Representer Theorem

He He

Slides based on Lecture 5a from David Rosenberg's course material.

CDS, NYU

March 2, 2021

SVM solution is in the "span of the data"

• We found the SVM dual problem can be written as:

$$\sup_{\mathbf{x}\in\mathsf{R}^{n}} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$

s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
$$\alpha_{i} \in \left[0, \frac{c}{n}\right] i = 1, \dots, n.$$

- Given dual solution α^* , primal solution is $w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$.
- Notice: w^* is a linear combination of training inputs x_1, \ldots, x_n .
- We refer to this phenomenon by saying " w^* is in the span of the data."
 - Or in math, $w^* \in \operatorname{span}(x_1, \ldots, x_n)$.

Ridge regression solution is in the "span of the data"

 $\bullet\,$ The ridge regression solution for regularization parameter $\lambda>0$ is

$$w^* = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda \|w\|_2^2.$$

• This has a closed form solution (Homework #3):

$$w^* = \left(X^T X + \lambda I\right)^{-1} X^T y,$$

where X is the design matrix, with x_1, \ldots, x_n as rows.

Ridge regression solution is in the "span of the data"

• Rearranging $w^* = (X^T X + \lambda I)^{-1} X^T y$, we can show that (also Homework #3):

$$w^* = X^T \underbrace{\left(\frac{1}{\lambda}y - \frac{1}{\lambda}Xw^*\right)}_{\alpha^*}$$
$$= X^T \alpha^* = \sum_{i=1}^n \alpha_i^* x_i.$$

- So w^* is in the span of the data.
 - i.e. $w^* \in \operatorname{span}(x_1, \ldots, x_n)$

If solution is in the span of the data, we can reparameterize

 $\bullet\,$ The ridge regression solution for regularization parameter $\lambda>0$ is

$$w^* = \underset{w \in \mathbb{R}^d}{\arg\min} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda \|w\|_2^2.$$

- We now know that $w^* \in \operatorname{span}(x_1, \ldots, x_n) \subset \mathsf{R}^d$.
- So rather than minimizing over all of \mathbb{R}^d , we can minimize over span (x_1, \ldots, x_n) .

$$w^* = \underset{w \in \text{span}(x_1, ..., x_n)}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda \|w\|_2^2.$$

• Let's reparameterize the objective by replacing w as a linear combination of the inputs.

If solution is in the span of the data, we can reparameterize

- Note that for any $w \in \text{span}(x_1, \ldots, x_n)$, we have $w = X^T \alpha$, for some $\alpha \in \mathbb{R}^n$.
- So let's replace w with $X^T \alpha$ in our optimization problem:

$$[\text{original}] \ w^* = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ \frac{w^T x_i - y_i}{x_i - y_i} \right\}^2 + \lambda \|w\|_2^2$$

reparameterized] $\alpha^* = \arg\min_{\alpha \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n \left\{ \left(X^T \alpha \right)^T x_i - y_i \right\}^2 + \lambda \|X^T \alpha\|_2^2.$

- To get w^* from the reparameterized optimization problem, we just take $w^* = X^T \alpha^*$.
- We changed the dimension of our optimization variable from d to n. Is this useful?

Consider very large feature spaces

- Suppose we have a 300-million dimension feature space [very large]
 - (e.g. using high order monomial interaction terms as features, as described last lecture)
- Suppose we have a training set of 300,000 examples [fairly large]
- In the original formulation, we solve a 300-million dimension optimization problem.
- In the reparameterized formulation, we solve a 300,000-dimension optimization problem.
- This is why we care about when the solution is in the span of the data.
- This reparameterization is interesting when we have more features than data $(d \gg n)$.

- For SVM and ridge regression, we found that the solution is in the span of the data.
 - derived in two rather ad-hoc ways
- Up next: The Representer Theorem, which shows that this "span of the data" result occurs far more generally, and we prove it using basic linear algebra.

