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SVM with Explicit Feature Map

Let  : X! Rd be a feature map.

The SVM objective (with explicit feature map):
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w2Rd
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Computation is costly if d is large (e.g. with high-degree monomials)

Last time we mentioned an equivalent optimization problem from Lagrangian duality.
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SVM Dual Problem

By Lagrangian duality, it is equivalent to solve the following dual problem:
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If ↵⇤ is an optimal value, then

w
⇤ =

nX

i=1

↵⇤
i yi (xi ) and f̂ (x) =

nX

i=1

↵⇤
i yi (xi )

T (x).

Key observation:  (x) only shows up in inner products with another  (x 0) for both
training and inference.
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Compute the Inner Products

Consider 2D data. Let’s introduce degree-2 monomials using  : R2 ! R3.

(x1,x2) 7! (x2
1 ,
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2x1x2,x
2
2 ).

The inner product is
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We can calculate the inner product  (x)T (x 0) without accessing the features  (x)!
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Compute the Inner Products

Now, consider monomials up to degree-2:

(x1,x2) 7! (1,
p

2x1,
p

2x2,x
2
1 ,
p

2x1x2,x
2
2 ).

The inner product can be computed by

 (x)T (x 0) = (1+ x
T
x
0)2 (check).

More generally, for features maps producing monomials up to degree-p, we have

 (x)T (x 0) = (1+ x
T
x
0)p.

(Note that the coefficients of each monomial in  may not be 1)

Kernel trick: we do not need explicit features to calculate inner products.

Using explicit features: O(dp)

Using implicit computation: O(d)
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Kernel Function
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The Kernel Function

Input space: X

Feature space: H (a Hilbert space, e.g. Rd)

Feature map:  : X!H

The kernel function corresponding to  is

k(x ,x 0) =
⌦
 (x), (x 0)

↵
,

where h·, ·i is the inner product associated with H.

Why introduce this new notation k(x ,x 0)?

We can often evaluate k(x ,x 0) without explicitly computing  (x) and  (x 0).

When can we use the kernel trick?
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Some Methods Can Be “Kernelized”

Definition
A method is kernelized if every feature vector  (x) only appears inside an inner product with
another feature vector  (x 0). This applies to both the optimization problem and the prediction
function.

The SVM Dual is a kernelization of the original SVM formulation.

Optimization:
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Prediction:
f̂ (x) =

nX

i=1

↵⇤
i yi (xi )

T (x).
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The Kernel Matrix

Definition
The kernel matrix for a kernel k on x1, . . . ,xn 2 X is

K =
�
k(xi ,xj)

�
i ,j

=

0

B@
k(x1,x1) · · · k(x1,xn)

... . . . · · ·
k(xn,x1) · · · k(xn,xn)

1

CA 2 Rn⇥n.

In ML this is also called a Gram matrix, but traditionally (in linear algebra), Gram
matrices are defined without reference to a kernel or feature map.
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The Kernel Matrix

The kernel matrix summarizes all the information we need about the training inputs
x1, . . . ,xn to solve a kernelized optimization problem.

In the kernelized SVM, we can replace  (xi )T (xj) with Kij :
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Kernel Methods

Given a kernelized ML algorithm (i.e. all  (x)’s show up as h (x), (x 0)i),

Can swap out the inner product for a new kernel function.

New kernel may correspond to a very high-dimensional feature space.

Once the kernel matrix is computed, the computational cost depends on number of data
points n, rather than the dimension of feature space d .

Useful when d >> n.

Computing the kernel matrix may still depend on d and the essence of the trick is getting
around this O(d) dependence.
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Example Kernels
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Kernels as Similarity Scores

Often useful to think of the k(x ,x 0) as a similarity score for x and x
0.

We can design similarity functions without thinking about the explicit feature map, e.g.
“string kernels”, “graph kerners”.

How do we know that our kernel functions actually correspond to inner products in some
feature space?

He He (CDS, NYU) DS-GA 1003 March 2, 2021 13 / 23

*cnn.ua,

'

mo -- i:iT



How to Get Kernels?

Explicitly construct  (x) : X! Rd (e.g. monomials) and define k(x ,x 0) = (x)T (x 0).

Directly define the kernel function k(x ,x 0) (“similarity score”), and verify it corresponds to
h (x), (x 0)i for some  .

