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Motivation for kernels

Our data is typically not linearly separable.

But we like to work with linear models.

Adding features (going to high-dimensional space) allow us to use linear models for
complex data.

o Kernels allow us to think about similarities rather than feature engineering.
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Two perspectives on kernels

@ Given a feature map ¢ : X — H, we can define a kernel function

k(x,x") = (p(x), d(x")) g

@ Given a PD kernel k:X x X — R, there exists a corresponding feature map.
o Note that the kernel does not uniquely define the feature map.

@ In practice we typically only work with the kerpel function.
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RBF Kernel J
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RBF Basis
Input space X =R?

U2

where 02 is known as the bandwidth parameter.

@ Suppose we have 6 training examples: x; € {—6,—4,—3,0,2,4}.

6 (;b('xi)

f(x)= Z ok (x;, x).

o If representer theorem applies, then
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RBF Predictions

@ f is a linear combination of 6 basis functions of form k(x;,-):

k(x,-6) k(x,0) k(x,4)
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@ Predictions of the form f(x) = Z?:l o k(x;, x):
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@ When kernelizing with RBF kernel, prediction functions always look this way (whether we
get w from SVM, ridge regression).
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Effect of the bandwidth

How does the fitted function change when we vary the bandwidth parameter?

https://mccormickml.com/2014/02/26/kernel-regression/
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Effect of the bandwidth

How does the fitted function change when we vary the bandwidth parameter?
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Feature map of RBF kernel

What feature map corresponds to the RBF kernel? eb(_ i X
Consider the 1D case (x € R) where 0 =1: NEIN
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Based on https://www.cs.ubc.ca/ schmidtm/Courses/540-W19/L12.5.pdf
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Kernel Methods J
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Kernelization

@ A method can be kernelized if both training and inference only need inner produc in the
feature space.

@ Representer theorem says that all/norm)regularized linear models can be kernelized.
o Although we might be in a high dimensional space, w lies in the subspace spanned by

P (xi).

o Dimension of the subspace grows with the dataset size.

e Many other algorithms can be kernelized.
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Kernelized perceptron
w” = z-“ o X¢
Predn'(:h‘em :

o Initialize w < 0 WoX = Zoai s X
@ While not converged < Zl. o (AL K>
o For (x;,y;) €D 7 " T
o If yiwTx; <0 —»8(k*d*<° = Ry ol

o Update w «+ wHyix; ——> ol & ou.‘_,d .
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Other kernel methods

[
e Distance-based methods depending on ||x —x'||>? { -0, K- x>
o k-means clustering =K XS -2, ')(‘) 'f'dﬁc(; D>
o k-nearest neighbors
o Eigenvalue methods: can show that eigenvector is in the span of data
o Principal component analysis

o Spectral clustering
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Kernel SVM vs ridge

@ For both kernel SVM and ridge regression, we make predictions by

Flx) =kl a* :i
=1

For SVM, we have sparsity in «* from complementary slackness.

For ridge, we need to access all training examples.

@ For large-scale dataset, we may not be able to store/compute the kernel matrix.
o Large-scale kernel machines (e.g. Random Features for Large-Scale Kernel Machines)
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