduces a new ingredient: the prior distribution.
- A prior distribution  $p(\theta)$  is a distribution on parameter space  $\Theta$ .
- A prior reflects our belief about  $\theta$ , before seeing any data..

- A [parametric] Bayesian model consists of two pieces:
  - A parametric family of densities

 $\{p(\mathcal{D} \mid \theta) \mid \theta \in \Theta\}.$ 

- A [parametric] Bayesian model consists of two pieces:
  - A parametric family of densities

 $\{ \boldsymbol{p}(\mathcal{D} \mid \boldsymbol{\theta}) \mid \boldsymbol{\theta} \in \boldsymbol{\Theta} \}.$ 

**2** A prior distribution  $p(\theta)$  on parameter space  $\Theta$ .

- A [parametric] Bayesian model consists of two pieces:
  - A parametric family of densities

 $\{ p(\mathcal{D} \mid \theta) \mid \theta \in \Theta \}.$ 

**2** A **prior distribution**  $p(\theta)$  on parameter space  $\Theta$ .

• Putting pieces together, we get a joint density on  $\theta$  and  $\mathcal{D}:$ 

 $\boldsymbol{p}(\mathcal{D},\boldsymbol{\theta}) = \boldsymbol{p}(\mathcal{D} \mid \boldsymbol{\theta})\boldsymbol{p}(\boldsymbol{\theta}).$ 

• The posterior distribution for  $\theta$  is  $p(\theta \mid D)$ .

- The posterior distribution for  $\theta$  is  $p(\theta \mid D)$ .
- Prior represents belief about  $\theta$  before observing data  $\mathcal{D}$ .

- The **posterior distribution** for  $\theta$  is  $p(\theta \mid D)$ .
- Prior represents belief about  $\theta$  before observing data  $\mathcal{D}$ .
- Posterior represents the rationally "updated" belief about  $\theta$ , after seeing  $\mathcal{D}$ .

### Expressing the Posterior Distribution

• By Bayes rule, can write the posterior distribution as

 $p(\theta \mid D)$
• By Bayes rule, can write the posterior distribution as

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})}.$$

• By Bayes rule, can write the posterior distribution as

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})}.$$

• Let's consider both sides as functions of  $\theta$ , for fixed  $\mathcal{D}$ .

• By Bayes rule, can write the posterior distribution as

$$\boldsymbol{p}(\boldsymbol{\theta} \mid \boldsymbol{\mathcal{D}}) = \frac{\boldsymbol{p}(\boldsymbol{\mathcal{D}} \mid \boldsymbol{\theta})\boldsymbol{p}(\boldsymbol{\theta})}{\boldsymbol{p}(\boldsymbol{\mathcal{D}})}.$$

- Let's consider both sides as functions of  $\theta$ , for fixed  $\mathcal{D}$ .
- $\bullet\,$  Then both sides are densities on  $\Theta$  and we can write

 $p(\theta \mid \mathcal{D}) \propto p(\mathcal{D} \mid \theta) p(\theta).$ posterior likelihood prior

• By Bayes rule, can write the posterior distribution as

$$p(\boldsymbol{\theta} \mid \boldsymbol{\mathcal{D}}) = \frac{p(\boldsymbol{\mathcal{D}} \mid \boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\boldsymbol{\mathcal{D}})}.$$

- Let's consider both sides as functions of  $\theta$ , for fixed  $\mathcal{D}$ .
- $\bullet\,$  Then both sides are densities on  $\Theta$  and we can write



 $\bullet\,$  Where  $\propto$  means we've dropped factors independent of  $\theta.$ 

• Parametric family of mass functions:

 $p(\text{Heads} | \theta) = \theta$ ,

for  $\theta \in \Theta = (0, 1)$ .

• Parametric family of mass functions:

 $p(\text{Heads} | \theta) = \theta$ ,

for  $\theta \in \Theta = (0, 1)$ .

• Need a prior distribution  $p(\theta)$  on  $\Theta = (0, 1)$ .

• Parametric family of mass functions:

 $p(\text{Heads} | \theta) = \theta$ ,

for  $\theta \in \Theta = (0, 1)$ .

