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SVM as a Quadratic Program

The SVM optimization problem is equivalent to

minimize
1

2
||w ||2+

c

n

nX

i=1

⇠i

subject to -⇠i 6 0 for i = 1, . . . ,n
�
1- yi

⇥
wT xi +b

⇤�
-⇠i 6 0 for i = 1, . . . ,n

Differentiable objective function

n+d +1 unknowns and 2n affine constraints.

A quadratic program that can be solved by any off-the-shelf QP solver.

Let’s learn more by examining the dual.
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Why Do We Care About the Dual?
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The Lagrangian

The general [inequality-constrained] optimization problem is:

minimize f0(x)

subject to fi (x)6 0, i = 1, . . . ,m

Definition

The Lagrangian for this optimization problem is

L(x ,�) = f0(x)+
mX

i=1

�i fi (x).

�i ’s are called Lagrange multipliers (also called the dual variables).

Weighted sum of the objective and constraint functions

Hard constraints ! soft constraints

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 4 / 26



Lagrange Dual Function

Definition

The Lagrange dual function is

g(�) = inf
x
L(x ,�) = inf

x

 

f0(x)+
mX

i=1

�i fi (x)

!

g(�) is concave (why?)

Lower bound property: if �⌫ 0, g(�)6 p⇤ where p⇤ is the optimal value of the

optimization problem.

g(�) can be -1 (uninformative lower bound)

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 5 / 26

-

TO FEO

÷



The Primal and the Dual

For any primal form optimization problem,

minimize f0(x)

subject to fi (x)6 0, i = 1, . . . ,m,

there is a recipe for constructing a corresponding Lagrangian dual problem:

maximize g(�)

subject to �i > 0, i = 1, . . . ,m,

The dual problem is always a convex optimization problem.

The dual variables often have interesting and relevant interpretations.

The dual variables provide certificate for optimality.
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Weak Duality

We always have weak duality: p⇤ > d⇤
.

Plot courtesy of Brett Bernstein.
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Strong Duality

For some problems, we have strong duality: p⇤ = d⇤
.

For convex problems, strong duality is fairly typical.

Plot courtesy of Brett Bernstein.
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Complementary Slackness

Assume strong duality. Let x⇤ be primal optimal and �⇤ be dual optimal. Then:

f0(x
⇤) = g(�⇤) = inf

x
L(x ,�⇤) (strong duality and definition)

6 L(x⇤,�⇤)

= f0(x
⇤)+

mX

i=1

�⇤i fi (x
⇤)

6 f0(x
⇤).

Each term in sum
P

i=1�
⇤
i fi (x

⇤) must actually be 0. That is

�i > 0 =) fi (x
⇤) = 0 and fi (x

⇤)< 0 =) �i = 0 8i

This condition is known as complementary slackness.

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 9 / 26

d *

P
"

Ifo



The SVM Dual Problem
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SVM Lagrange Multipliers

minimize
1

2
||w ||2+

c

n

nX

i=1

⇠i

subject to -⇠i 6 0 for i = 1, . . . ,n
�
1- yi

⇥
wT xi +b

⇤�
-⇠i 6 0 for i = 1, . . . ,n

Lagrange Multiplier Constraint

�i -⇠i 6 0

↵i
�
1- yi

⇥
wT xi +b

⇤�
-⇠i 6 0

L(w ,b,⇠,↵,�) =
1

2
||w ||2+

c

n

nX

i=1

⇠i +
nX

i=1

↵i
�
1- yi

⇥
wT xi +b

⇤
-⇠i

�
+

nX

i=1

�i (-⇠i )

Dual optimum value: d⇤ = sup↵,�⌫0 infw ,b,⇠L(w ,b,⇠,↵,�)
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Strong Duality by Slater’s Constraint Qualification

The SVM optimization problem:

minimize
1

2
||w ||2+

c

n

nX

i=1

⇠i

subject to -⇠i 6 0 for i = 1, . . . ,n
�
1- yi

⇥
wT xi +b

⇤�
-⇠i 6 0 for i = 1, . . . ,n

Slater’s constraint qualification:

Convex problem + affine constraints =) strong duality iff problem is feasible

Do we have a feasible point?

