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Motivation for kernels

Our data is typically not linearly separable.

But we like to work with linear models.

Adding features (going to high-dimensional space) allow us to use linear models for
complex data.

Kernels allow us to think about similarities rather than feature engineering.
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Two perspectives on kernels

Given a feature map � : X!H, we can define a kernel function
k(x ,x 0) = h�(x),�(x 0)i

H
.

Given a PD kernel k : X⇥X! R, there exists a corresponding feature map.
Note that the kernel does not uniquely define the feature map.

In practice we typically only work with the kernel function.
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RBF Kernel
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RBF Basis

Input space X= Rd

k(x ,x 0) = exp

✓
-
kx - x 0k2

2�2

◆
,

where �2 is known as the bandwidth parameter.

Suppose we have 6 training examples: xi 2 {-6,-4,-3,0,2,4}.

If representer theorem applies, then

f (x) =
6X

i=1

↵ik(xi ,x).
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RBF Predictions

f is a linear combination of 6 basis functions of form k(xi , ·):

Predictions of the form f (x) =
P6

i=1↵ik(xi ,x):

When kernelizing with RBF kernel, prediction functions always look this way (whether we
get w from SVM, ridge regression).
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Effect of the bandwidth

How does the fitted function change when we vary the bandwidth parameter?

(a) ↵= 0.5 (b) ↵= 5 (c) ↵= 50

https://mccormickml.com/2014/02/26/kernel-regression/
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Feature map of RBF kernel

What feature map corresponds to the RBF kernel?

Consider the 1D case (x 2 R) where �= 1:

k(x ,x 0) = exp
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Based on https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf
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Kernel Methods
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Kernelization

A method can be kernelized if both training and inference only need inner produc in the
feature space.

Representer theorem says that all norm-regularized linear models can be kernelized.
Although we might be in a high dimensional space, w lies in the subspace spanned by
�(xi ).

Dimension of the subspace grows with the dataset size.

Many other algorithms can be kernelized.
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Kernelized perceptron

Initialize w  0

While not converged
For (xi ,yi ) 2D

If yiwT xi < 0
Update w  w + yixi
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Other kernel methods

Distance-based methods depending on kx - x 0k2

k-means clustering

k-nearest neighbors

Eigenvalue methods: can show that eigenvector is in the span of data
Principal component analysis

Spectral clustering
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Kernel SVM vs ridge

For both kernel SVM and ridge regression, we make predictions by

f̂ (x) = kTx ↵⇤ =
nX

i=1

↵⇤
i k(xi ,x)

For SVM, we have sparsity in ↵⇤ from complementary slackness.

For ridge, we need to access all training examples.

For large-scale dataset, we may not be able to store/compute the kernel matrix.
Large-scale kernel machines (e.g. Random Features for Large-Scale Kernel Machines)
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