There are many theorems to help us with the second approach.
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Linear Algebra Review: Positive Semidefinite Matrices

Definition
A real, symmetric matrix M 2 Rn⇥n is positive semidefinite (psd) if for any x 2 Rn,

x
T
Mx > 0.

Theorem
The following conditions are each necessary and sufficient for a symmetric matrix M to be
positive semidefinite:

M can be factorized as M = R
T
R , for some matrix R .

All eigenvalues of M are greater than or equal to 0.
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Positive Definite Kernel

Definition
A symmetric function k :X⇥X! R is a positive definite (pd) kernel on X if for any finite set
{x1, . . . ,xn} 2 X (n 2 N), the kernel matrix on this set

K =
�
k(xi ,xj)

�
i ,j

=

0

B@
k(x1,x1) · · · k(x1,xn)

... . . . · · ·
k(xn,x1) · · · k(xn,xn)

1

CA

is a positive semidefinite matrix.

Symmetric: k(x ,x 0) = k(x 0,x)

The kernel matrix needs to be positive semidefinite for any finite set of points.

Equivalent definition:
Pn

i=1
Pn

j=1↵i↵jk(xi ,xj)> 0 given ↵i 2 R 8i .
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Mercer’s Theorem

Theorem
A symmetric function k(x ,x 0) can be expressed as an inner product

k(x ,x 0) =
⌦
 (x), (x 0)

↵

for some  if and only if k(x ,x 0) is positive definite.

Proving a kernel function is positive definite is typically not easy.

But we can construct new kernels from valid kernels.
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Generating New Kernels from Old

Suppose k ,k1,k2 : X⇥X! R are pd kernels. Then so are the following:

knew(x ,x 0) = ↵k(x ,x 0) for ↵> 0 (non-negative scaling)
knew(x ,x 0) = k1(x ,x

0)+k2(x ,x
0) (sum)

knew(x ,x 0) = k1(x ,x
0)k2(x ,x

0) (product)
knew(x ,x 0) = k( (x), (x 0)) for any function  (·) (recursion)
knew(x ,x 0) = f (x)f (x 0) for any function f (·) (f as 1D feature map)

Lots more theorems to help you construct new kernels from old.

Based on Mark Schmidt’s slides:https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/L12.5.pdf
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Linear Kernel

Input space: X= Rd

Feature space: H = Rd , with standard inner product

Feature map
 (x) = x

Kernel:
k(x ,x 0) = x

T
x
0
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Quadratic Kernel in Rd

Input space X= Rd

Feature space: H = RD , where D = d +
�d
2
�
⇡ d

2/2.

Feature map:

 (x) = (x1, . . . ,xd ,x
2
1 , . . . ,x

2
d ,
p

2x1x2, . . . ,
p

2xixj , . . .
p

2xd-1xd)
T

Then for 8x ,x 0 2 Rd

k(x ,x 0) =
⌦
 (x), (x 0)

↵

=
⌦
x ,x 0↵+

⌦
x ,x 0↵2

Computation for inner product with explicit mapping: O(d2)

Computation for implicit kernel calculation: O(d).
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Polynomial Kernel in Rd

Input space X= Rd

Kernel function:
k(x ,x 0) =

�
1+

⌦
x ,x 0↵�M

Corresponds to a feature map with all monomials up to degree M.

For any M, computing the kernel has same computational cost

Cost of explicit inner product computation grows rapidly in M.
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Radial Basis Function (RBF) / Gaussian Kernel

Input space X= Rd

k(x ,x 0) = exp

✓
-
kx - x

0k2

2�2

◆
,

where �2 is known as the bandwidth parameter.

Probably the most common nonlinear kernel.

Does it act like a similarity score?

Why “radial”?

Have we departed from our “inner product of feature vector” recipe?
Yes and no: corresponds to an infinite dimensional feature vector

He He (CDS, NYU) DS-GA 1003 March 2, 2021 22 / 23

akcx

""" ¥4 .



Remaining Questions

Our current recipe:
Recognize kernelized problem:  (x) only occur in inner products  (x)T (x 0)

Pick a kernel function (“similarity score”)

Compute the kernel matrix (n by n where n is the dataset size)

Optimize the model and make predictions by accessing the kernel matrix

Next: When can we apply kernelization?
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