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SVM as a Quadratic Program

@ The SVM optimization problem is equivalent to

n
minimize ;||W||2+E;E.i
subject to —&;, <0 fo:izl,...,n «f;(oc)go
(l—y,- [WTXi+b])—E,; <0 fori=1,...,n
@ Differentiable objective function
@ n+d+1 unknowns and 2n affine constraints.
e A quadratic program that can be solved by any off-the-shelf QP solver.

@ Let's learn more by examining the dual.
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Why Do We Care About the Dual? J
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The Lagrangian

The general [inequality-constrained| optimization problem is:

minimize fo(x)

subject to fi(x)<0, i=1,....m

Definition

The Lagrangian for this optimization problem is

L(x,A) = fo(x +Z)\f

@ A;'s are called Lagrange multipliers (also called the dual variables).
@ Weighted sum of the objective and constraint functions

o Hard constraints — soft constraints
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Lagrange Dual Function

Definition
The Lagrange dual function is
>0
( ‘.0
g(\) =infL(x,A) = inf <ﬂ) Z)\ x) )
o

@ g(A) is concave (why?)

e Lower bound property: if A =0, g(A) < p* where p* is the optimal value of the
optimization problem.

@ g(A) can be —oco (uninformative lower bound)
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The Primal and the Dual

@ For any primal form optimization problem,

minimize fo(x)
subject to fi(x)<0, i=1,....m,

there is a recipe for constructing a corresponding Lagrangian dual problem:

maximize g(A)

subject to A =0, i=1,...,m,
@ The dual problem is always a convex optimization problem.
@ The dual variables often have interesting and relevant interpretations.

@ The dual variables provide certificate for optimality.
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Weak Duality

We always have weak duality: p* > d*.

Jfo q
fo(z)

Plot courtesy of Brett Bernstein.
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Strong Duality

For some problems, we have strong duality: p* = d*.

fol Y
fo(z)

For convex problems, strong duality is fairly typical.

Plot courtesy of Brett Bernstein.
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Complementary Slackness

@ Assume strong duality. Let x* be primal optimal and A* be dual optimal. Then:
*

fo(x*) = g(A")=inf L(x,A\*) (strong duality and definition)
« X
F7 < L )

= flx*)+ ) AFfi(x)
£ ) S

N

fo(x*).
Each term in sum ) ;_; A'fi(x*) must actually be 0. That is
Ai>0 = fi(x*)=0 and fi(x")<0 = A;=0 Vi

This condition is known as complementary slackness.
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The SVM Dual Problem J
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SVM Lagrange Multipliers
A :
mimize  SlwlP+< Y &
minimize 5 n . i

subject to —£, <0 fo:izl,...,n
(1*)0 [WTX;+b])—E;<0 fori=1,...,n

Lagrange Multiplier \ Constraint ‘
Ai &£ <0
o (1—y,- [WTX;+b])—E,i<0

L(w,b,& o, \) = f||w||2+ Za,+Zoc, (1—yi [w'xi+b] - +ZA
&

)y i=1

{°L~
Dual optimum value: d* =supy a=qinfw bel(w,b, & o, A)
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Strong Duality by Slater's Constraint Qualification

The SVM optimization problem:

. 1 c v
minimize Zwl)?+ = E &;

2 n—=

=

subject to —&; <0fori=1,...,n
(1—y; [wTxi+b])—& <O0fori=1,...,n
| — ét <o

Slater’s constraint qualification:

@ Convex problem + affine constraints = strong duality iff problem is feasible

@ Do we have a feasible point? Find ons w/ b f thot m’\‘%\'d& wiarolats .
6 o

@ For SVM, we have strong duality.

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 12 /26



SVM Dual Function: First Order Conditions

Lagrange dual function is the inf over primal variables of L:

glo,A) = WizfgL(w, b, &, o, N\)

n n
= inf linw+;£; (%—oci—7\i> -l—ZOCi (1—y; [wTxi+b])

b,
wib.& i—1

n n
oyl=0 <~— W—ZOC,’}/,‘X,‘:O <~ W:Z(Xi)/ixi
i=1 i=1

n n
pL=0 = —) ay=0 <= | oy =0
i=1 i=1

0g,L=0 <= %—oc,-—)\,-:O = 0(i+7\i=%
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SVM Dual Function

@ Substituting these conditions back into L, the second term disappears.