For SVM, we have strong duality.
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SVM Dual Function: First Order Conditions

Lagrange dual function is the inf over primal variables of L:

g(↵,�) = inf
w ,b,⇠

L(w ,b,⇠,↵,�)

= inf
w ,b,⇠

"
1

2
wTw +

nX

i=1

⇠i
⇣c
n
-↵i -�i

⌘
+

nX

i=1

↵i
�
1- yi

⇥
wT xi +b

⇤�
#

@wL= 0 () w -
nX

i=1

↵iyixi = 0 () w =
nX

i=1

↵iyixi

@bL= 0 () -
nX

i=1

↵iyi = 0 ()
nX

i=1

↵iyi = 0

@⇠iL= 0 () c

n
-↵i -�i = 0 () ↵i +�i =

c

n
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SVM Dual Function

Substituting these conditions back into L, the second term disappears.

First and third terms become

1

2
wTw =

1

2

nX

i ,j=1

↵i↵jyiyjx
T
i xj

nX

i=1

↵i (1- yi
⇥
wT xi +b

⇤
) =

nX

i=1

↵i -
nX

i ,j=1

↵i↵jyiyjx
T
j xi -b

nX

i=1

↵iyi

| {z }
=0

.

Putting it together, the dual function is

g(↵,�) =

8
<

:

Pn
i=1↵i -

1
2
Pn

i ,j=1↵i↵jyiyjxTj xi
Pn

i=1
↵i yi=0

↵i+�i=
c
n , all i

-1 otherwise.
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SVM Dual Problem

The dual function is

g(↵,�) =

8
<

:

Pn
i=1↵i -

1
2
Pn

i ,j=1↵i↵jyiyjxTj xi
Pn

i=1
↵i yi=0

↵i+�i=
c
n , all i

-1 otherwise.

The dual problem is sup↵,�⌫0 g(↵,�):

sup
↵,�

nX

i=1

↵i -
1

2

nX

i ,j=1

↵i↵jyiyjx
T
j xi

s.t.

nX

i=1

↵iyi = 0

↵i +�i =
c

n
↵i ,�i > 0, i = 1, . . . ,n
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Insights from the Dual Problem
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KKT Conditions

For convex problems, if Slater’s condition is satisfied, then KKT conditions provide necessary

and sufficient conditions for the optimal solution.

Primal feasibility: fi (x)6 0 8i

Dual feasibility: �⌫ 0

Complementary slackness: �i fi (x) = 0

First-order condition:
@

@x
L(x ,�) = 0
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The SVM Dual Solution

We found the SVM dual problem can be written as:

sup
↵

nX

i=1

↵i -
1

2

nX

i ,j=1

↵i↵jyiyjx
T
j xi

s.t.

nX

i=1

↵iyi = 0

↵i 2
h
0,
c

n

i
i = 1, . . . ,n.

Given solution ↵⇤
to dual, primal solution is w⇤ =

Pn
i=1↵

⇤
i yixi .

The solution is in the space spanned by the inputs.

Note ↵⇤
i 2 [0, cn ]. So c controls max weight on each example. (Robustness!)

What’s the relation between c and regularization?

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 18 / 26

dit di -- nd Rizo
di -- I - xi e- I



Complementary Slackness Conditions

Recall our primal constraints and Lagrange multipliers:

Lagrange Multiplier Constraint

�i -⇠i 6 0

↵i (1- yi f (xi ))-⇠i 6 0

Recall first order condition r⇠iL= 0 gave us �⇤i =
c
n -↵⇤

i .

By strong duality, we must have complementary slackness:

↵⇤
i (1- yi f

⇤(xi )-⇠⇤i ) = 0

�⇤i ⇠
⇤
i =

⇣c
n
-↵⇤

i

⌘
⇠⇤i = 0
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Consequences of Complementary Slackness

By strong duality, we must have complementary slackness.

