Find the Lasso Solution

He He

Slides based on Lecture 2c from David Rosenberg's course material.

CDS, NYU

Feb 16, 2021

Quadratic Programming

How to find the Lasso solution?

- How to solve the Lasso?

$$
\min _{w \in \mathrm{R}^{d}} \sum_{i=1}^{n}\left(w^{T} x_{i}-y_{i}\right)^{2}+\lambda\|w\|_{1}
$$

- $\|w\|_{1}=\left|w_{1}\right|+\left|w_{2}\right|$ is not differentiable!

Rewrite the Absolute Function

- Consider any number $a \in R$.
- Let the positive part of a be

$$
a^{+}=a 1(a \geqslant 0) .
$$

- Let the negative part of a be

$$
a^{-}=-a 1(a \leqslant 0)
$$

- Do you see why $a^{+} \geqslant 0$ and $a^{-} \geqslant 0$?
- How do you write a in terms of a^{+}and a^{-}?
- How do you write $|a|$ in terms of a^{+}and a^{-}?

The Lasso as a Quadratic Program

We will show: substituting $w=w^{+}-w^{-}$and $|w|=w^{+}+w^{-}$gives an equivalent problem:

$$
\begin{aligned}
\min _{w^{+}, w^{-}} & \sum_{i=1}^{n}\left(\left(w^{+}-w^{-}\right)^{T} x_{i}-y_{i}\right)^{2}+\lambda 1^{T}\left(w^{+}+w^{-}\right) \\
\text {subject to } & w_{i}^{+} \geqslant 0 \text { for all } i \quad w_{i}^{-} \geqslant 0 \text { for all } i,
\end{aligned}
$$

- Objective is differentiable (in fact, convex and quadratic)
- $2 d$ variables vs d variables and $2 d$ constraints vs no constraints
- A "quadratic program": a convex quadratic objective with linear constraints.
- Could plug this into a generic QP solver.

Possible point of confusion

We have claimed that this objective is equivalent to lasso problem:

$$
\begin{aligned}
\min _{w^{+}, w^{-}} & \sum_{i=1}^{n}\left(\left(w^{+}-w^{-}\right)^{T} x_{i}-y_{i}\right)^{2}+\lambda 1^{T}\left(w^{+}+w^{-}\right) \\
\text {subject to } & w_{i}^{+} \geqslant 0 \text { for all } i \quad w_{i}^{-} \geqslant 0 \text { for all } i,
\end{aligned}
$$

- When we plug this optimization problem into a QP solver,
- it just sees $2 d$ variables and $2 d$ constraints.
- Doesn't know we want w_{i}^{+}and w_{i}^{-}to be positive and negative parts of w_{i}.
- Turns out - they will come out that way as a result of the optimization!
- But to eliminate confusion, let's start by calling them a_{i} and b_{i} and prove our claim...

The Lasso as a Quadratic Program

Lasso problem is trivially equivalent to the following:

$$
\begin{aligned}
\min _{w} \min _{a, b} & \sum_{i=1}^{n}\left((a-b)^{T} x_{i}-y_{i}\right)^{2}+\lambda 1^{T}(a+b) \\
\text { subject to } & a_{i} \geqslant 0 \text { for all } i \quad b_{i} \geqslant 0 \text { for all } i, \\
& a-b=w \\
& a+b=|w|
\end{aligned}
$$

Claim: Don't need constraint $a+b=|w|$.
Exercise: rove by showing that the optimal solutions a^{*} and b^{*} satisfies $\min \left(a^{*}, b^{*}\right)=0$, hence $a^{*}+b^{*}=|w|$.

The Lasso as a Quadratic Program

$$
\begin{aligned}
\min _{w} \min _{a, b} & \sum_{i=1}^{n}\left((a-b)^{T} x_{i}-y_{i}\right)^{2}+\lambda 1^{T}(a+b) \\
\text { subject to } & a_{i} \geqslant 0 \text { for all } i \quad b_{i} \geqslant 0 \text { for all } i, \\
& a-b=w
\end{aligned}
$$

Claim: Can remove $\min _{w}$ and the constraint $a-b=w$.
Exercise: Prove by switching the order of the minimization.

