Find the Lasso Solution

He He

Slides based on Lecture 2c from David Rosenberg's course material.

CDS, NYU

Feb 16, 2021

Quadratic Programming

How to find the Lasso solution?

• How to solve the Lasso?

$$\min_{w \in \mathbb{R}^d} \sum_{i=1}^n \left(w^T x_i - y_i \right)^2 + \lambda \|w\|_1$$

• $\|w\|_1 = |w_1| + |w_2|$ is not differentiable!

Rewrite the Absolute Function

- Consider any number $a \in R$.
- Let the **positive part** of *a* be

$$a^+ = a\mathbf{1}(a \ge 0).$$

• Let the **negative part** of *a* be

$$a^{-}=-a1(a\leqslant 0).$$

- Do you see why $a^+ \ge 0$ and $a^- \ge 0$?
- How do you write a in terms of a^+ and a^- ?
- How do you write |a| in terms of a^+ and a^- ?

The Lasso as a Quadratic Program

We will show: substituting $w = w^+ - w^-$ and $|w| = w^+ + w^-$ gives an equivalent problem:

$$\min_{w^+,w^-} \sum_{i=1}^n \left(\left(w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda \mathbf{1}^T \left(w^+ + w^- \right)$$

subject to $w_i^+ \ge 0$ for all i $w_i^- \ge 0$ for all i ,

- Objective is differentiable (in fact, convex and quadratic)
- 2d variables vs d variables and 2d constraints vs no constraints
- A "quadratic program": a convex quadratic objective with linear constraints.
 Could plug this into a generic QP solver.

Possible point of confusion

We have claimed that this objective is equivalent to lasso problem:

$$\min_{w^+,w^-} \sum_{i=1}^n \left(\left(w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda \mathbf{1}^T \left(w^+ + w^- \right)$$

subject to $w_i^+ \ge 0$ for all i $w_i^- \ge 0$ for all i ,

- When we plug this optimization problem into a QP solver,
 - it just sees 2*d* variables and 2*d* constraints.
 - Doesn't know we want w_i^+ and w_i^- to be positive and negative parts of w_i .
- Turns out they will come out that way as a result of the optimization!
- But to eliminate confusion, let's start by calling them a_i and b_i and prove our claim...

The Lasso as a Quadratic Program

Lasso problem is trivially equivalent to the following:

$$\min_{w} \min_{a,b} \sum_{i=1}^{n} \left((a-b)^{T} x_{i} - y_{i} \right)^{2} + \lambda 1^{T} (a+b)$$

subject to $a_{i} \ge 0$ for all i $b_{i} \ge 0$ for all i ,
 $a-b=w$
 $a+b=|w|$

Claim: Don't need constraint a + b = |w|.

Exercise: rove by showing that the optimal solutions a^* and b^* satisfies $\min(a^*, b^*) = 0$, hence $a^* + b^* = |w|$.

The Lasso as a Quadratic Program

$$\min_{w} \min_{a,b} \sum_{i=1}^{n} \left((a-b)^{T} x_{i} - y_{i} \right)^{2} + \lambda 1^{T} (a+b)$$
subject to $a_{i} \ge 0$ for all i $b_{i} \ge 0$ for all i , $a-b=w$

Claim: Can remove min_w and the constraint a - b = w. Exercise: Prove by switching the order of the minimization.

Projected SGD

Now the objective is differentiable, but how do we handle the constraints?

$$\min_{w^+,w^- \in \mathsf{R}^d} \sum_{i=1}^n \left(\left(w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda \mathbf{1}^T \left(w^+ + w^- \right)$$

subject to $w_i^+ \ge 0$ for all i
 $w_i^- \ge 0$ for all i

- Just like SGD, but after each step
 - Project w^+ and w^- into the constraint set.
 - In other words, if any component of w^+ or w^- becomes negative, set it back to 0.

Coordinate Descent (Shooting Method)

Coordinate Descent Method

Goal: Minimize $L(w) = L(w_1, \ldots, w_d)$ over $w = (w_1, \ldots, w_d) \in \mathbb{R}^d$.

In gradient descent or SGD, each step potentially changes all entries of w. In coordinate descent, each step adjusts only a single coordinate w_i .

$$w_i^{\text{new}} = \underset{w_i}{\arg\min} L(w_1, \dots, w_{i-1}, w_i, w_{i+1}, \dots, w_d)$$

- Solving this argmin may itself be an iterative process.
- Coordinate descent is great when it's easy or easier to minimize w.r.t. one coordinate at a time

Coordinate Descent Method

Goal: Minimize $L(w) = L(w_1, \dots, w_d)$ over $w = (w_1, \dots, w_d) \in \mathbb{R}^d$. • Initialize $w^{(0)} = 0$

- while not converged:
 - Choose a coordinate $j \in \{1, \dots, d\}$

•
$$w_j^{\text{new}} \leftarrow \arg\min_{w_j} L(w_1^{(t)}, \dots, w_{j-1}^{(t)}, w_j, w_{j+1}^{(t)}, \dots, w_d^{(t)})$$

• $w_j^{(t+1)} \leftarrow w_j^{\text{new}}$ and $w^{(t+1)} \leftarrow w^{(t)}$
• $t \leftarrow t+1$

- $\bullet \ {\sf Random \ coordinate \ choice \ } \Longrightarrow {\sf stochastic \ coordinate \ descent}$
- \bullet Cyclic coordinate choice \implies cyclic coordinate descent

In general, we will adjust each coordinate several times.

He He Slides based on Lecture 2c from David Rose

Coordinate Descent Method for Lasso

- Why mention coordinate descent for Lasso?
- In Lasso, the coordinate minimization has a closed form solution!

Coordinate Descent Method for Lasso

Closed Form Coordinate Minimization for Lasso

$$\hat{w}_j = \operatorname*{arg\,min}_{w_j \in \mathsf{R}} \sum_{i=1}^n \left(w^T x_i - y_i \right)^2 + \lambda |w|_1$$

Then

$$\hat{w}_j = egin{cases} (c_j+\lambda)/a_j & ext{if } c_j < -\lambda \ 0 & ext{if } c_j \in [-\lambda,\lambda] \ (c_j-\lambda)/a_j & ext{if } c_j > \lambda \end{cases}$$

$$a_j = 2\sum_{i=1}^n x_{i,j}^2$$
 $c_j = 2\sum_{i=1}^n x_{i,j}(y_i - w_{-j}^T x_{i,-j})$

where w_{-j} is w without component j and similarly for $x_{i,-j}$.

He He Slides based on Lecture 2c from David Rose

- Theoretically, coordinate descent is not competitive, e.g. its convergence rate is slower than GD and the iteration cost is similar
- But it works very well for certain problems
- Very simple and easy to implement
- Example applications: lasso regression, SVMs