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Linearly Separable Data

Consider a linearly separable dataset D:

Find a separating hyperplane such that

o w'x; >0 for all x; where y; =+1

o w'x; <0 for all x; where y; =—1
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The Perceptron Algorithm

@(/ f) w
@ Initialize w < 0
@ While not converged (exists misclassified examples) & 4
o
o For (x;,y;) €D 6 ©

o If y;wTx; < 0 (wrong prediction)
o Update w < w+y;x;

Intuition: move towards misclassified positive examples and away from negative examples

e Guarantees to find a zero-error classifier (if one exists) in finite steps

What is the loss function if we consider this as a SGD algorithm?
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Maximum-Margin Separating Hyperplane

For separable data, there are infinitely many zero-error classifiers.

Which one do we pick?

(Perceptron does not return a unique solution.)

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 5/18



Maximum-Margin Separating Hyperplane

We prefer the classifier that is farthest from both classes of points

e Geometric margin: smallest distance between the hyperplane and the points

@ Maximum margin: /argest distance to the closest points
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Geometric Margin

We want to maximize the distance between the separating hyperplane and the cloest points.
Let's formalize the problem.

Definition (separating hyperplane)

We say (x;,y;) for i=1,...,n are linearly separable if there is a w € RY and b € R such that
yi(wTxj+b) >0 for all i. The set {v € R?|w'v+b=0}is called a separating hyperplane.

Definition (geometric margin)

Let H be a hyperplane that separates the data (x;,y;) for i=1,...,n. The geometric margin
of this hyperplane is
mind(x;, H),
1

the distance from the hyperplane to the closest data point.

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 7/18



Distance between a Point and a Hyperplane
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A (X, H)
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@ Projection of v € R? onto w € R¢: Twiz =% w iy

o Distance between x; and H:

d(xi, H) = ) WTXi‘{‘b‘ _ yi(w' x;+ b)
; [wll2 [wll2
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Maximize the Margin

We want to maximize the geometric margin:

maximize mind(x;, H).

Given separating hyperplane H = {v| wlv+b= O}, we have

. _ YilwTx +b)
maximize min W
L 2 )
Let's remove the inner minimization problem by M

maximize M

subject to M >M foralli

Note that the solution is not unique (why?). W& sow b & «b
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Maximize the Margin
Let's fix the norm ||w/||2 to 1/M to obtain: ([WIl; = ‘Sq

maximize m

subject to  yj(w'x;4+b)>1 forall i
It's equivalent to solving the minimization problem

minimize 3| w|]3
subject to yj(w'xj+b) =1 forall i

Note that y;(wx; + b) is the (functional) margin.

In words, it finds the minimum norm solution which has a margin of at least 1 on all examples.
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Soft Margin SVM

What if the data is not linearly separable?

For any w, there will be points with a negative margin.

Introduce slack variables to penalize small margin:

minimize %HWH%+%ZLl &
subject to  yj(w'xj+b) >1—&; forall i
£, >0 foralli

o If £ =0Vi, it's reduced to hard SVM.
@ What does &; > 0 mean?

@ What does C control?
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Slack Variables

d(x;,H) = yilw xi+b) - 1=& thus &; measures the violation by multiples of the geometric
wl2

flwli ol
margin: L——&J

@ &; =1: x; lies on the hyperplane

e &; =3: x; is past 2 margin width beyond the decision hyperplane

S 'n .mol/rk
St
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Minimize the Hinge Loss J
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Perceptron Loss

U(x,y, w) =max(0,—yw " x)

we W-nvfw)

If we do ERM with this loss function, what happens?
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Hinge Loss

e SVM/Hinge loss: LHinge = max{l1—m,0} = (1—m)_

o Margin m = yf(x); “Positive part” (x), =x1(x > 0).

Loss

== Zero_One
== Hinge

Loss(m)

0
Margin m=yf(x)

Hinge is a convex, upper bound on 0—1 loss. Not differentiable at m = 1.
We have a “margin error” when m < 1.
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Support Vector Machine

Using ERM:

o Hypothesis space = {f(x) =w'x+b|weR? beR}.

€ regularization (Tikhonov style)

.
Hinge loss ¢(m) = max{1—m,0} = (1—m)/+-\d Y

The SVM prediction function is the solution to
N .,
: 5 C T
5 = E 1—yi i :
mlvn Iwl| +”,-:1 max (0,1—y; [w'x +b}\)
r hawizer ER
Not differentiable because of the max
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SVM as a Constrained Optimization Problem

@ The SVM optimization problem is equivalent to
minimize 1|| ||2+Ci6
zZ ~llw — ;
2 i3 I
subjectto & >max(0,1—y; [WTX,' +b]).
@ Which is equivalent to
minimize 1H ||2—|-Ci£
imiz —llw — ;
2 i3

subject to &
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Summary

Two ways to derive the SVM optimization problem:
e Maximize the (geometric) margin
@ Minimize the hinge loss with £, regularization
Both leads to the minimum norm solution satisfying certain margin constraints.
e Hard-margin SVM: all points must be correctly classified with the margin constraints

e Soft-margin SVM: allow for margin constraint violation with some penalty
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