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SVM solution is in the “span of the data”

We found the SVM dual problem can be written as:

sup
↵2Rn

nX

i=1

↵i -
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nX

i ,j=1

↵i↵jyiyjx
T
j xi

s.t.
nX

i=1

↵iyi = 0

↵i 2
h
0,
c

n

i
i = 1, . . . ,n.

Given dual solution ↵⇤, primal solution is w⇤=
Pn

i=1↵
⇤
i yixi .

Notice: w⇤ is a linear combination of training inputs x1, . . . ,xn.

We refer to this phenomenon by saying “w⇤ is in the span of the data.”
Or in math, w⇤ 2 span(x1, . . . ,xn).
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Ridge regression solution is in the “span of the data”

The ridge regression solution for regularization parameter �> 0 is

w⇤ = argmin
w2Rd

1
n

nX

i=1

�
wT xi - yi

 2
+�kwk2

2.

This has a closed form solution (Homework #3):

w⇤ =
�
XTX +�I

�-1
XT y ,

where X is the design matrix, with x1, . . . ,xn as rows.
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Ridge regression solution is in the “span of the data”

Rearranging w⇤ =
�
XTX +�I

�-1
XT y , we can show that (also Homework #3):

w⇤ = XT

✓
1
�
y -

1
�
Xw⇤

◆

| {z }
↵⇤

= XT↵⇤ =
nX

i=1

↵⇤
i xi .

So w⇤ is in the span of the data.
i.e. w⇤ 2 span(x1, . . . ,xn)
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If solution is in the span of the data, we can reparameterize

The ridge regression solution for regularization parameter �> 0 is

w⇤ = argmin
w2Rd

1
n

nX

i=1

�
wT xi - yi

 2
+�kwk2

2.

We now know that w⇤ 2 span(x1, . . . ,xn)⇢ Rd .

So rather than minimizing over all of Rd , we can minimize over span(x1, . . . ,xn).

w⇤ = argmin
w2span(x1,...,xn)

1
n

nX

i=1

�
wT xi - yi

 2
+�kwk2

2.

Let’s reparameterize the objective by replacing w as a linear combination of the inputs.

He He (CDS, NYU) DS-GA 1003 March 2, 2021 5 / 35



If solution is in the span of the data, we can reparameterize

Note that for any w 2 span(x1, . . . ,xn), we have w = XT↵, for some ↵ 2 Rn.

So let’s replace w with XT↵ in our optimization problem:

[original] w⇤ = argmin
w2Rd

1
n

nX

i=1

�
wT xi - yi

 2
+�kwk2

2

[reparameterized] ↵⇤ = argmin
↵2Rn

1
n

nX

i=1

⌦�
XT↵

�T
xi - yi

↵2
+�kXT↵k2

2.

To get w⇤ from the reparameterized optimization problem, we just take w⇤ = XT↵⇤.

We changed the dimension of our optimization variable from d to n. Is this useful?
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Consider very large feature spaces

Suppose we have a 300-million dimension feature space [very large]
(e.g. using high order monomial interaction terms as features, as described last
lecture)

Suppose we have a training set of 300,000 examples [fairly large]

In the original formulation, we solve a 300-million dimension optimization problem.

In the reparameterized formulation, we solve a 300,000-dimension optimization problem.

This is why we care about when the solution is in the span of the data.

This reparameterization is interesting when we have more features than data (d � n).
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What’s next?

For SVM and ridge regression, we found that the solution is in the span of the data.
derived in two rather ad-hoc ways

Up next: The Representer Theorem, which shows that this “span of the data” result occurs
far more generally, and we prove it using basic linear algebra.
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Math Review: Inner Product Spaces and Hilbert Spaces
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Hypothesis spaces we’ve seen so far

Finite-dimensional vector space (linear functions):

H =
�
f : X! R | f (x) = wT x , w ,x 2 Rd

 
.

To consider more complex input spaces (e.g. text, images), we use a feature map � : X! F:

H =
�
f : X! R | f (x) = wT�(x)

 
.

� does not have to be linear.

The feature space F can be Rd (Euclidean space) or an infinite-dimensional vector space.

We would like more structure on F.

He He (CDS, NYU) DS-GA 1003 March 2, 2021 10 / 35



Inner Product Space (or “Pre-Hilbert” Spaces)

An inner product space (over reals) is a vector space V with an inner product, which is a
mapping

h·, ·i : V⇥V! R

that has the following properties: 8x ,y ,z 2 V and a,b 2 R:

Symmetry: hx ,yi= hy ,xi

Linearity: hax +by ,zi= a hx ,zi+b hy ,zi

Positive-definiteness: hx ,xi> 0 and hx ,xi= 0 () x = 0V.

To show a function h·, ·i is an inner product, we need to check the above conditions.

Exercise: show that hx ,yi def
= xT y is an inner product on Rd .
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Norm from Inner Product

Inner product is nice because it gives us notions of “size”, “distance”, “angle” in the vector space.

For an inner product space, we can ddefine a norm as

kxk def
=
p

hx ,xi.

