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Logistics

@ Thanks for the course feedback!
@ Piazza posting instructions
o Search for similar questions

o Describe your progress and clarify confusion points
o Feel free to turn on video (when talking)

@ Tutorial for convex optimization (preparation for SVM) on Thursday 9:30am-10:30am
during Marylou's OH

o Convex functions
o Primal/Dual problem, strong/weak duality

o Complementary slackness, KKT conditions
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Model Selection J
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Feature Selection

@ Goal: Select the “best” subset of features according to some score

valid (oss
{ valid (o3c + NS\

o Can also be formulated as £y regularization
o Lo "norm’: number of non-zero elements

o Forward/Backward selection is a greedy method often used in practice

o Pitfalls in feature selection

o Is it possible to include irrelevant features (false positives)?

o What happens when we have dependence among features (e.g. colinearity)?
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Model Selection

o Feature selection is a special case of model selection:
o Degree of the polynomial function

o Decision tree vs kNN

o More broadly, hyperparameters of learning algorithms

@ We need to assess the performance of the model in order to select the “best” one

o Can we use the training error?

o What is the ideal performance measure?

He He (CDS, NYU) DS-GA 1003 Feb 16, 2021 5/28



Test error

e Test error (or generalization error) of a predictor fi
N A
Epey [0F)0)]. R

o Note that this is just the risk of £.
@ What we really care about is the test error, not the error on the test set!
@ But we can use the test set error to estimate the test error.

@ Important: the test set cannot influence training in any way.
o Is it okay to look at the test set as long as the label is hidden?

@ For model selection, our goal is to estimate the test error of each model
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Estimate Test Error for Model Selection

In order to do model selection,

@ We need to estimate test error, but we cannot use the true test set.

@ Best approach is to use a validation set (if we have enough data).

Other methods to estimate test error:
@ Re-use training samples: create multiple train/test sets
o Cross validation, bootstrap

@ Training error 4+ penalty
o AIC, BIC, MDL
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Bias-Variance Decomposition

1
@ Note that the test error is a random variable. Why? ‘f(‘)‘)’fv’\\)"')c b

@ Assume the true model is y = f(x) 4+ € and Ee =0 and Var(e) = 02

o Consider the expected square loss over training sets:
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@ Both excess risk decomposition and bias-variance decom 05|t|o yze different sources
of the test error and they lead to similar conclusions.

@ What's the relation between complexity and bias/variance?
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Bias-Variance Trade-off

Training set error (blue) and test set error (red)

o High Bias Low Bias
- Low Variance High Variance
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Regularization and Dependent Features J
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£, Regularization

£y regularization (subset selection)
Flw) = || Xw—y|*+Allwllo

¢ regularization (Lasso)
F(w) = [ Xw —y]*+A]lwllx

€, regularization (Ridge)
F(w) = [ Xw —y|* +A]jwl|?

@ Which one(s) can be used for feature selection?
@ Which one(s) is fast to solve?

@ Which one(s) gives unique solution?
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Repeated features

@ Suppose we have one feature x; € R and response variable y € R.

@ Got some data and ran least squares linear regression. The ERM is

I?(Xl) = 4-X1.

@ What is the ERM solution if we get a new feature x», but we always have x, = x;7

;’K! + “L
1%, + Xa
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Duplicate Features: £; and £ norms

A

@ f(x1,x2) = wixy +woxo is an ERM iff wy +w, = 4.

What if we introduce the {; and {, regularization:

(Wil (w;\
w | wa [ [wy | w5 |
4 0 4 16
2 2 4 8
1 3 4 10
-1 15 6 26

@ ||wl|; doesn't discriminate, as long as all have same sign
o ||w||3 minimized when weight is spread equally

@ Picture proof: What does the level sets of ERM look like?
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Equal Features, £, Constraint

w:

AN
\ wy +wy = 22 +8.75

wy +wy = 2v/2 4+ 7
flwllz <2 wy +wy = 2¢/2 +5.25
W+ w=2/2+35 C GRM col)
wy 4wy = 2¢/2 4+ 1.75

wy +wy = 2/2

Suppose the line wi + ws = 2v/2+3.5 corresponds to the empirical risk minimizers.

Empirical risk increase as we move away from these parameter settings
o Intersection of wy +ws = 21/2 and the norm ball ||w||» < 2 is ridge solution.