Math Review: Inner Product Spaces and Hilbert Spaces

Hypothesis spaces we've seen so far

Finite-dimensional vector space (linear functions):

$$\mathcal{H} = \left\{ f \colon \mathcal{X} \to \mathsf{R} \mid f(x) = w^{\mathsf{T}} x, \quad w, x \in \mathsf{R}^{\mathsf{d}} \right\} \,.$$

To consider more complex input spaces (e.g. text, images), we use a feature map $\phi : \mathfrak{X} \to \mathfrak{F}$:

$$\mathcal{H} = \left\{ f \colon \mathcal{X} \to \mathsf{R} \,|\, f(x) = w^T \varphi(x) \right\} \,.$$

- ϕ does not have to be linear.
- The feature space \mathcal{F} can be R^d (Euclidean space) or an infinite-dimensional vector space.
- \bullet We would like more structure on $\mathcal{F}.$

Inner Product Space (or "Pre-Hilbert" Spaces)

An inner product space (over reals) is a vector space $\boldsymbol{\mathcal{V}}$ with an inner product, which is a mapping

$$\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathsf{R}$$

that has the following properties: $\forall x, y, z \in \mathcal{V}$ and $a, b \in \mathsf{R}$:

• Symmetry: $\langle x, y \rangle = \langle y, x \rangle$ • Linearity: $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$ • Positive-definiteness: $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0 \iff x = 0_{\mathcal{V}}$.

To show a function $\langle\cdot,\cdot\rangle$ is an inner product, we need to check the above conditions.

Exercise: show that $\langle x, y \rangle \stackrel{\text{def}}{=} x^T y$ is an inner product on \mathbb{R}^d .

Norm from Inner Product

Inner product is nice because it gives us notions of "size", "distance", "angle" in the vector space. For an inner product space, we can ddefine a norm as

$$\|x\| \stackrel{\mathrm{def}}{=} \sqrt{\langle x, x \rangle}.$$

Example

 R^d with standard Euclidean inner product is an inner product space:

$$\langle x, y \rangle := x^T y \qquad \forall x, y \in \mathsf{R}^d.$$

Norm is

$$\|x\| = \sqrt{x^T x}.$$

Orthogonality (Definitions)

Definition

Two vectors are **orthogonal** if $\langle x, x' \rangle = 0$. We denote this by $x \perp x'$.

Definition

x is orthogonal to a set S, i.e. $x \perp S$, if $x \perp s$ for all $x \in S$.

Pythagorean Theorem

Theorem (Pythagorean Theorem)

If $x \perp x'$, then $||x + x'||^2 = ||x||^2 + ||x'||^2$.

Proof.

We have

$$\begin{aligned} \|x+x'\|^2 &= \langle x+x', x+x' \rangle \text{ by def} \\ &= \langle x,x \rangle + \langle x,x' \rangle + \langle x',x' \rangle + \langle x',x' \rangle \text{ lin} \\ &= \|x\|^2 + \|x'\|^2. \text{ by or the genelity} \end{aligned}$$

Y.

Z N' + N

a'A

- A pre-Hilbert space is a vector space equipped with an inner product.
- We need an additional technical condition for Hilbert space: completeness.
- A space is **complete** if all Cauchy sequences in the space converge to a point in the space.

Definition

A Hilbert space is a complete inner product space.

Example

Any finite dimensional inner produce space is a Hilbert space.

The Representer Theorem

Generalize from SVM Objective

• SVM objective:

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|^2 + \frac{c}{n} \sum_{i=1}^n \max(0, 1 - y_i [\langle w, x_i \rangle]).$$

• Generalized objective: $\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$

where

- $w, x_1, \ldots, x_n \in \mathcal{H}$ for some Hilbert space \mathcal{H} . (We typically have $\mathcal{H} = \mathsf{R}^d$.)
- $\|\cdot\|$ is the norm corresponding to the inner product of \mathcal{H} . (i.e. $\|w\| = \sqrt{\langle w, w \rangle}$)
- $R: [0,\infty) \rightarrow \mathsf{R}$ is nondecreasing (Regularization term), and
- $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary (Loss term).