↵⇤
i (1- yi f

⇤(xi )-⇠⇤i ) = 0
⇣c
n
-↵⇤

i

⌘
⇠⇤i = 0

Recall “slack variable” ⇠⇤i =max(0,1- yi f ⇤(xi )) is the hinge loss on (xi ,yi ).

If yi f ⇤(xi )> 1 then the margin loss is ⇠⇤i = 0, and we get ↵⇤
i = 0.

If yi f ⇤(xi )< 1 then the margin loss is ⇠⇤i > 0, so ↵⇤
i =

c
n .

If ↵⇤
i = 0, then ⇠⇤i = 0, which implies no loss, so yi f ⇤(x)> 1.

If ↵⇤
i 2

�
0, cn
�
, then ⇠⇤i = 0, which implies 1- yi f ⇤(xi ) = 0.
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Complementary Slackness Results: Summary

If ↵⇤
is a solution to the dual problem, then primal solution is

w⇤ =
nX

i=1

↵⇤
i yixi where↵⇤

i 2 [0,
c

n
].

Relation between margin and example weights (↵i ’s):

↵⇤
i = 0 =) yi f

⇤(xi )> 1

↵⇤
i 2

⇣
0,
c

n

⌘
=) yi f

⇤(xi ) = 1

↵⇤
i =

c

n
=) yi f

⇤(xi )6 1

yi f
⇤(xi )< 1 =) ↵⇤

i =
c

n

yi f
⇤(xi ) = 1 =) ↵⇤

i 2
h
0,
c

n

i

yi f
⇤(xi )> 1 =) ↵⇤

i = 0
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Support Vectors

If ↵⇤
is a solution to the dual problem, then primal solution is

w⇤ =
nX

i=1

↵⇤
i yixi

with ↵⇤
i 2 [0, cn ].

The xi ’s corresponding to ↵⇤
i > 0 are called support vectors.

Few margin errors or “on the margin” examples =) sparsity in input examples.
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The Bias Term: b

For our SVM primal, the complementary slackness conditions are:

↵⇤
i

�
1- yi

⇥
xTi w⇤+b

⇤
-⇠⇤i

�
= 0 (1)

�⇤i ⇠
⇤
i =

⇣c
n
-↵⇤

i

⌘
⇠⇤i = 0 (2)

Suppose there’s an i such that ↵⇤
i 2

�
0, cn
�
.

(2) implies ⇠⇤i = 0.

(1) implies

yi
⇥
xTi w⇤+b⇤

⇤
= 1

() xTi w⇤+b⇤ = yi (use yi 2 {-1,1})

() b⇤ = yi - xTi w⇤
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The Bias Term: b

We get the same b⇤ for any choice of i with ↵⇤
i 2

�
0, cn
�

b⇤ = yi - xTi w⇤

With numerical error, more robust to average over all eligible i ’s:

b⇤ = mean

⌦
yi - xTi w⇤ | ↵⇤

i 2
⇣
0,
c

n

⌘↵
.

If there are no ↵⇤
i 2

�
0, cn
�
?

Then we have a degenerate SVM training problem1
(w⇤ = 0).

1See Rifkin et al.’s “A Note on Support Vector Machine Degeneracy”, an MIT AI Lab Technical Report.
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Teaser for Kernelization
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Dual Problem: Dependence on x through inner products

SVM Dual Problem:

sup
↵

nX

i=1

↵i -
1

2

nX

i ,j=1

↵i↵jyiyjx
T
j xi

s.t.

nX

i=1

↵iyi = 0

↵i 2
h
0,
c

n

i
i = 1, . . . ,n.

Note that all dependence on inputs xi and xj is through their inner product: hxj ,xi i= xTj xi .

We can replace xTj xi by other products...

This is a “kernelized” objective function.
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