- Need a prior distribution  $p(\theta)$  on  $\Theta = (0, 1)$ .
- A distribution from the Beta family will do the trick...

• Prior:

$$\begin{array}{ll} \theta & \sim & \mathsf{Beta}(\alpha,\beta) \\ \rho(\theta) & \propto & \theta^{\alpha-1} \left(1\!-\!\theta\right)^{\beta-1} \end{array}$$

Marylou Gabrié Slides based on Lecture 08a from I

Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Beta\_distribution\_pdf.svg.

• Prior:



Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Beta\_distribution\_pdf.svg.

Marylou Gabrié Slides based on Lecture 08a from

DS-GA 1003

• Prior:

$$\begin{array}{ll} \theta & \sim & \mathsf{Beta}(h,t) \\ p(\theta) & \propto & \theta^{h-1} \, (1\!-\!\theta)^{t-1} \end{array}$$

• Prior:

$$\begin{array}{ll} \theta & \sim & \mathsf{Beta}(h,t) \\ p(\theta) & \propto & \theta^{h-1} (1-\theta)^{t-1} \end{array}$$

• Mean of Beta distribution:

$$\mathbb{E}\theta = \frac{h}{h+t}$$

• Prior:

$$\begin{array}{ll} \theta & \sim & \mathsf{Beta}(h,t) \\ p(\theta) & \propto & \theta^{h-1} (1-\theta)^{t-1} \end{array}$$

• Mean of Beta distribution:

$$\mathbb{E}\theta = \frac{h}{h+t}$$

• Mode of Beta distribution:

$$\arg\max_{\theta} p(\theta) = \frac{h-1}{h+t-2}$$

for h, t > 1.

• Prior:

$$\begin{array}{ll} \theta & \sim & \mathsf{Beta}(h,t) \\ \rho(\theta) & \propto & \theta^{h-1} \left(1-\theta\right)^{t-1} \end{array}$$

• Prior:

$$\begin{array}{ll} \theta & \sim & \mathsf{Beta}(h,t) \\ \rho(\theta) & \propto & \theta^{h-1} \left(1-\theta\right)^{t-1} \end{array}$$

• Likelihood function

$$L(\boldsymbol{\theta}) = \boldsymbol{p}(\mathcal{D} \mid \boldsymbol{\theta}) = \boldsymbol{\theta}^{n_h} (1 - \boldsymbol{\theta})^{n_t}$$

• Prior:

$$\theta \sim \text{Beta}(h, t)$$
  
 $p(\theta) \propto \theta^{h-1} (1-\theta)^{t-1}$ 

• Likelihood function

$$L(\theta) = p(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

• Posterior density:

 $p(\theta \mid \mathcal{D}) \propto p(\theta)p(\mathcal{D} \mid \theta)$ 

• Prior:

$$\begin{array}{ll} \theta & \sim & \mathsf{Beta}(h,t) \\ \rho(\theta) & \propto & \theta^{h-1} \left(1-\theta\right)^{t-1} \end{array}$$

• Likelihood function

$$L(\theta) = p(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

• Posterior density:

$$\begin{array}{ll} \rho(\theta \mid \mathcal{D}) & \propto & \rho(\theta) \rho(\mathcal{D} \mid \theta) \\ & \propto & \theta^{h-1} \left(1 - \theta\right)^{t-1} \times \theta^{n_h} \left(1 - \theta\right)^{n_h} \end{array}$$

• Prior:

$$\begin{array}{ll} \theta & \sim & \mathsf{Beta}(h,t) \\ \rho(\theta) & \propto & \theta^{h-1} \left(1-\theta\right)^{t-1} \end{array}$$

• Likelihood function

$$L(\theta) = p(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

• Posterior density:

$$\begin{aligned} \rho(\theta \mid \mathcal{D}) &\propto & \rho(\theta) \rho(\mathcal{D} \mid \theta) \\ &\propto & \theta^{h-1} \left(1-\theta\right)^{t-1} \times \theta^{n_h} \left(1-\theta\right)^{n_t} \\ &= & \theta^{h-1+n_h} \left(1-\theta\right)^{t-1+n_t} \end{aligned}$$