General Objective Function for Linear Hypothesis Space (Details)

• Generalized objective:

$$\min_{w\in\mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$$

- We can map x_i to a feature space.
- The prediction/score function $x \mapsto \langle w, x \rangle$ is linear in w.

General Objective Function for Linear Hypothesis Space (Details)

• Generalized objective:

$$\min_{w\in\mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$$

- Ridge regression and SVM are of this form. (Verify this!)
- What if we penalize with $\lambda ||w||_2$ instead of $\lambda ||w||_2^2$? Yes!
- \bullet What if we use lasso regression? No! ℓ_1 norm does not correspond to an inner product.

The Representer Theorem: Quick Summary

• Generalized objective:

$$w^* = \underset{w \in \mathcal{H}}{\operatorname{arg\,min}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$$

• Representer theorem tells us we can look for w^* in the span of the data:

$$w^* = \underset{w \in \operatorname{span}(x_1, \dots, x_n)}{\operatorname{arg\,min}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle).$$

• So we can reparameterize as before:

$$\alpha^* = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}^n} R\left(\left\| \sum_{i=1}^n \alpha_i x_i \right\| \right) + L\left(\left\langle \sum_{i=1}^n \alpha_i x_i, x_1 \right\rangle, \dots, \left\langle \sum_{i=1}^n \alpha_i x_i, x_n \right\rangle \right).$$

• Our reparameterization trick applies much more broadly than SVM and ridge.

He He (CDS, NYU)

The Representer Theorem

Theorem (Representer Theorem)

Let

$$J(w) = R(||w||) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$$

where

- $w, x_1, \ldots, x_n \in \mathcal{H}$ for some Hilbert space \mathcal{H} . (We typically have $\mathcal{H} = \mathsf{R}^d$.)
- $\|\cdot\|$ is the norm corresponding to the inner product of \mathcal{H} . (i.e. $\|w\| = \sqrt{\langle w, w \rangle}$)
- $R: [0, \infty) \rightarrow R$ is nondecreasing (Regularization term), and
- $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary (Loss term).

Then it has a minimizer of the form $w^* = \sum_{i=1}^n \alpha_i x_i$.

The Representer Theorem (Proof sketch)

$$W_{\perp} = W_{\perp} = (X_{1} \dots X_{n})$$

$$(W_{\perp}, \chi) = (W + W_{\perp}, \chi)$$

$$= (W, \chi) + (W_{\perp}, \chi)$$

$$Prediction store = (W, \chi)$$

$$H = (W^{\star}H)$$

$$P(H = H W^{\star}H)$$

$$P(H = H W^{\star}H)$$

Reparameterizing our Generalized Objective Function

Rewriting the Objective Function

• Define the training score function $s: \mathbb{R}^d \to \mathbb{R}^n$ by

$$\mathbf{s}(\mathbf{w}) = \begin{pmatrix} \langle \mathbf{w}, \mathbf{x}_1 \rangle \\ \vdots \\ \langle \mathbf{w}, \mathbf{x}_n \rangle \end{pmatrix},$$

which gives the training score vector for any w.

• We can then rewrite the objective function as

$$J(w) = R(||w||) + L(s(w)),$$

where now $L: \mathbb{R}^{n \times 1} \to \mathbb{R}$ takes a column vector as input.

• This will allow us to have a slick reparameterized version...

Reparameterize the Generalized Objective

- By the Representer Theorem, it's sufficient to minimize J(w) for w of the form $\sum_{i=1}^{n} \alpha_i x_i$.
- Plugging this form into J(w), we see we can just minimize

$$J_{0}(\alpha) = R\left(\left\|\sum_{i=1}^{n} \alpha_{i} x_{i}\right\|\right) + L\left(s\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)\right)$$

over $\alpha = (\alpha_{1}, \dots, \alpha_{n})^{T} \in \mathbb{R}^{n \times 1}$.