@ Note that w; = w» at the solution
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Equal Features, £; Constraint

wy b
\\ wy + wy = 10.75
wy +wy =9

Jwlly <2 o
wy + wy = 7.25
wy
wy + wy = 5.5
wy + wy = 3.75
wy +wy =2

@ Suppose the line wy +wy =5.5 corresponds to the empirical risk minimizers.
o Intersection of wi+w» =2 and the norm ball ||w||; <2 is lasso solution.

@ Note that the solution set is {(wy, wo) : wq +ws =2, wq, wp > 0}.
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Linearly Related Features

e Linear prediction functions: f(x)=wixp+woxo = W K + W -2/X) = kX,
W+ 2W2 =k
@ Same setup, now suppose xp» = 2xi.

@ Then all functions with w; + 2w, = k have the same empirical risk.

o What function will we select if we do ERM with £; or {5 constraint?
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Linearly Related Features, £» Constraint

wy 4 2wy = 10/4/5 + 10.5
wy + 2wy = 10//5+7
wy + 2wy = 10/v/5+3.5

w \w1+2w2—10/\/_ wi

@ wi+2ws =10/y/5+7 corresponds to the empirical risk minimizers.

o Intersection of wy +2w, = 10+/5 and the norm ball ||w||> < 2 is ridge solution.

@ At solution, wy =2wjg.

He He (CDS, NYU) DS-GA 1003 Feb 16, 2021 17 /28



Linearly Related Features, £; Constraint

\w1+2w2: 16

wy + 2wy = 12

oy <2
wy + 2wy =8

\ wq
wy + 2wy, =4

WitW;z Rk

@ Intersection of wi +2w, =4 and the norm ball ||w||; <2 is lasso solution.

@ Solution is now a corner of the £; ball, corresonding to a sparse solution.
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Linearly Dependent Features: Take Away

@ For identical features
o {; regularization spreads weight arbitrarily (all weights same sign)
o {5 regularization spreads weight evenly
o Linearly related features
o {1 regularization chooses variable with larger scale, 0 weight to others
o {5 prefers variables with larger scale, spreads weight proportional to scale
@ In practice, feature standardization is important.
@ How to standardize the test set?
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Correlated Features on Same Scale

@ Suppose x1 and xp are highly correlated and the same scale.
@ This is quite typical in real data, after normalizing data.

What do the level sets look like?

@ Nothing degenerate here, so level sets are ellipsoids.
@ But, the higher the correlation, the closer to degenerate we get.

@ That is, ellipsoids keep stretching out, getting closer to two parallel lines.
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Correlated Features, €1 Regularization

Y N

lw|, <2

lwlly <2

@ Intersection could be anywhere on the top right edge.

@ Minor perturbations (in data) can drastically change intersection point — very unstable
solution.

e Makes division of weight among highly correlated features (of same scale) seem arbitrary.
o If x3 &= 2xy, ellipse changes orientation and we hit a corner. (Which one?)
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Elastic Net

The elastic net combines lasso and ridge penalties:

n

. 1 2
W= argmln—Z {wTxi—yi} +Mlwll+ A2 wli3
weRd N i=1

What are the coefficients for correlated variables?
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Highly Correlated Features, Elastic Net Constraint

Bllwlh + 2[w|l3 <2

wy

@ Elastic net solution is closer to wo = wy line, despite high correlation.
o Elastic net selects variables like Lasso

@ And shrinks coefficients of correlated varialbes like Ridge
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Elastic Net vs {4 Constraints

What if we use {, penalty where q € (1,2)?

L, Elastic Net
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Sparsity
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Why doesn't {> give sparsity

Consider {, regularized least squares:

1 1
Liw) = 3 X —y [+ 2wl 3)
wj
Let w* be the optimal solution. What's the condition for wi = 0?
)|, L= (xw - g) =0
J i* I ;
- N 9
JhoAex M wi=o, residud wfo weing
Hthe §-th foawre.
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Why does £; give sparsity (w\

Consider {; regularized least squares:

Lw) = 2 xw—y 2Dl @

Let w* be the optimal solution. What's the condition for w;" = 07 9\0\)\ =[]

39@1.0»0 wizo = M (Xw-¢) £ AL 1] =0
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Do we always want sparsity or simpler models?
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Do we always want sparsity or simpler models?

@ Subjective desire for parsimony: Occam'’s razor
@ Avoid overfit: approximatin/estimation error trade-off

@ No free lunch theorem
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