#### Posterior is Beta

• Prior:

$$\begin{array}{ll} \theta & \sim & \mathsf{Beta}(h,t) \\ \rho(\theta) & \propto & \theta^{h-1} \left(1-\theta\right)^{t-1} \end{array}$$

• Posterior density:

$$p(\theta \mid \mathcal{D}) \propto \theta^{h-1+n_h} (1-\theta)^{t-1+n_t}$$

#### Posterior is Beta

• Prior:

$$\begin{array}{ll} \theta & \sim & \mathsf{Beta}(h,t) \\ \rho(\theta) & \propto & \theta^{h-1} \left(1-\theta\right)^{t-1} \end{array}$$

• Posterior density:

$$\rho(\theta \mid \mathcal{D}) \propto \theta^{h-1+n_h} (1-\theta)^{t-1+n_t}$$

• Posterior is in the beta family:

$$\theta \mid \mathcal{D} \sim \operatorname{Beta}(h+n_h, t+n_t)$$

#### Posterior is Beta

• Prior:

$$\theta \sim \text{Beta}(h, t)$$
  
 $p(\theta) \propto \theta^{h-1} (1-\theta)^{t-1}$ 

• Posterior density:

$$\rho(\theta \mid \mathcal{D}) \propto \theta^{h-1+n_h} (1-\theta)^{t-1+n_t}$$

• Posterior is in the beta family:

$$\theta \mid \mathcal{D} \sim \text{Beta}(h+n_h, t+n_t)$$

• Interpretation:

- Prior initializes our counts with *h* heads and *t* tails.
- Posterior increments counts by observed  $n_h$  and  $n_t$ .

Marylou Gabrié Slides based on Lecture 08a from

- Interesting that posterior is in same distribution family as prior.
- Let  $\pi$  be a family of prior distributions on  $\Theta$ .

- Interesting that posterior is in same distribution family as prior.
- Let  $\pi$  be a family of prior distributions on  $\Theta$ .
- Let P parametric family of distributions with parameter space  $\Theta$ .

- Interesting that posterior is in same distribution family as prior.
- Let  $\pi$  be a family of prior distributions on  $\Theta$ .
- Let P parametric family of distributions with parameter space  $\Theta$ .

#### Definition

A family of distributions  $\pi$  is conjugate to parametric model *P* if for any prior in  $\pi$ , the posterior is always in  $\pi$ .

- Interesting that posterior is in same distribution family as prior.
- Let  $\pi$  be a family of prior distributions on  $\Theta$ .
- Let P parametric family of distributions with parameter space  $\Theta$ .

#### Definition

A family of distributions  $\pi$  is conjugate to parametric model *P* if for any prior in  $\pi$ , the posterior is always in  $\pi$ .

• The beta family is conjugate to the coin-flipping (i.e. Bernoulli) model.

- Interesting that posterior is in same distribution family as prior.
- Let  $\pi$  be a family of prior distributions on  $\Theta$ .
- Let P parametric family of distributions with parameter space  $\Theta$ .

#### Definition

A family of distributions  $\pi$  is conjugate to parametric model *P* if for any prior in  $\pi$ , the posterior is always in  $\pi$ .

- The beta family is conjugate to the coin-flipping (i.e. Bernoulli) model.
- The family of all probability distributions is conjugate to any parametric model. [Trvially]

# Example: Coin Flipping - Concrete Example

• Suppose we have a coin, possibly biased (parametric probability model):

 $p(\text{Heads} | \theta) = \theta.$ 

# Example: Coin Flipping - Concrete Example

• Suppose we have a coin, possibly biased (parametric probability model):

 $p(\text{Heads} | \theta) = \theta.$ 

- Parameter space  $\theta \in \Theta = [0, 1]$ .
- Prior distribution:  $\theta \sim Beta(2,2)$ .

#### Example: Coin Flipping - Concrete Example

• Suppose we have a coin, possibly biased (parametric probability model):

 $p(\text{Heads} | \theta) = \theta.$ 

- Parameter space  $\theta \in \Theta = [0, 1]$ .
- Prior distribution:  $\theta \sim Beta(2, 2)$ .