- With some new notation, we can substantially simplify
 - the norm piece $||w|| = ||\sum_{i=1}^{n} \alpha_i x_i||$, and
 - the score piece $s(w) = s(\sum_{i=1}^{n} \alpha_i x_i)$.

Simplifying the Reparameterized Norm

• For the norm piece $||w|| = ||\sum_{i=1}^{n} \alpha_i x_i||$, we have

$$\|w\|^{2} = \langle w, w \rangle \quad \text{def}$$

$$= \left\langle \sum_{i=1}^{n} \alpha_{i} x_{i}, \sum_{j=1}^{n} \alpha_{j} x_{j} \right\rangle \quad \text{rep.}$$

$$= \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} \langle x_{i}, x_{j} \rangle \cdot \quad \text{tr.}$$

$$K_{i} \quad \text{dT K d}$$

- This expression involves the n^2 inner products between all pairs of input vectors.
- We often put those values together into a matrix (Gram/Kernel matrix).

Example: Gram Matrix for the Dot Product

- Consider $x_1, \ldots, x_n \in \mathbb{R}^{d \times 1}$ with the standard inner product $\langle x, x' \rangle = x^T x'$.
- Let $X \in \mathbb{R}^{n \times d}$ be the **design matrix**, which has each input vector as a row:

$$X = \begin{pmatrix} -x_1' - \\ \vdots \\ -x_n^T - \end{pmatrix}$$

• Then the Gram matrix is $(x_i, x_j) = \langle x_i, x_j \rangle = \langle x_i, x_j \rangle = \langle x_i, x_j \rangle$

$$K = \begin{pmatrix} x_1^T x_1 & \cdots & x_1^T x_n \\ \vdots & \ddots & \cdots \\ x_n^T x_1 & \cdots & x_n^T x_n \end{pmatrix} = \begin{pmatrix} -x_1^T - \\ \vdots \\ -x_n^T - \end{pmatrix} \begin{pmatrix} | & \cdots & | \\ x_1 & \cdots & x_n \\ | & \cdots & | \end{pmatrix}$$
$$= XX^T$$

Simplifying the Reparametrized Norm

• With
$$w = \sum_{i=1}^{n} \alpha_i x_i$$
, we have

$$\|w\|^{2} = \langle w, w \rangle$$

$$= \left\langle \sum_{i=1}^{n} \alpha_{i} x_{i}, \sum_{j=1}^{n} \alpha_{j} x_{j} \right\rangle$$

$$= \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} \langle x_{i}, x_{j} \rangle$$

$$= \alpha^{T} K \alpha.$$

Simplifying the Training Score Vector

• The score for x_j for $w = \sum_{i=1}^n \alpha_i x_i$ is

$$\langle w, x_j \rangle = \left\langle \sum_{i=1}^n \alpha_i x_i, x_j \right\rangle = \sum_{i=1}^n \alpha_i \langle x_i, x_j \rangle$$

• The training score vector is

$$= \begin{pmatrix} \zeta(\mathbf{w}) \\ \vdots \\ \sum_{i=1}^{n} \alpha_i \langle x_i, x_1 \rangle \\ \vdots \\ \sum_{i=1}^{n} \alpha_i \langle x_i, x_n \rangle \end{pmatrix} = \begin{pmatrix} \alpha_1 \langle x_1, x_1 \rangle + \dots + \alpha_n \langle x_n, x_1 \rangle \\ \vdots \\ \alpha_1 \langle x_1, x_n \rangle + \dots + \alpha_n \langle x_n, x_n \rangle \end{pmatrix}$$

$$= \begin{pmatrix} \langle w, w_1 \rangle \\ \vdots \\ \langle x_n, x_1 \rangle & \dots & \langle x_n, x_n \rangle \\ \vdots \\ \langle x_n, x_1 \rangle & \dots & \langle x_n, x_n \rangle \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

$$= K \alpha$$

He He (CDS, NYU)

Reparameterized Objective

• Putting it all together, our reparameterized objective function can be written as

$$J_0(\alpha) = R\left(\left\|\sum_{i=1}^n \alpha_i x_i\right\|\right) + L\left(s\left(\sum_{i=1}^n \alpha_i x_i\right)\right)$$
$$= R\left(\sqrt{\alpha^T K \alpha}\right) + L(K \alpha),$$

which we minimize over $\alpha \in \mathbb{R}^n$.