Projected SGD

Now the objective is differentiable, but how do we handle the constraints?

$$
\begin{aligned}
& \min _{w^{+}, w^{-} \in \mathrm{R}^{d}} \sum_{i=1}^{n}\left(\left(w^{+}-w^{-}\right)^{T} x_{i}-y_{i}\right)^{2}+\lambda 1^{T}\left(w^{+}+w^{-}\right) \\
& \text {subject to } w_{i}^{+} \geqslant 0 \text { for all } i \\
& \\
& w_{i}^{-} \geqslant 0 \text { for all } i
\end{aligned}
$$

- Just like SGD, but after each step
- Project w^{+}and w^{-}into the constraint set.
- In other words, if any component of w^{+}or w^{-}becomes negative, set it back to 0 .

Coordinate Descent (Shooting Method)

Coordinate Descent Method

Goal: Minimize $L(w)=L\left(w_{1}, \ldots, w_{d}\right)$ over $w=\left(w_{1}, \ldots, w_{d}\right) \in \mathrm{R}^{d}$.
In gradient descent or SGD, each step potentially changes all entries of w.
In coordinate descent, each step adjusts only a single coordinate w_{i}.

$$
w_{i}^{\text {new }}=\underset{w_{i}}{\arg \min } L\left(w_{1}, \ldots, w_{i-1}, w_{i}, w_{i+1}, \ldots, w_{d}\right)
$$

- Solving this argmin may itself be an iterative process.
- Coordinate descent is great when it's easy or easier to minimize w.r.t. one coordinate at a time

Coordinate Descent Method

Goal: Minimize $L(w)=L\left(w_{1}, \ldots w_{d}\right)$ over $w=\left(w_{1}, \ldots, w_{d}\right) \in \mathrm{R}^{d}$.

- Initialize $w^{(0)}=0$
- while not converged:
- Choose a coordinate $j \in\{1, \ldots, d\}$
- $w_{j}^{\text {new }} \leftarrow \arg \min _{w_{j}} L\left(w_{1}^{(t)}, \ldots, w_{j-1}^{(t)}, w_{j}, w_{j+1}^{(t)}, \ldots, w_{d}^{(t)}\right)$
- $w_{j}^{(t+1)} \leftarrow w_{j}^{\text {new }}$ and $w^{(t+1)} \leftarrow w^{(t)}$
- $t \leftarrow t+1$
- Random coordinate choice \Longrightarrow stochastic coordinate descent
- Cyclic coordinate choice \Longrightarrow cyclic coordinate descent

In general, we will adjust each coordinate several times.

Coordinate Descent Method for Lasso

- Why mention coordinate descent for Lasso?
- In Lasso, the coordinate minimization has a closed form solution!

Coordinate Descent Method for Lasso

Closed Form Coordinate Minimization for Lasso

$$
\hat{w}_{j}=\underset{w_{j} \in \mathrm{R}}{\arg \min } \sum_{i=1}^{n}\left(w^{\top} x_{i}-y_{i}\right)^{2}+\lambda|w|_{1}
$$

Then

$$
\begin{gathered}
\hat{w}_{j}= \begin{cases}\left(c_{j}+\lambda\right) / a_{j} & \text { if } c_{j}<-\lambda \\
0 & \text { if } c_{j} \in[-\lambda, \lambda] \\
\left(c_{j}-\lambda\right) / a_{j} & \text { if } c_{j}>\lambda\end{cases} \\
a_{j}=2 \sum_{i=1}^{n} x_{i, j}^{2}
\end{gathered}
$$

where w_{-j} is w without component j and similarly for $x_{i,-j}$.

Coordinate Descent in General

- Theoretically, coordinate descent is not competitive, e.g. its convergence rate is slower than GD and the iteration cost is similar
- But it works very well for certain problems
- Very simple and easy to implement
- Example applications: lasso regression, SVMs