• Next, we gather some data  $\mathcal{D} = \{H, H, T, T, T, T, T, H, \dots, T\}$ :

- Next, we gather some data  $\mathcal{D} = \{H, H, T, T, T, T, T, H, \dots, T\}$ :
- Heads: 75 Tails: 60

- Next, we gather some data  $\mathcal{D} = \{H, H, T, T, T, T, T, H, \dots, T\}$ :
- Heads: 75 Tails: 60 •  $\hat{\theta}_{MLE} = \frac{75}{75+60} \approx 0.556$

- Next, we gather some data  $\mathcal{D} = \{H, H, T, T, T, T, T, H, \dots, T\}$ :
- Heads: 75 Tails: 60 •  $\hat{\theta}_{MLE} = \frac{75}{75+60} \approx 0.556$
- Posterior distribution:  $\theta \mid D \sim \text{Beta}(77, 62)$ :



- So we have posterior  $\theta \mid \mathcal{D}...$
- But we want a point estimate  $\hat{\theta}$  for  $\theta.$

- So we have posterior  $\theta \mid \mathcal{D}...$
- But we want a point estimate  $\hat{\theta}$  for  $\theta.$
- Common options:

- So we have posterior  $\theta \mid \mathcal{D}...$
- But we want a point estimate  $\hat{\theta}$  for  $\theta.$
- Common options:
  - posterior mean  $\hat{\theta} = \mathbb{E}\left[\theta \mid \mathcal{D}\right]$

- So we have posterior  $\theta \mid \mathcal{D}...$
- But we want a point estimate  $\hat{\theta}$  for  $\theta.$
- Common options:
  - posterior mean  $\hat{\theta} = \mathbb{E}\left[\theta \mid \mathcal{D}\right]$
  - maximum a posteriori (MAP) estimate  $\hat{\theta} = \arg \max_{\theta} p(\theta \mid D)$ 
    - Note: this is the mode of the posterior distribution
What else can we do with a posterior?

• Look at it.

### What else can we do with a posterior?

- Look at it.
- Extract "credible set" for  $\theta$  (a Bayesian confidence interval).
  - e.g. Interval [a, b] is a 95% credible set if

 $\mathbb{P}(\theta \in [a, b] \mid \mathcal{D}) \ge 0.95$ 

## What else can we do with a posterior?

- Look at it.
- Extract "credible set" for  $\theta$  (a Bayesian confidence interval).
  - e.g. Interval [a, b] is a 95% credible set if

 $\mathbb{P}\left(\theta \in [a, b] \mid \mathcal{D}\right) \geqslant 0.95$ 

- The most "Bayesian" approach is **Bayesian decision theory**:
  - Choose a loss function.
  - Find action minimizing expected risk w.r.t. posterior

# Table of Contents

Classical Statistics

- 2 Bayesian Statistics: Introduction
- Bayesian Decision Theory



- Ingredients:
  - Parameter space  $\Theta$ .
  - **Prior**: Distribution  $p(\theta)$  on  $\Theta$ .
  - Action space  $\mathcal{A}$ .
  - Loss function:  $\ell : \mathcal{A} \times \Theta \to \mathsf{R}.$

- Ingredients:
  - Parameter space  $\Theta$ .
  - **Prior**: Distribution  $p(\theta)$  on  $\Theta$ .
  - Action space  $\mathcal{A}$ .
  - Loss function:  $\ell : \mathcal{A} \times \Theta \to \mathsf{R}.$
- The **posterior risk** of an action  $a \in A$  is

 $r(a) := \mathbb{E}[\ell(\theta, a) \mid \mathcal{D}]$ 

- Ingredients:
  - Parameter space  $\Theta$ .
  - **Prior**: Distribution  $p(\theta)$  on  $\Theta$ .
  - Action space  $\mathcal{A}.$
  - Loss function:  $\ell : \mathcal{A} \times \Theta \to \mathsf{R}.$
- The **posterior risk** of an action  $a \in A$  is

$$r(a) := \mathbb{E} [\ell(\theta, a) | \mathcal{D}]$$
  
=  $\int \ell(\theta, a) p(\theta | \mathcal{D}) d\theta.$ 

- Ingredients:
  - Parameter space  $\Theta$ .
  - **Prior**: Distribution  $p(\theta)$  on  $\Theta$ .
  - Action space  $\mathcal{A}$ .
  - Loss function:  $\ell : \mathcal{A} \times \Theta \to \mathsf{R}.$
- The **posterior risk** of an action  $a \in A$  is

$$r(a) := \mathbb{E}[\ell(\theta, a) \mid \mathcal{D}]$$
$$= \int \ell(\theta, a) p(\theta \mid \mathcal{D}) d\theta.$$

