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SVM Optimization Problem (no intercept)

SVM objective function:

J(w) =
1

n

nX

i=1

max
�
0,1- yiw

T xi
�
+�||w ||2.

Not differentiable... but let’s think about gradient descent anyway.

Hinge loss: `(m) =max(0,1-m)
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“Gradient” of SVM Objective

Derivative of hinge loss `(m) =max(0,1-m):

` 0(m) =

8
><

>:

0 m > 1

-1 m < 1

undefined m = 1

By chain rule, we have

rw `
�
yiw

T xi
�

= ` 0
�
yiw

T xi
�
yixi

=

8
><

>:

0 yiwT xi > 1

-yixi yiwT xi < 1

undefined yiwT xi = 1
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“Gradient” of SVM Objective

rw `
�
yiw

T xi
�

=

8
><

>:

0 yiwT xi > 1

-yixi yiwT xi < 1

undefined yiwT xi = 1

So

rwJ(w) = rw
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undefined otherwise
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Gradient Descent on SVM Objective?

The gradient of the SVM objective is

rwJ(w) =
1

n

X

i :yiwT xi<1

(-yixi )+2�w

when yiwT xi 6= 1 for all i , and otherwise is undefined.

Potential arguments for why we shouldn’t care about the points of nondifferentiability:

If we start with a random w , will we ever hit exactly yiwT xi = 1?

If we did, could we perturb the step size by " to miss such a point?

Does it even make sense to check yiwT xi = 1 with floating point numbers?

However, would gradient descent work if the objective is not differentiable?
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Subgradient
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First-Order Condition for Convex, Differentiable Function

Suppose f : Rd ! R is convex and differentiable Then for any x ,y 2 R
d

f (y)> f (x)+rf (x)T (y - x)

The linear approximation to f at x is a global underestimator of f :

This implies that if rf (x) = 0 then x is a global minimizer of f .

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3
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Subgradients

Definition

A vector g 2 R
d

is a subgradient of a convex function f : Rd ! R at x if for all z ,

f (z)> f (x)+gT (z - x).

Blue is a graph of f (x).
Each red line x 7! f (x0)+gT (x - x0) is a global lower bound on f (x).
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Properties

Definitions

The set of all subgradients at x is called the subdifferential: @f (x)

f is subdifferentiable at x if 9 at least one subgradient at x .

For convex functions:

f is differentiable at x iff @f (x) = {rf (x)}.

Subdifferential is always non-empty (@f (x) = ; =) f is not convex)

x is the global optimum iff 0 2 @f (x).

For non-convex functions:

The subdifferential may be an empty set (no global underestimator).
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Subdifferential of Absolute Value

Consider f (x) = |x |

Plot on right shows {(x ,g) | x 2 R, g 2 @f (x)}

Boyd EE364b: Subgradients Slides
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Subgradients of f (x1,x2) = |x1|+2 |x2|

Let’s find the subdifferential of

f (x1,x2) = |x1|+2 |x2| at (3,0).

First coordinate of subgradient must be 1, from |x1|

part (at x1 = 3).

Second coordinate of subgradient can be anything in

[-2,2].

So graph of h(x1,x2) = f (3,0)+gT (x1-3,x2-0)
is a global underestimate of f (x1,x2), for any

g = (g1,g2) , where g1 = 1 and g2 2 [-2,2].

Plot courtesy of Brett Bernstein.He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 11 / 20
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Subdifferential on Contour Plot

Contour plot of f (x1,x2) = |x1|+2 |x2|, with set of subgradients at (3,0). .

Plot courtesy of Brett Bernstein.
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Basic Rules for Calculating Subdifferential

Non-negative scaling: @↵f (x) = ↵@f (x) for (↵> 0)

Summation: @(f1(x)+ f2(x)) = d1+d2 for any d1 2 @f1 and d2 2 @f2

Composing with affine functions: @f (Ax +b) = AT@f (z) where z = Ax +b

max: convex combinations of argmax gradients

@max(f1(x), f2(x)) =

8
><

>:

rf1(x) if f1(x)> f2(x),

rf2(x) if f1(x)< f2(x),

r✓f1(x)+(1-✓)f2(x) if f1(x) = f2(x),

where ✓ 2 [0,1].
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Subgradient Descent

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 14 / 20



Gradient orthogonal to level sets

We know that gradient points to the fastest ascent direction. What about subgradients?

Plot courtesy of Brett Bernstein.
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Contour Lines and Subgradients

A hyperplane H supports a set S if H intersects S and all of S lies one one side of H.

Claim: If f : Rd ! R has subgradient g at x0, then the hyperplane H orthogonal to g at x0
must support the level set S =

�
x 2 R

d | f (x) = f (x0)
 
.

Proof:

For any y , we have f (y)> f (x0)+gT (y - x0). (def of subgradient)

If y is strictly on side of H that g points in,

then gT (y - x0)> 0.

So f (y)> f (x0).

So y is not in the level set S .

) All elements of S must be on H or on the -g side of H.
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Subgradient of f (x1,x2) = |x1|+2 |x2|

Points on g side of H have larger f -values than f (x0). (from proof)

But points on -g side may not have smaller f -values.

So -g may not be a descent direction. (shown in figure)

Plot courtesy of Brett Bernstein.
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Subgradient Descent

Move along the negative subgradient:

x t+1 = x t -⌘g where g 2 @f (x t) and ⌘> 0

This can increase the objective but gets us closer to the minimizer if f is convex and ⌘ is

small enough:

kx t+1- x⇤k< kx t - x⇤k

Subgradients don’t necessarily converge to zero as we get closer to x⇤, so we need

decreasing step sizes, e.g. O(1/t) or O(1/
p
t).

Subgradient methods are slower than gradient descent, e.g. O(1/✏2) vs O(1/✏) for

convex functions.

Based on https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S20/S4.pdf
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Subgradient descent for SVM (HW3)

SVM objective function:

J(w) =
1

n

nX

i=1

max
�
0,1- yiw

T xi
�
+�||w ||2.

Pegasos: stochastic subgradient descent with step size ⌘t = 1/(t�)
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Summary

Subgradient: generalize gradient for non-differentiable convex functions

Subgradient “descent”:

General method for non-smooth functions

Simple to implement

Slow to converge
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