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The Data: Assumptions So Far in this Course

@ Our usual setup is that (x,y) pairs are drawn i.i.d. from Py, y.

@ So far ridge/lasso/ regression, optimization, SVMs, and kernel methods are applicable for
arbitrary training data sets D: (x1,y1),..., (xn, yn) € X x Y.
e i.e. D could be created by hand, by an adversary, or randomly.

@ How have we used this assumption so far?

e motivates empirical risk minimization
o ties test performance to performance on new data when deployed

@ We rely on the i.i.d. Pxxy assumption when it comes to generalization only.
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Probabilistic Models: Use Assumptions on the Data for Learning

@ Observations y are drawn i.i.d. from a distribution Py
— Maximum likelihood estimation (First topic of week 6)

@ Model how y depends on x
— Conditional probability models p(y|x) (Second topic of week 6)

@ Incorporate prior knowledge and estimate uncertainty on the prediction
— Bayesian approaches (Topic of week 7)
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Maximum Likelihood Estimation: Contents
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Estimating a Probability Distribution: Setting

For the moment we only assume that we have one variable y.
o Let p(y) represent a probability distribution on Y.
@ p(y) is unknown and we want to estimate it.

Assume that p(y) is either a
e probability density function on a continuous space Y, or a
e probability mass function on a discrete space Y.
Typical Y's:
e Y=R: Yy=Rd [typical continuous distributions]
o Y={—1,1} [e.g. binary classification]
e Y={0,1,2,...,K} [e.g. multiclass problem]
e Y={0,1,2,3,4...} [unbounded counts]
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Evaluating a Probability Distribution Estimate

o Before we talk about estimation, let's talk about evaluation.

@ Somebody gives us an estimate of the probability distribution

ply).

@ How can we evaluate how good it is?

o We want p(y) to be descriptive of future data.
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Likelihood of a Predicted Distribution

@ Suppose we have
D =1(y1,...,¥n) sampled i.i.d. from true distribution p(y).

@ Then the likelihood of p for the data D is defined to be
p(D) =] o).
i=1

The probability of observing D under the estimate p.

How are we going to construct an estimate of p(y)?
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Parametric Models

Definition
A parametric model is a set of probability distributions indexed by a parameter 6 € ©. We
denote this as

{p(y;6)106 €06},

where 0 is the parameter and © is the parameter space.

@ Below we'll give some examples of common parametric models.
e But it's worth doing research to find a parametric model most appropriate for your data.

o We'll sometimes say family of distributions for a probability model.
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Poisson Family

@ Support Y={0,1,2,3,...}.
o Parameter space: (A€ R|A >0}
@ Probability mass function on k € Y:

plkid) =Ne ™/ (k)
e Examples: Number of random i.i.d. events in a given time/over an interval

e Radioactive decay of atoms over a year
e Number of taxi cab pickups at Penn Station in an evening

Figure is "Poisson pmf" by Skbkekas - Own work. Licensed under CC BY 3.0 via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Poisson_pmf.svg#/media/File:Poisson_pmf.svg.
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Beta Family

@ Support Y = (0,1). [The unit interval.]
o Parameter space: {0 = (o, B) | o, p > 0}
@ Probability density function on y € Y:

*1-y)P

B(x, B)
e Examples: Spending of a resource over a interval.
o Project management

Yy

ply;a b)=

Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons.
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Gaussian Family

@ Support Y € R. ' — '
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e Examples: sum of i.i.d random variables (Central limit theorem)
o Cumulated gain from random independent coin flips

Figure from Wikipedia https://en.wikipedia.org/wiki/Gaussian_function.
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Multivariate Distributions

@ Above we only cited examples of univariate distributions
@ Sometimes we need multivariate distributions p(y;0) for y = (y1,---,vq) € RY:

o If y;s are independent p(y;0) = ]_[?le(y,-;G,-)
o If there are correlations, we have to treat the problem in dimension d.

@ Example:
Multivariate Gaussian Distribution
o In2d: y €R? p(y;0) =N(w; %)
o Parameters:
- Mean vector pu € R?
- Covariance matrix X € R?*?

Figure from Wikipedia https://en.wikipedia.org/wiki/Gaussian_function.
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Likelihood in a Parametric Model

Suppose we have a parametric model {p(y;0) |0 € ®} and a sample D = (y1,...,yn).
o The likelihood of parameter estimate 6 € © for sample D is

0) =] [ pl::6)
=1

@ In practice, we prefer to work with the log-likelihood. Same maximizer, but

log p(D; 6) Zlogp vi:0),

and sums are easier to work with than products.
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Maximum Likelihood Estimation

@ Suppose D = (y1,...,yn) is an i.i.d. sample from some distribution.

Definition
A maximum likelihood estimator (MLE) for 6 in the model {p(y;0) |6 € ®} is

6 < argmaxlogp(D,6)

LI5S
n
= arg maxZ log p(y;;0).
0c®

Marylou Gabrié Slides based on Lecture from [ DS-GA 1003 March 9, 2021

17/1


https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/06b.MLE.pdf
https://github.com/davidrosenberg/mlcourse

Maximum Likelihood Estimation

e Finding the MLE is an optimization problem.
@ For some model families, calculus gives a closed form for the MLE.

e Can also use numerical methods we know (e.g. SGD).
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MLE Existence

In certain situations, the MLE may not exist.

But there is usually a good reason for this.

e.g. Gaussian family {N(u, o) |uER,0? > O}
We have a single observation y.
Is there an MLE?

(]

Taking =y and 02 — 0 drives likelihood to infinity.
MLE doesn't exist.
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Example: MLE for Poisson

@ Observed counts D = (kq,..., k,) for taxi cab pickups over n weeks.
e k; is number of pickups at Penn Station Mon, 7-8pm, for week i.

@ We want to fit a Poisson distribution to this data.

@ The Poisson log-likelihood for a single count is

k o—A
oglp(kiN] = tog| "5

= klogA—A—log(k!)

@ The full log-likelihood is

n

logp(D,A) = ) [kilogA—A—log (k)]
i=1
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Example: MLE for Poisson

@ The full log-likelihood is

n

logp(D,A) = > [kilogh—A—log (k!
i=1

o First order condition gives
0 ki
=—1 D = -1
0= 75 llogp(D.A)] § {7\ }
1 n
— A = - E ki

@ So MLE A is just the mean of the counts.
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Estimating Distributions, Overfitting, and Hypothesis Spaces

Just as in classification and regression, MLE can overfit!
Example Probability Models: Penn Station, Mon-Fri 7-8pm

o F ={Poisson distributions}.
o F ={Negative binomial distributions}.

(]

How to judge which model works the best?
Choose the model with the highest likelihood on validation set.
o Test Set Log Likelihood for Penn Station, Mon-Fri 7-8pm

’ Method ‘ Test Log-Likelihood ‘
Poisson —392.16
Negative Binomial —188.67
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