• It's the expected loss under the posterior.

- Ingredients:
  - Parameter space  $\Theta$ .
  - **Prior**: Distribution  $p(\theta)$  on  $\Theta$ .
  - Action space A.
  - Loss function:  $\ell : \mathcal{A} \times \Theta \to \mathsf{R}.$
- The **posterior risk** of an action  $a \in A$  is

$$r(a) := \mathbb{E} \left[ \ell(\theta, a) \mid \mathcal{D} \right]$$
$$= \int \ell(\theta, a) p(\theta \mid \mathcal{D}) d\theta.$$

- It's the expected loss under the posterior.
- A Bayes action  $a^*$  is an action that minimizes posterior risk:

$$r(a^*) = \min_{a \in \mathcal{A}} r(a)$$

• General Setup:

• Data  $\mathcal{D}$  generated by  $p(y \mid \theta)$ , for unknown  $\theta \in \Theta$ .

- General Setup:
  - Data  $\mathcal{D}$  generated by  $p(y \mid \theta)$ , for unknown  $\theta \in \Theta$ .
  - Want to produce a **point estimate** for  $\theta$ .

- General Setup:
  - Data  $\mathcal{D}$  generated by  $p(y \mid \theta)$ , for unknown  $\theta \in \Theta$ .
  - Want to produce a **point estimate** for  $\theta$ .
- Choose the following:

- General Setup:
  - Data  $\mathcal{D}$  generated by  $p(y \mid \theta)$ , for unknown  $\theta \in \Theta$ .
  - Want to produce a **point estimate** for  $\theta$ .
- Choose the following:
  - **Prior**  $p(\theta)$  on  $\Theta = R$ .

- General Setup:
  - Data  $\mathcal{D}$  generated by  $p(y \mid \theta)$ , for unknown  $\theta \in \Theta$ .
  - Want to produce a **point estimate** for  $\theta$ .
- Choose the following:
  - **Prior**  $p(\theta)$  on  $\Theta = R$ .
  - Loss  $\ell(\hat{\theta}, \theta)$

- General Setup:
  - Data  $\mathcal{D}$  generated by  $p(y \mid \theta)$ , for unknown  $\theta \in \Theta$ .
  - Want to produce a **point estimate** for  $\theta$ .
- Choose the following:
  - **Prior**  $p(\theta)$  on  $\Theta = R$ .
  - Loss  $\ell(\hat{\theta}, \theta)$
- Find action  $\hat{\theta} \in \Theta$  that minimizes posterior risk:

$$r(\hat{\theta}) = \mathbb{E}\left[\ell(\hat{\theta}, \theta) \mid \mathcal{D}\right]$$

- General Setup:
  - Data  $\mathcal{D}$  generated by  $p(y \mid \theta)$ , for unknown  $\theta \in \Theta$ .
  - Want to produce a **point estimate** for  $\theta$ .
- Choose the following:
  - **Prior**  $p(\theta)$  on  $\Theta = R$ .
  - Loss  $\ell(\hat{\theta}, \theta)$
- Find action  $\hat{\theta} \in \Theta$  that minimizes posterior risk:

$$r(\hat{\theta}) = \mathbb{E}\left[\ell(\hat{\theta}, \theta) \mid \mathcal{D}\right]$$
$$= \int \ell(\hat{\theta}, \theta) \rho(\theta \mid \mathcal{D}) d\theta$$