Example

Rd with standard Euclidean inner product is an inner product space:

hx ,yi := xT y 8x ,y 2 Rd .

Norm is
kxk=

p
xT x .

He He (CDS, NYU) DS-GA 1003 March 2, 2021 12 / 35



Orthogonality (Definitions)

Definition
Two vectors are orthogonal if hx ,x 0i= 0. We denote this by x ? x 0.

Definition
x is orthogonal to a set S , i.e. x ? S , if x ? s for all x 2 S .
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Pythagorean Theorem

Theorem (Pythagorean Theorem)

If x ? x 0
, then kx + x 0k2 = kxk2+kx 0k2.

Proof.
We have

kx + x 0k2 =
⌦
x + x 0,x + x 0↵

= hx ,xi+
⌦
x ,x 0↵+

⌦
x 0,x

↵
+
⌦
x 0,x 0↵

= kxk2+kx 0k2.
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Hilbert Space

A pre-Hilbert space is a vector space equipped with an inner product.

We need an additional technical condition for Hilbert space: completeness.

A space is complete if all Cauchy sequences in the space converge to a point in the space.

Definition
A Hilbert space is a complete inner product space.

Example
Any finite dimensional inner produce space is a Hilbert space.
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The Representer Theorem
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Generalize from SVM Objective

SVM objective:

min
w2Rd

1
2
kwk2+

c

n

nX

i=1

max(0,1- yi [hw ,xi i]) .

Generalized objective:

min
w2H

R (kwk)+L(hw ,x1i , . . . ,hw ,xni) ,

where
w ,x1, . . . ,xn 2H for some Hilbert space H. (We typically have H = Rd .)

k ·k is the norm corresponding to the inner product of H. (i.e. kwk=
p
hw ,wi)

R : [0,1)! R is nondecreasing (Regularization term), and

L : Rn ! R is arbitrary (Loss term).
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General Objective Function for Linear Hypothesis Space (Details)

Generalized objective:

min
w2H

R (kwk)+L(hw ,x1i , . . . ,hw ,xni)

We can map xi to a feature space.

The prediction/score function x 7! hw ,xi is linear in w .
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General Objective Function for Linear Hypothesis Space (Details)

Generalized objective:

min
w2H

R (kwk)+L(hw ,x1i , . . . ,hw ,xni)

Ridge regression and SVM are of this form. (Verify this!)

What if we penalize with �kwk2 instead of �kwk2
2? Yes!

What if we use lasso regression? No! `1 norm does not correspond to an inner product.

He He (CDS, NYU) DS-GA 1003 March 2, 2021 19 / 35



The Representer Theorem: Quick Summary

Generalized objective:

w⇤ = argmin
w2H

R (kwk)+L(hw ,x1i , . . . ,hw ,xni)

Representer theorem tells us we can look for w⇤ in the span of the data:

w⇤ = argmin
w2span(x1,...,xn)

R (kwk)+L(hw ,x1i , . . . ,hw ,xni) .

So we can reparameterize as before:

↵⇤ = argmin
↵2Rn

R

 �����

nX

i=1

↵ixi

�����

!

+L

 *
nX

i=1

↵ixi ,x1

+

, . . . ,

*
nX

i=1

↵ixi ,xn

+!

.

Our reparameterization trick applies much more broadly than SVM and ridge.
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The Representer Theorem

Theorem (Representer Theorem)
Let

J(w) = R (kwk)+L(hw ,x1i , . . . ,hw ,xni) ,

where

w ,x1, . . . ,xn 2H for some Hilbert space H. (We typically have H = Rd .)

k ·k is the norm corresponding to the inner product of H. (i.e. kwk=
p
hw ,wi)

R : [0,1)! R is nondecreasing (Regularization term), and

L : Rn ! R is arbitrary (Loss term).

Then it has a minimizer of the form w⇤ =
Pn

i=1↵ixi .
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The Representer Theorem (Proof sketch)
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Reparameterizing our Generalized Objective Function
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Rewriting the Objective Function

Define the training score function s : Rd ! Rn by

s(w) =

0

B@
hw ,x1i

...
hw ,xni

1

CA ,

which gives the training score vector for any w .

We can then rewrite the objective function as

J(w) = R (kwk)+L(s(w)) ,

where now L : Rn⇥1 ! R takes a column vector as input.

This will allow us to have a slick reparameterized version...
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Reparameterize the Generalized Objective

By the Representer Theorem, it’s sufficient to minimize J(w) for w of the form
Pn

i=1↵ixi .

Plugging this form into J(w), we see we can just minimize

J0(↵) = R

 �����

nX

i=1

↵ixi

�����

!

+L

 

s

 
nX

i=1

↵ixi

!!

over ↵= (↵1, . . . ,↵n)
T 2 Rn⇥1.