@ First and third terms become

1 T 1 ¢ -
EW w = 5 Z Xi&jyiyiX; Xj
ij=1
n n n n
ZOL;(l—y,' [WTX,'—i-b]) = ZO(,'— Z oc,-ocjy,-ijij,-—bZ oGy
i=1 i=1 ij=1 i=1
0
o Putting it together, the dual function is
n .15 n VY > i1 xiyi=0
o) = 4 21 % T2 Zaj SOV X o e fall
—00 otherwise.
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SVM Dual Problem

o The dual function is

n
n 1 n T Z,’:1 o;yi=0
L — Y i KiOGYiViX; X )
g(o) = D i1 2ZI,171 iGYIYiX Xi i n=¢, all i
—00 otherwise.

e The dual problem is sup, -og(a,A):

n n
1 T
sup E Xi—3 E XiljyiyjXj Xi
oA .7 2 .

i=1 ij=1

n
s.t. Z oiyi=0
i=1

C .
x+Ai=— o« ,Ai=0,i=1,...,n
n
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Insights from the Dual Problem J
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KKT Conditions

For convex problems, if Slater's condition is satisfied, then KKT conditions provide necessary
and sufficient conditions for the optimal solution.

@ Primal feasibility: f;(x) <0 Vi
@ Dual feasibility: A =0
o Complementary slackness: A;fj(x) =0

o First-order condition: 3
—L(x,A\)=0
0x
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The SVM Dual Solution

@ We found the SVM dual problem can be written as:

n n
1 T
sup ,Z‘X"_i Z oy yix] i
i=1 ij=1
n
s.t. Z(X,'y,' =0
i=1
cl . . C
oc-e[O,—}lzl,...,n. Y+ N> = >
1 n [ ’\ Al /0
. . . . . n st = &-A < C
@ Given solution o* to dual, primal solution is w* =) " . ay;x;. n ==
i=1% A

@ The solution is in the space spanned by the inputs.

e Note o € [0, ¢]. So ¢ controls max weight on each example. (Robustness!)
o What's the relation between ¢ and regularization?
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Complementary Slackness Conditions

@ Recall our primal constraints and Lagrange multipliers:

’ Lagrange Multiplier ‘ Constraint ‘
)\i 'E»i X
Xi (1 Yi ( I)) E»/ X

@ Recall first order condition V¢, L =0 gave us A7 = < — o}

@ By strong duality, we must have complementary slackness:
of (L=yif*(x)— &) =0
NEr=(S-ag) g =0
n
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Consequences of Complementary Slackness

By strong duality, we must have complementary slackness.

o (L—yif*(x;)—&7) =0

c * *
(—o0)& =0
Recall “slack variable” &F = max (0,1 —y;f*(x;)) is the hinge loss on (x;, ;).
(n
o If y;f*(x;) > 1 then the margin loss is £ =0, and we get ocF =0.
e—

o If y;f*(x;) <1 then the margin loss is £ >0, so of = +.
o If af =0, then &F =0, which implies no loss, so y;f*(x) > 1.

o If af € (0,€), then £F =0, which implies 1—y;f*(x;) =0.
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Complementary Slackness Results: Summary

If o* is a solution to the dual problem, then primal solution is

n
c
w = 'Zloc}ky,-x; wherea? € [0, ;]
=

Relation between margin and example weights («;'s):

o =0 = yf'(x)>1
o € (O, %) = yiff(x) =1

o :% = yif"(x) <1
yif*(x) <1l = oc?‘:%
yif'(x)=1 = o € [0, %]
yif*(xj)>1 = «of =0
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Support Vectors

o If o* is a solution to the dual problem, then primal solution is

n

* *

wh = E o YiX; >
i=1

with o € [0, £].

@ The x;'s corresponding to « > 0 are called support vectors.

@ Few margin errors or “on the margin” examples = sparsity in input examples.
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The Bias Term: b

@ For our SVM primal, the complementary slackness conditions are:

o (1—y,~ [X,-TW*—i-b]—ET) =0 (1)
M= (S—ap)Er =0 (2)

@ Suppose there’s an i such that &} € (O C).

@ (2) implies &7 =0.
o (1) implies

yi T w* bt =1
— X’.TW* +b* =y; (use y; € {—1,1})

-
— |b'=yi—x

W*
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The Bias Term: b

o We get the same b* for any choice of i with o} € (0, <)

"n
* T, *
b*=yi—x/'w
@ With numerical error, more robust to average over all eligible i's:

c
b* = mean {y,-—x,-Tw* | € (O;)}

o If there are no of € (0, %)7
o Then we have a degenerate SVM training problem! (w* =0).

1See Rifkin et al.'s “A Note on Support Vector Machine Degeneracy”, an MIT Al Lab Technical Report.
DS-GA 1003 e e T



Teaser for Kernelization J
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Dual Problem: Dependence on x through inner products
n 1 n

sp > et > ol )
i=1 ij=1

n
s.t. Z ojyi =0
i=1

X € [0,£:| i=1,...,n.
n

@ SVM Dual Problem:

o Note that all dependence on inputs x; and x; is through their inner product: (x;, x;) :ijx,-.

@ We can replace ijx,- by other products...

@ This is a "kernelized" objective function.
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