#### Important Cases

- Squared Loss :  $\ell(\hat{\theta}, \theta) = \left(\theta \hat{\theta}\right)^2 \Rightarrow \text{posterior mean}$
- $\bullet \ \ {\sf Zero-one \ Loss:} \ \ \ell(\theta,\hat{\theta})=1(\theta\neq\hat{\theta}) \quad \Rightarrow \ {\sf posterior \ mode}$
- Absolute Loss :  $\ell(\hat{\theta}, \theta) = \left| \theta \hat{\theta} \right| \Rightarrow$  posterior median (Exercise)

 $\bullet$  Find action  $\hat{\theta}\in\Theta$  that minimizes posterior risk

$$r(\hat{\theta}) = \int \left(\theta - \hat{\theta}\right)^2 p(\theta \mid \mathcal{D}) d\theta.$$

 $\bullet$  Find action  $\hat{\theta}\in\Theta$  that minimizes posterior risk

$$r(\hat{\theta}) = \int \left(\theta - \hat{\theta}\right)^2 p(\theta \mid \mathcal{D}) d\theta.$$

• Differentiate:

$$\frac{dr(\hat{\theta})}{d\hat{\theta}} = -\int 2\left(\theta - \hat{\theta}\right) p(\theta \mid \mathcal{D}) d\theta$$

 $\bullet$  Find action  $\hat{\theta}\in\Theta$  that minimizes posterior risk

$$r(\hat{\theta}) = \int \left(\theta - \hat{\theta}\right)^2 p(\theta \mid D) d\theta.$$

• Differentiate:

$$\frac{dr(\hat{\theta})}{d\hat{\theta}} = -\int 2\left(\theta - \hat{\theta}\right) p(\theta \mid \mathcal{D}) d\theta$$
$$= -2\int \theta p(\theta \mid \mathcal{D}) d\theta + 2\hat{\theta} \underbrace{\int p(\theta \mid \mathcal{D}) d\theta}_{=1}$$

 $\bullet$  Find action  $\hat{\theta}\in\Theta$  that minimizes posterior risk

$$r(\hat{\theta}) = \int \left(\theta - \hat{\theta}\right)^2 p(\theta \mid D) d\theta.$$

• Differentiate:

$$\frac{dr(\hat{\theta})}{d\hat{\theta}} = -\int 2\left(\theta - \hat{\theta}\right) p(\theta \mid \mathcal{D}) d\theta$$
$$= -2\int \theta p(\theta \mid \mathcal{D}) d\theta + 2\hat{\theta} \underbrace{\int p(\theta \mid \mathcal{D}) d\theta}_{=1}$$
$$= -2\int \theta p(\theta \mid \mathcal{D}) d\theta + 2\hat{\theta}$$

• Derivative of posterior risk is

$$\frac{dr(\hat{\theta})}{d\hat{\theta}} = -2\int \theta p(\theta \mid \mathcal{D}) \, d\theta + 2\hat{\theta}.$$

• Derivative of posterior risk is

$$\frac{dr(\hat{\theta})}{d\hat{\theta}} = -2\int \theta p(\theta \mid \mathcal{D}) \, d\theta + 2\hat{\theta}.$$

• First order condition  $\frac{dr(\hat{\theta})}{d\hat{\theta}} = 0$  gives

$$\hat{\theta} = \int \theta p(\theta \mid \mathcal{D}) d\theta$$

• Derivative of posterior risk is

$$\frac{dr(\hat{\theta})}{d\hat{\theta}} = -2\int \theta p(\theta \mid \mathcal{D}) \, d\theta + 2\hat{\theta}.$$

• First order condition  $\frac{dr(\hat{\theta})}{d\hat{\theta}} = 0$  gives

$$\hat{\theta} = \int \theta p(\theta \mid \mathcal{D}) d\theta$$
$$= \mathbb{E} [\theta \mid \mathcal{D}]$$

• Derivative of posterior risk is

$$\frac{dr(\hat{\theta})}{d\hat{\theta}} = -2\int \theta p(\theta \mid \mathcal{D}) \, d\theta + 2\hat{\theta}.$$

• First order condition 
$$\frac{dr(\hat{\theta})}{d\hat{\theta}} = 0$$
 gives

$$\hat{\theta} = \int \theta p(\theta \mid \mathcal{D}) d\theta$$
$$= \mathbb{E} [\theta \mid \mathcal{D}]$$

• Bayes action for square loss is the posterior mean.

