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Maximum Margin Classifier
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Linearly Separable Data

Consider a linearly separable dataset D:
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Find a separating hyperplane such that

w
T
xi > 0 for all xi where yi =+1

w
T
xi < 0 for all xi where yi =-1
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The Perceptron Algorithm

Initialize w  0

While not converged (exists misclassified examples)

For (xi ,yi ) 2D

If yiw
T
xi < 0 (wrong prediction)

Update w  w + yixi

Intuition: move towards misclassified positive examples and away from negative examples

Guarantees to find a zero-error classifier (if one exists) in finite steps

What is the loss function if we consider this as a SGD algorithm?
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Maximum-Margin Separating Hyperplane

For separable data, there are infinitely many zero-error classifiers.

Which one do we pick?
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(Perceptron does not return a unique solution.)
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Maximum-Margin Separating Hyperplane

We prefer the classifier that is farthest from both classes of points
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Geometric margin: smallest distance between the hyperplane and the points

Maximum margin: largest distance to the closest points
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Geometric Margin

We want to maximize the distance between the separating hyperplane and the cloest points.

Let’s formalize the problem.

Definition (separating hyperplane)

We say (xi ,yi ) for i = 1, . . . ,n are linearly separable if there is a w 2 Rd
and b 2 R such that

yi (wT
xi +b)> 0 for all i . The set {v 2 Rd | wT

v +b = 0} is called a separating hyperplane.

Definition (geometric margin)

Let H be a hyperplane that separates the data (xi ,yi ) for i = 1, . . . ,n. The geometric margin

of this hyperplane is

min
i

d(xi ,H),

the distance from the hyperplane to the closest data point.
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Distance between a Point and a Hyperplane

Projection of v 2 Rd
onto w 2 Rd

:
v ·w
kwk2

Distance between xi and H:

d(xi ,H) =

����
w

T
xi +b

kwk2

����=
yi (wT

xi +b)

kwk2
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Maximize the Margin

We want to maximize the geometric margin:

maximize min
i

d(xi ,H).

Given separating hyperplane H =
�
v | wT

v +b = 0
 
, we have

maximize min
i

yi (wT
xi +b)

kwk2
.

Let’s remove the inner minimization problem by

maximize M

subject to
yi(wTxi+b)

kwk2
>M for all i

Note that the solution is not unique (why?).
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Maximize the Margin

Let’s fix the norm kwk2 to 1/M to obtain:

maximize
1

kwk2

subject to yi (wT
xi +b)> 1 for all i

It’s equivalent to solving the minimization problem

minimize
1

2
kwk2

2

subject to yi (wT
xi +b)> 1 for all i

Note that yi (wT
xi +b) is the (functional) margin.

In words, it finds the minimum norm solution which has a margin of at least 1 on all examples.
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Soft Margin SVM

What if the data is not linearly separable?

For any w , there will be points with a negative margin.

Introduce slack variables to penalize small margin:

minimize
1

2
kwk2

2
+ C

n

Pn
i=1

⇠i
subject to yi (wT

xi +b)> 1-⇠i for all i

⇠i > 0 for all i

If ⇠i = 0 8i , it’s reduced to hard SVM.

What does ⇠i > 0 mean?

What does C control?
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Slack Variables

d(xi ,H) = yi(wTxi+b)
kwk2

> 1-⇠i
kwk2

, thus ⇠i measures the violation by multiples of the geometric

margin:

⇠i = 1: xi lies on the hyperplane

⇠i = 3: xi is past 2 margin width beyond the decision hyperplane

⇠i = 1.5

⇠i = 3

⇠i = 1.5
⇠i = 2

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 12 / 18

-
M

yea--u

g.
Bi -- I

{ =3
IT

' margin width

wTxtb=0



Minimize the Hinge Loss
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Perceptron Loss

`(x ,y ,w) =max(0,-yw
T
x)

q loss

§qy
,,

If we do ERM with this loss function, what happens?
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Hinge Loss

SVM/Hinge loss: `Hinge =max {1-m,0}= (1-m)+

Margin m = yf (x); “Positive part” (x)+ = x1(x > 0).

Hinge is a convex, upper bound on 0-1 loss. Not differentiable at m = 1.

We have a “margin error” when m < 1.
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Support Vector Machine

Using ERM:

Hypothesis space F =
�
f (x) = w

T
x +b | w 2 R

d ,b 2 R
 
.

`2 regularization (Tikhonov style)

Hinge loss `(m) =max {1-m,0}= (1-m)+

The SVM prediction function is the solution to

min
w2Rd ,b2R

1

2
||w ||2+

c

n

nX

i=1

max
�
0,1- yi

⇥
w

T
xi +b

⇤�
.

Not differentiable because of the max

He He (CDS, NYU) DS-GA 1003 Feb 23, 2021 16 / 18

~ ywtx

x t

--
regularize ER



SVM as a Constrained Optimization Problem

The SVM optimization problem is equivalent to

minimize
1

2
||w ||2+

c

n

nX

i=1

⇠i

subject to ⇠i >max
�
0,1- yi

⇥
w

T
xi +b

⇤�
.

Which is equivalent to

minimize
1

2
||w ||2+

c

n

nX

i=1

⇠i

subject to ⇠i >
�
1- yi

⇥
w

T
xi +b

⇤�
for i = 1, . . . ,n

⇠i > 0 for i = 1, . . . ,n
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Summary

Two ways to derive the SVM optimization problem:

Maximize the (geometric) margin

Minimize the hinge loss with `2 regularization

Both leads to the minimum norm solution satisfying certain margin constraints.

Hard-margin SVM: all points must be correctly classified with the margin constraints

Soft-margin SVM: allow for margin constraint violation with some penalty
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