With some new notation, we can substantially simplify
the norm piece kwk= k

Pn
i=1↵ixik, and

the score piece s(w) = s (
Pn

i=1↵ixi ).
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Simplifying the Reparameterized Norm

For the norm piece kwk= k
Pn

i=1↵ixik, we have

kwk2 = hw ,wi

=

*
nX

i=1

↵ixi ,
nX

j=1

↵jxj

+

=
nX

i ,j=1

↵i↵j hxi ,xji .

This expression involves the n2 inner products between all pairs of input vectors.

We often put those values together into a matrix (Gram/Kernel matrix).
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Example: Gram Matrix for the Dot Product

Consider x1, . . . ,xn 2 Rd⇥1 with the standard inner product hx ,x 0i= xT x 0.

Let X 2 Rn⇥d be the design matrix, which has each input vector as a row:

X =

0

B@
-xT1 -

...
-xTn -

1

CA .

Then the Gram matrix is

K =

0

B@
xT1 x1 · · · xT1 xn

... . . . · · ·
xTn x1 · · · xTn xn

1

CA=

0

B@
-xT1 -

...
-xTn -

1

CA

0

@
| · · · |

x1 · · · xn
| · · · |

1

A

= XXT
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Simplifying the Reparametrized Norm

With w =
Pn

i=1↵ixi , we have

kwk2 = hw ,wi

=

*
nX

i=1

↵ixi ,
nX

j=1

↵jxj

+

=
nX

i ,j=1

↵i↵j hxi ,xji

= ↵TK↵.
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Simplifying the Training Score Vector

The score for xj for w =
Pn

i=1↵ixi is

hw ,xji =

*
nX

i=1

↵ixi ,xj

+

=
nX

i=1

↵i hxi ,xji

The training score vector is

s

 
nX

i=1

↵ixi

!

=

0

B@

Pn
i=1↵i hxi ,x1i

...Pn
i=1↵i hxi ,xni

1

CA=

0

B@
↵1 hx1,x1i+ · · ·+↵n hxn,x1i

...
↵1 hx1,xni+ · · ·+↵n hxn,xni

1

CA

=

0

B@
hx1,x1i · · · hx1,xni

... . . . · · ·
hxn,x1i · · · hxn,xni

1

CA

0

B@
↵1
...
↵n

1

CA

= K↵
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Reparameterized Objective

Putting it all together, our reparameterized objective function can be written as

J0(↵) = R

 �����

nX

i=1

↵ixi

�����

!

+L

 

s

 
nX

i=1

↵ixi

!!

= R
⇣p
↵TK↵

⌘
+L(K↵) ,

which we minimize over ↵ 2 Rn.

All information needed about x1, . . . ,xn is summarized in the Gram matrix K .

We’re now minimizing over Rn rather than Rd .

If d � n, this can be a big win computationally (at least once K is computed).
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Reparameterizing Predictions

Suppose we’ve found
↵⇤ 2 argmin

↵2Rn
R
⇣p
↵TK↵

⌘
+L(K↵) .

Then we know w⇤ =
Pn

i=1↵
⇤xi is a solution to

argmin
w2H

R (kwk)+L(hw ,x1i , . . . ,hw ,xni) .

The prediction on a new point x 2H is

f̂ (x) = hw⇤,xi=
nX

i=1

↵⇤
i hxi ,xi .

To make a new prediction, we may need to touch all the training inputs x1, . . . ,xn.
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More Notation

It will be convenient to define the following column vector for any x 2H:

kx =

0

B@
hx1,xi

...
hxn,xi

1

CA

Then we can write our predictions on a new point x as

f̂ (x) = kTx ↵
⇤
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Summary So Far

Original plan:
Find w⇤ 2 argminw2HR (kwk)+L(hw ,x1i , . . . ,hw ,xni)
Predict with f̂ (x) = hw⇤,xi.

We showed that the following is equivalent:

Find ↵⇤ 2 argmin↵2Rn R
⇣p
↵TK↵

⌘
+L(K↵)

Predict with f̂ (x) = kTx ↵
⇤, where

K =

0

B@
hx1,x1i · · · hx1,xni

... . . . · · ·
hxn,x1i · · · hxn,xni

1

CA and kx =

0

B@
hx1,xi

...
hxn,xi

1

CA

Every element x 2H occurs inside an inner products with a training input xi 2H.
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Kernelization

Definition
A method is kernelized if every feature vector  (x) only appears inside an inner product with
another feature vector  (x 0). This applies to both the optimization problem and the prediction
function.

Here we are using  (x) = x . Thus finding

↵⇤ 2 argmin
↵2Rn

R
⇣p
↵TK↵

⌘
+L(K↵)

and making predictions with f̂ (x) = kTx ↵
⇤ is a kernelization of finding

w⇤ 2 argmin
w2H

R (kwk)+L(hw ,x1i , . . . ,hw ,xni)

and making predictions with f̂ (x) = hw⇤,xi.
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Summary

We used duality for SVM and bare hands for ridge regression to find their kernelized
version.

Our principle tool for kernelization is reparameterization by the representer theorem.

Once kernelized, we can apply the kernel trick: doesn’t need to represent �(x) explicitly.
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