- Suppose  $\Theta$  is discrete (e.g.  $\Theta = \{\text{english}, \text{french}\})$  Zero-one loss:  $\ell(\theta, \hat{\theta}) = 1(\theta \neq \hat{\theta})$

- Suppose  $\Theta$  is discrete (e.g.  $\Theta = \{\text{english}, \text{french}\})$  Zero-one loss:  $\ell(\theta, \hat{\theta}) = 1(\theta \neq \hat{\theta})$
- Posterior risk:

$$r(\hat{\theta}) = \mathbb{E}\left[1(\theta \neq \hat{\theta}) \mid \mathcal{D}\right]$$

- Suppose  $\Theta$  is discrete (e.g.  $\Theta = \{\text{english}, \text{french}\})$  Zero-one loss:  $\ell(\theta, \hat{\theta}) = 1(\theta \neq \hat{\theta})$
- Posterior risk:

$$\begin{aligned} r(\hat{\theta}) &= \mathbb{E}\left[\mathbf{1}(\theta \neq \hat{\theta}) \mid \mathcal{D}\right] \\ &= \mathbb{P}\left(\theta \neq \hat{\theta} \mid \mathcal{D}\right) \end{aligned}$$

• Suppose  $\Theta$  is discrete (e.g.  $\Theta = \{\text{english}, \text{french}\})$ • Zero-one loss:  $\ell(\theta, \hat{\theta}) = 1(\theta \neq \hat{\theta})$ 

1

- Posterior risk:

$$\begin{aligned} \mathbf{r}(\hat{\boldsymbol{\theta}}) &= & \mathbb{E}\left[\mathbf{1}(\boldsymbol{\theta}\neq\hat{\boldsymbol{\theta}})\mid\mathcal{D}\right] \\ &= & \mathbb{P}\left(\boldsymbol{\theta}\neq\hat{\boldsymbol{\theta}}\mid\mathcal{D}\right) \\ &= & \mathbf{1}\!-\!\mathbb{P}\left(\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}\mid\mathcal{D}\right) \end{aligned}$$

• Suppose  $\Theta$  is discrete (e.g.  $\Theta = \{\text{english}, \text{french}\})$ • Zero-one loss:  $\ell(\theta, \hat{\theta}) = 1(\theta \neq \hat{\theta})$ 

r

- Posterior risk:

$$\begin{aligned} \mathbf{F}(\hat{\boldsymbol{\theta}}) &= & \mathbb{E}\left[\mathbf{1}(\boldsymbol{\theta}\neq\hat{\boldsymbol{\theta}})\mid\mathcal{D}\right] \\ &= & \mathbb{P}\left(\boldsymbol{\theta}\neq\hat{\boldsymbol{\theta}}\mid\mathcal{D}\right) \\ &= & \mathbf{1}-\mathbb{P}\left(\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}\mid\mathcal{D}\right) \\ &= & \mathbf{1}-\boldsymbol{p}(\hat{\boldsymbol{\theta}}\mid\mathcal{D}) \end{aligned}$$

Suppose Θ is discrete (e.g. Θ = {english, french})
Zero-one loss: ℓ(θ, θ̂) = 1(θ ≠ θ̂)

r

- Posterior risk:

$$\begin{aligned} &(\hat{\theta}) &= \mathbb{E}\left[\mathbf{1}(\theta \neq \hat{\theta}) \mid \mathcal{D}\right] \\ &= \mathbb{P}\left(\theta \neq \hat{\theta} \mid \mathcal{D}\right) \\ &= \mathbf{1} - \mathbb{P}\left(\theta = \hat{\theta} \mid \mathcal{D}\right) \\ &= \mathbf{1} - p(\hat{\theta} \mid \mathcal{D}) \end{aligned}$$

• Bayes action is

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} p(\theta \mid \mathcal{D})$$

