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The Data: Assumptions So Far in this Course

Our usual setup is that (x ,y) pairs are drawn i.i.d. from PX×Y.
So far ridge/lasso/ regression, optimization, SVMs, and kernel methods are applicable for
arbitrary training data sets D : (x1,y1) , . . . ,(xn,yn) ∈ X×Y.

i.e. D could be created by hand, by an adversary, or randomly.

How have we used this assumption so far?
motivates empirical risk minimization
ties test performance to performance on new data when deployed

We rely on the i.i.d. PX×Y assumption when it comes to generalization only.
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Probabilistic Models: Use Assumptions on the Data for Learning

Observations y are drawn i.i.d. from a distribution PY

→ Maximum likelihood estimation (First topic of week 6)
Model how y depends on x
→ Conditional probability models p(y |x) (Second topic of week 6)
Incorporate prior knowledge and estimate uncertainty on the prediction
→ Bayesian approaches (Topic of week 7)
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Maximum Likelihood Estimation: Contents
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Estimating a Probability Distribution: Setting

For the moment we only assume that we have one variable y .
Let p(y) represent a probability distribution on Y.
p(y) is unknown and we want to estimate it.
Assume that p(y) is either a

probability density function on a continuous space Y, or a
probability mass function on a discrete space Y.

Typical Y’s:
Y= R; Y= Rd [typical continuous distributions]
Y= {−1,1} [e.g. binary classification]
Y= {0,1,2, . . . ,K } [e.g. multiclass problem]
Y= {0,1,2,3,4 . . .} [unbounded counts]
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Evaluating a Probability Distribution Estimate

Before we talk about estimation, let’s talk about evaluation.
Somebody gives us an estimate of the probability distribution

p̂(y).

How can we evaluate how good it is?
We want p̂(y) to be descriptive of future data.
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Likelihood of a Predicted Distribution

Suppose we have

D= (y1, . . . ,yn) sampled i.i.d. from true distribution p(y).

Then the likelihood of p̂ for the data D is defined to be

p̂(D) =

n∏
i=1

p̂(yi ).

The probability of observing D under the estimate p̂.
How are we going to construct an estimate of p̂(y)?
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Parametric Models

Definition
A parametric model is a set of probability distributions indexed by a parameter θ ∈Θ. We
denote this as

{p(y ;θ) | θ ∈Θ} ,

where θ is the parameter and Θ is the parameter space.

Below we’ll give some examples of common parametric models.
But it’s worth doing research to find a parametric model most appropriate for your data.

We’ll sometimes say family of distributions for a probability model.

Marylou Gabrié Slides based on Lecture 06b from David Rosenberg’s course materials (https://github.com/davidrosenberg/mlcourse) (CDS, NYU)DS-GA 1003 March 9, 2021 10 / 1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Lectures/06b.MLE.pdf
https://github.com/davidrosenberg/mlcourse


Poisson Family

Support Y= {0,1,2,3, . . .}.
Parameter space: {λ ∈ R | λ > 0}
Probability mass function on k ∈ Y:

p(k;λ) = λke−λ/(k!)

Examples: Number of random i.i.d. events in a given time/over an interval
Radioactive decay of atoms over a year
Number of taxi cab pickups at Penn Station in an evening

Figure is "Poisson pmf" by Skbkekas - Own work. Licensed under CC BY 3.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Poisson_pmf.svg#/media/File:Poisson_pmf.svg.
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Beta Family

Support Y= (0,1). [The unit interval.]
Parameter space: {θ= (α,β) | α,β > 0}
Probability density function on y ∈ Y:

p(y ;a,b) =
yα−1 (1− y)β−1

B(α,β)

Examples: Spending of a resource over a interval.
Project management

Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons.
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Gaussian Family

Support Y ∈ R.
Parameter space:

{
θ=

(
µ,σ2

)
| µ ∈ R,σ2 > 0

}
Probability density function on y ∈ Y:

p(y ;µ,σ) =
1√
2πσ

e−(y−σ)2/2σ2
.

Also named "normal" distribution, noted N(µ,σ2)

Examples: sum of i.i.d random variables (Central limit theorem)
Cumulated gain from random independent coin flips

Figure from Wikipedia https://en.wikipedia.org/wiki/Gaussian_function.
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Multivariate Distributions

Above we only cited examples of univariate distributions
Sometimes we need multivariate distributions p(y ;θ) for y = (y1, · · · ,yd) ∈ Rd :

If yi s are independent p(y ;θ) =
∏d

i=1 p(yi ;θi )
If there are correlations, we have to treat the problem in dimension d .

Example:
Multivariate Gaussian Distribution

In 2d: y ∈ R2, p(y ;θ) =N(µ;Σ)
Parameters:
- Mean vector µ ∈ R2

- Covariance matrix Σ ∈ R2×2

Figure from Wikipedia https://en.wikipedia.org/wiki/Gaussian_function.
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Likelihood in a Parametric Model

Suppose we have a parametric model {p(y ;θ) | θ ∈Θ} and a sample D= (y1, . . . ,yn).
The likelihood of parameter estimate θ̂ ∈Θ for sample D is

p(D; θ̂) =
n∏

i=1

p(yi ; θ̂).

In practice, we prefer to work with the log-likelihood. Same maximizer, but

logp(D; θ̂) =
n∑

i=1

logp(yi ; θ̂),

and sums are easier to work with than products.
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Maximum Likelihood Estimation

Suppose D= (y1, . . . ,yn) is an i.i.d. sample from some distribution.

Definition
A maximum likelihood estimator (MLE) for θ in the model {p(y ;θ) | θ ∈Θ} is

θ̂ ∈ argmax
θ∈Θ

logp(D, θ̂)

= argmax
θ∈Θ

n∑
i=1

logp(yi ;θ).
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Maximum Likelihood Estimation

Finding the MLE is an optimization problem.

For some model families, calculus gives a closed form for the MLE.

Can also use numerical methods we know (e.g. SGD).
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MLE Existence

In certain situations, the MLE may not exist.
But there is usually a good reason for this.

e.g. Gaussian family
{
N(µ,σ2) | µ ∈ R,σ2 > 0

}
We have a single observation y .
Is there an MLE?

Taking µ= y and σ2→ 0 drives likelihood to infinity.
MLE doesn’t exist.
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Example: MLE for Poisson

Observed counts D= (k1, . . . ,kn) for taxi cab pickups over n weeks.
ki is number of pickups at Penn Station Mon, 7-8pm, for week i .

We want to fit a Poisson distribution to this data.
The Poisson log-likelihood for a single count is

log [p(k;λ)] = log

[
λke−λ

k!

]
= k logλ−λ− log (k!)

The full log-likelihood is

logp(D,λ) =

n∑
i=1

[ki logλ−λ− log (ki !)] .
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Example: MLE for Poisson

The full log-likelihood is

logp(D,λ) =

n∑
i=1

[ki logλ−λ− log (ki !)]

First order condition gives

0=
∂

∂λ
[logp(D,λ)] =

n∑
i=1

[
ki
λ
−1

]

=⇒ λ =
1
n

n∑
i=1

ki

So MLE λ̂ is just the mean of the counts.
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Estimating Distributions, Overfitting, and Hypothesis Spaces

Just as in classification and regression, MLE can overfit!
Example Probability Models: Penn Station, Mon-Fri 7-8pm

F = {Poisson distributions}.
F = {Negative binomial distributions}.

How to judge which model works the best?
Choose the model with the highest likelihood on validation set.

Test Set Log Likelihood for Penn Station, Mon-Fri 7-8pm

Method Test Log-Likelihood
Poisson −392.16

Negative Binomial −188.67
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