- All information needed about x_1, \ldots, x_n is summarized in the Gram matrix K.
- We're now minimizing over R^n rather than R^d .
- If $d \gg n$, this can be a big win computationally (at least once K is computed).

Reparameterizing Predictions

Suppose we've found

$$\alpha^* \in \arg\min_{\alpha \in \mathbb{R}^n} R\left(\sqrt{\alpha^T K \alpha}\right) + L(K\alpha).$$

• Then we know $w^* = \sum_{i=1}^n \alpha^* x_i$ is a solution to

$$\underset{w \in \mathcal{H}}{\operatorname{arg\,min}} R\left(\|w\| \right) + L\left(\langle w, x_1 \rangle, \ldots, \langle w, x_n \rangle \right).$$

• The prediction on a new point
$$x \in \mathcal{H}$$
 is $z \in \mathcal{H}$ is $z \in \mathcal{H}$ is

$$\hat{f}(x) = \langle w^*, x \rangle = \sum_{i=1}^{n} \alpha_i^* \langle x_i, x \rangle.$$

n

• To make a new prediction, we may need to touch all the training inputs x_1, \ldots, x_n .

• It will be convenient to define the following column vector for any $x \in \mathcal{H}$:

$$k_{x} = \begin{pmatrix} \langle x_{1}, x \rangle \\ \vdots \\ \langle x_{n}, x \rangle \end{pmatrix}^{2} \text{ beso ex.}$$

• Then we can write our predictions on a new point x as

$$\hat{f}(x) = k_x^T \alpha^*$$

Summary So Far

- Original plan:
 - Find $w^* \in \operatorname{arg\,min}_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$
 - Predict with $\hat{f}(x) = \langle w^*, x \rangle$.
- We showed that the following is equivalent:
 - Find $\alpha^* \in \operatorname{arg\,min}_{\alpha \in \mathsf{R}^n} R\left(\sqrt{\alpha^T K \alpha}\right) + L(K \alpha)$
 - Predict with $\hat{f}(x) = k_x^T \alpha^*$, where

$$\mathcal{K} = \begin{pmatrix} \langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \\ \vdots & \ddots & \cdots \\ \langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle \end{pmatrix} \quad \text{and} \quad k_x = \begin{pmatrix} \langle x_1, x \rangle \\ \vdots \\ \langle x_n, x \rangle \end{pmatrix}$$

• Every element $x \in \mathcal{H}$ occurs inside an inner products with a training input $x_i \in \mathcal{H}$.

He He (CDS, NYU)

Kernelization

Definition

A method is **kernelized** if every feature vector $\psi(x)$ only appears inside an inner product with another feature vector $\psi(x')$. This applies to both the optimization problem and the prediction function.

• Here we are using $\psi(x) = x$. Thus finding

$$\alpha^* \in \operatorname*{arg\,min}_{\alpha \in \mathsf{R}^n} R\left(\sqrt{\alpha^{\mathsf{T}} \mathsf{K} \alpha}\right) + L(\mathsf{K} \alpha)$$

and making predictions with $\hat{f}(x) = k_x^T \alpha^*$ is a kernelization of finding

$$w^* \in \underset{w \in \mathcal{H}}{\operatorname{arg\,min}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$$

and making predictions with $\hat{f}(x) = \langle w^*, x \rangle$.

- We used duality for SVM and bare hands for ridge regression to find their kernelized version.
- Our principle tool for kernelization is reparameterization by the representer theorem.
- Once kernelized, we can apply the kernel trick: doesn't need to represent $\phi(x)$ explicitly.