- Suppose  $\Theta$  is discrete (e.g.  $\Theta = \{english, french\})$
- Zero-one loss:  $\ell(\theta, \hat{\theta}) = \mathbf{1}(\theta \neq \hat{\theta})$
- Posterior risk:

$$\begin{aligned} &(\hat{\theta}) &= \mathbb{E}\left[\mathbf{1}(\theta \neq \hat{\theta}) \mid \mathcal{D}\right] \\ &= \mathbb{P}\left(\theta \neq \hat{\theta} \mid \mathcal{D}\right) \\ &= \mathbf{1} - \mathbb{P}\left(\theta = \hat{\theta} \mid \mathcal{D}\right) \\ &= \mathbf{1} - p(\hat{\theta} \mid \mathcal{D}) \end{aligned}$$

• Bayes action is

$$\hat{\theta} = \arg \max_{\theta \in \Theta} p(\theta \mid \mathcal{D})$$

• This  $\hat{\theta}$  is called the maximum a posteriori (MAP) estimate.

r

• The MAP estimate is the mode of the posterior distribution.

Marylou Gabrié Slides based on Lecture 08a from

# Table of Contents

Classical Statistics

- 2 Bayesian Statistics: Introduction
- 3 Bayesian Decision Theory



# Recap and Interpretation

- Prior represents belief about  $\theta$  before observing data  $\mathcal{D}$ .
- $\bullet$  Posterior represents the rationally "updated" beliefs after seeing  $\mathcal{D}.$

# Recap and Interpretation

- Prior represents belief about  $\theta$  before observing data  $\mathcal{D}$ .
- $\bullet$  Posterior represents the rationally "updated" beliefs after seeing  $\mathcal{D}.$
- All inferences and action-taking are based on the posterior distribution.

# Recap and Interpretation

- Prior represents belief about  $\theta$  before observing data  $\mathcal{D}$ .
- $\bullet$  Posterior represents the rationally "updated" beliefs after seeing  $\mathcal{D}.$
- All inferences and action-taking are based on the posterior distribution.
- In the Bayesian approach,
  - No issue of "choosing a procedure" or justifying an estimator.
# Recap and Interpretation

- Prior represents belief about  $\theta$  before observing data  $\mathcal{D}$ .
- $\bullet$  Posterior represents the rationally "updated" beliefs after seeing  $\mathcal{D}.$
- All inferences and action-taking are based on the posterior distribution.
- In the Bayesian approach,
  - No issue of "choosing a procedure" or justifying an estimator.
  - Only choices are
    - family of distributions, indexed by  $\Theta,$  and the
    - prior distribution on  $\Theta$

# Recap and Interpretation

- Prior represents belief about  $\theta$  before observing data  $\mathcal{D}$ .
- $\bullet$  Posterior represents the rationally "updated" beliefs after seeing  $\mathcal{D}.$
- All inferences and action-taking are based on the posterior distribution.
- In the Bayesian approach,
  - No issue of "choosing a procedure" or justifying an estimator.
  - Only choices are
    - family of distributions, indexed by  $\Theta,$  and the
    - prior distribution on  $\Theta$
  - For decision making, need a loss function.
  - Everything after that is computation.

### **Operation** Define the model:

• Choose a parametric family of densities:

 $\{p(\mathcal{D} \mid \theta) \mid \theta \in \Theta\}.$ 

• Choose a distribution  $p(\theta)$  on  $\Theta$ , called the **prior distribution**.

## Oefine the model:

• Choose a parametric family of densities:

 $\{p(\mathcal{D} \mid \theta) \mid \theta \in \Theta\}.$ 

- Choose a distribution  $p(\theta)$  on  $\Theta$ , called the **prior distribution**.
- **2** After observing  $\mathcal{D}$ , compute the **posterior distribution**  $p(\theta | \mathcal{D})$ .

## Oefine the model:

• Choose a parametric family of densities:

 $\{p(\mathcal{D} \mid \theta) \mid \theta \in \Theta\}.$ 

- Choose a distribution  $p(\theta)$  on  $\Theta$ , called the **prior distribution**.
- **2** After observing  $\mathcal{D}$ , compute the **posterior distribution**  $p(\theta | \mathcal{D})$ .
- Solution Choose action based on  $p(\theta \mid D)$ .