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SVM Optimization Problem (no intercept)

@ SVM objective function:
J(w) = 1 i max (0 1 —y'WTX') + Allwl?
n — 1 1 1 -
=
o Not differentiable... but let's think about gradient descent anyway.

@ Hinge loss: £(m) =max(0,1—m)

Vwllw) = V, (iZf(y,-WTx,')—i-?\HWw)

i=1

= EZVWB (y,-WTX,') +2Aw
n i=1
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“Gradient” of SVM Objective

@ Derivative of hinge loss {(m) = max(0,1—m):

Lm)
0 m>1

U(m=<-1 m<1

undefined m=1

]
@ By chain rule, we have

Vil (y,‘WTX,') = € ,W Txi) yixi
y,'WTX,' >1
= —YiXi }/iWTXi <1

undefined yjw'x =1
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“Gradient” of SVM Objective

0 y,-WTx,- >1
Vil (y,-WTx,-) = —YiX; yiwTx; <1
undefined yiw'x; =1

So
_ EZH wTx 2
Vuwdlw) = V, (ni-lﬂ(y,w x,)+7\||w|| )

= %ZVW(’, (y,-WTxi) +2Aw

i=1
_ %Z,-:yiwerl(—y;X,-)—i-Z?\W all yywTx; #1
undefined otherwise
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Gradient Descent on SVM Objective?

@ The gradient of the SVM objective is

Vadw)== 3 (—y) +2Aw

ityiwTx; <1

S

when y;w T x; # 1 for all i, and otherwise is undefined.

Potential arguments for why we shouldn’t care about the points of nondifferentiability:

o If we start with a random w, will we ever hit exactly y;w’x; =17
o If we did, could we perturb the step size by € to miss such a point?
o Does it even make sense to check y;w ' x; = 1 with floating point numbers?

However, would gradient descent work if the objective is not differentiable?

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 5/20



Subgradient J
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First-Order Condition for Convex, Differentiable Function

@ Suppose f:R? — R is convex and differentiable Then for any x,y € RY
fly) = f(x)+VF(x) T (y—x)

@ The linear approximation to f at x is a global underestimator of f:
)
f(@) + V()" (y —2)

(z, f(=))

@ This implies that if Vf(x) =0 then x is a global minimizer of f.

Figure from Boyd & Vandenberghe Fig. 3.2; Proof in Section 3.1.3
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Subgradients

Definition

A vector g € RY is a subgradient of a convex function f : R? — R at x if for all z,

f(z) > f(x)+g" (z—x).

\/

Blue is a graph of f(x).
Each red line x — f(xg) +g " (x—xp) is a global lower bound on f(x).
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Properties

Definitions

@ The set of all subgradients at x is called the subdifferential: 9f(x)

o f is subdifferentiable at x if 3 at least one subgradient at x.

For convex functions:

o f is differentiable at x iff 0f (x) ={Vf(x)}.

e Subdifferential is always non-empty (3f(x) =0 = f is not convex)

@ x is the global optimum iff 0 € 9f(x).

For non-convex functions:
@ The subdifferential may be an empty set (no global underestimator).
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Subdifferential of Absolute Value

o Consider f(x) = |x]|

f(@) = |=| 0f(z)

@ Plot on right shows {(x,g) | x € R, g € 0f(x)}

Boyd EE364b: Subgradients Slides
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Subgradients of f(x1,x2) = |x1| + 2|xo]

o Let's find the subdifferential of
f(x1,x2) = |x1]+2|x| at (3,0).

o First coordinate of subgradient must be 1, from |xy]
part (at x; = 3).

@ Second coordinate of subgradient can be anything in
[—2,2].

@ So graph of h(xy,x0) =f(3,0)+g" (x1 —3,x —0)
is a global underestimate of f(x,x2), for any
g = (g1,82), where gy =1 and g € [-2,2].
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Subdifferential on Contour Plot

0f(3,0) = {(1,0)" |be [-2,2]}

2

W

<

Contour plot of f(x1,x2) = |x1|+2|xo|, with set of subgradients at (3,0). .

Plot courtesy of Brett Bernstein.
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Basic Rules for Calculating Subdifferential

@ Non-negative scaling: dof (x) = x0f(x) for (¢ > 0)

Summation: 9(f(x)+ h(x)) =dy +d> for any dy € 0f; and d» € 0f,
e Composing with affine functions: 0f (Ax+b) = AT0f(z) where z=Ax+b

@ max: convex combinations of argmax gradients

Vf(x) if fi(x) > fH(x)
omax(fi(x), 2(x)) = Vh(x) if A1(x) < fH(x),
1] = () =) ggfél(foz;(l—e)@(x) it fix) = H(x),

where 0 € [0, 1].
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Gradient orthogonal to level sets

We know that gradient points to the fastest ascent direction. What about subgradients?

Plot courtesy of Brett Bernstein.
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Contour Lines and Subgradients

A hyperplane H supports a set S if H intersects S and all of S lies one one side of H.

Claim: If f:R? — R has subgradient g at xo, then the hyperplane H orthogonal to g at xg
must support the level set S = {X eRY|f(x) = f(xo)}.

Proof:
o For any y, we have f(y) > f(x0) +g ' (y—xo). (def of subgradient)

@ If y is strictly on side of H that g points in,
o then g™ (y—xp) > 0.

o So f(y) > f(xo).
e So y is not in the level set S.

o .. All elements of S must be on H or on the —g side of H.
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Subgradient of f(x1,x2) = |x1| 4+ 2|xo|

g (y-v) <0

$x) >fv)

21

fw)

®&-V)» ¥ >o
T (~o- V
@2 10) + 7 ) > S0) Fon.) >/-§LV)+|% (% ))
e Points on g side of H have larger f-values than f(xp). (from proof) >

@ But points on —g side may not have smaller f-values.

@ So —g may not be a descent direction. (shown in figure)

Plot courtesy of Brett Bernstein.
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Subgradient Descent

@ Move along the negative subgradient:

xtT =xt—ng where g € f(x!) and >0
@ This can increase the objective but gets us closer to the minimizer if f is convex and 7 is
small enough:

t+1

I = x| < flx" =]

@ Subgradients don't necessarily converge to zero as we get closer to x*, so we need
decreasing step sizes, e.g. O(1/t) or O(1//1).

e Subgradient methods are slower than gradient descent, e.g. O(1/€?) vs O(1/€) for
convex functions.

Based on https://www.cs.ubc.ca/"schmidtm/Courses/5XX-520/S4.pdf
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Subgradient descent for SVM (HW3)

SVM objective function:

J(w) = %Z max (0,1—y;w " x;) +Allw|?.
i—1

Pegasos: stochastic subgradient descent with step size n; = 1/(tA)

Input: A > 0. Choose w; =0,t =0
‘While termination condition not met

For j =1,...,n (assumes data is randomly permuted)
t=t+1
ne =1/ (tA);

If yj’thCL‘j <1

W1 = (L= mA)we + my; T W = Wi+ Y %
Else

’LUt+1 = (1 — nt)\)wt
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Summary

@ Subgradient: generalize gradient for non-differentiable convex functions

@ Subgradient “descent’:
o General method for non-smooth functions
o Simple to implement

o Slow to converge
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