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`2 and `1 Regularization
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Complexity Penalty

Goal: balance between complexity of the hypothesis space F and the training loss

Complexity measure: Ω : F→ [0,∞), e.g. number of features

Penalized ERM (Tikhonov regularization)

For complexity measure Ω : F→ [0,∞) and fixed λ> 0,

min
f∈F

1
n

n∑
i=1

`(f (xi ),yi )+λΩ(f )

As usual, find λ using validation data.

Number of features as complexity measure is hard to optimize—other measures?
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Weight Shrinkage: Intuition

Consider linear regression on the following data, which line would you prefer? [draw]

Prefer the line with smaller slope: small change in the input does not cause large change
in the output

If the estimated weights change by a small amount, it wouldn’t cause huge change in the
prediction (less sensitive to data)
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Weight Shrinkage: Polynomial Regression

Large weights are needed to “wiggle” the curve

Want to regularize the weights to make them smaller, e.g.
ŷ = 0.001x7+0.003x3+1 vs ŷ = 1000x7+500x3+1

(Adapated from Mark Schmidt’s slide)
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Linear Regression with L2 Regularization

Consider linear models

F =
{
f : Rd → R | f (x) = wT x for w ∈ Rd

}
Square loss: `(ŷ ,y) = (y − ŷ)2

Training data Dn = ((x1,y1), . . . ,(xn,yn))

Linear least squares regression is ERM for square loss over F:

ŵ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2

Can overfit when d is large compared to n, e.g. d � n very common in NLP (e.g. a 1M
features for 10K documents).
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Linear Regression with L2 Regularization

Penalize “large” weights where size of weights is measured by `2 norm:

ŵ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖22,

where ‖w‖22 = w2
1 + · · ·+w2

d is the square of the `2-norm.

Also known as ridge regression.

We get back linear least square regression with λ= 0.

`2 regularization can be used for other models too (e.g. neural networks)
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How does `2 regularization induce “regularity”?

Short answer: it controls “sensitivity” of the function.

For f̂ (x) = ŵT x , f̂ is Lipschitz continuous with Lipschitz constant L= ‖ŵ‖2.

That is, when moving from x to x +h, f̂ changes no more than L‖h‖.

So `2 regularization controls the maximum rate of change of f̂ .

Proof: ∣∣∣f̂ (x +h)− f̂ (x)
∣∣∣ = |ŵT (x +h)− ŵT x |=

∣∣ŵTh
∣∣

6 ‖ŵ‖2‖h‖2 (Cauchy-Schwarz inequality)

Note that other norms also provides a bound on L due to the equivalence of norms:
∃C > 0 s.t. ‖ŵ2‖2 6 C‖ŵ2‖p
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Linear Regression vs Ridge Regression

Objective:
Linear: L(w) = 1

2‖Xw − y‖22
Ridge: L(w) = 1

2‖Xw − y‖22+ λ
2 ‖w‖

2
2

Gradient:
Linear: ∇L(w) = XT (Xw − y)

Ridge: ∇L(w) = XT (Xw − y)+λw

Also known as weight decay in neural networks

Closed-form solution:
Linear: XTXw = XT y

Ridge: (XTX +λI )w = XT y

(XTX +λI ) is always invertible
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Ridge Regression: Regularization Path

Regulariztion path shows how the weights vary as we change the regularization strength

Modified from Hastie, Tibshirani, and Wainwright’s Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
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Lasso Regression

Penalize the `1 norm of the weights:

Lasso Regression (Tikhonov Form)

ŵ = argmin
w∈Rd

1
n

n∑
i=1

{
wT xi − yi

}2
+λ‖w‖1,

where ‖w‖1 = |w1|+ · · ·+ |wd | is the `1-norm.

He He Slides based on Lecture 2c from David Rosenberg’s course material. (CDS, NYU)DS-GA 1003 Feb 16, 2021 11 / 24

https://davidrosenberg.github.io/mlcourse/Archive/2019/Lectures/02c.L1L2-regularization.pdf
https://github.com/davidrosenberg/mlcourse


Ridge vs. Lasso: Regularization Paths

Lasso gives sparse weights:

Modified from Hastie, Tibshirani, and Wainwright’s Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.
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Lasso Gives Feature Sparsity: So What?

Coefficient are 0 =⇒ don’t need those features. What’s the gain?

Time/expense to compute/buy features

Memory to store features (e.g. real-time deployment)

Identifies the important features

Better prediction? sometimes

As a feature-selection step for training a slower non-linear model
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Regularization and Sparsity
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Constrained Empirical Risk Minimization

Constrained ERM (Ivanov regularization)

For complexity measure Ω : F→ [0,∞) and fixed r > 0,

min
f∈F

1
n

n∑
i=1

`(f (xi ),yi )

s.t.Ω(f )6 r

Lasso Regression (Ivanov Form)

The lasso regression solution for complexity parameter r > 0 is

ŵ = argmin
‖w‖16r

1
n

n∑
i=1

{
wT xi − yi

}2
.

r has the same role as λ in penalized ERM (Tikhonov).
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Ivanov vs Tikhonov Regularization

Let L : F→ R be any performance measure of f
e.g. L(f ) could be the empirical risk of f

For many L and Ω, Ivanov and Tikhonov are “equivalent”:
Any solution f ∗ you could get from Ivanov, can also get from Tikhonov.

Any solution f ∗ you could get from Tikhonov, can also get from Ivanov.

Can get conditions for equivalence from Lagrangian duality theory.

In practice, both approaches are effective.

We will use whichever that is more convenient.
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Ivanov vs Tikhonov Regularization (Details)

Ivanov and Tikhonov regularization are equivalent if:

1 For any choice of r > 0, any Ivanov solution

f ∗r ∈ argmin
f∈F

L(f ) s.t. Ω(f )6 r

is also a Tikhonov solution for some λ > 0. That is, ∃λ > 0 such that

f ∗r ∈ argmin
f∈F

L(f )+λΩ(f ).

2 Conversely, for any choice of λ > 0, any Tikhonov solution:

f ∗λ ∈ argmin
f∈F

L(f )+λΩ(f )

is also an Ivanov solution for some r > 0. That is, ∃r > 0 such that

f ∗λ ∈ argmin
f∈F

L(f ) s.t. Ω(f )6 r
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The `1 and `2 Norm Constraints

For visualization, restrict to 2-dimensional input space

F = {f (x) = w1x1+w2x2} (linear hypothesis space)

Represent F by
{
(w1,w2) ∈ R2

}
.

`2 contour:
w2

1 +w2
2 = r

`1 contour:
|w1|+ |w2|= r

Where are the “sparse” solutions?
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The Famous Picture for `2 Regularization

f ∗r = argminw∈R2
∑n

i=1
(
wT xi − yi

)2 subject to w2
1 +w2

2 6 r

Blue region: Area satisfying complexity constraint: w2
1 +w2

2 6 r

Red lines: contours of R̂n(w) =
∑n

i=1
(
wT xi − yi

)2.
KPM Fig. 13.3
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The Famous Picture for `1 Regularization

f ∗r = argminw∈R2
1
n

∑n
i=1

(
wT xi − yi

)2 subject to |w1|+ |w2|6 r

Blue region: Area satisfying complexity constraint: |w1|+ |w2|6 r

Red lines: contours of R̂n(w) =
∑n

i=1
(
wT xi − yi

)2.

`1 solution tends to touch the corners.
KPM Fig. 13.3
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Why does `1 gives sparse solution?

Geometric intuition: Euclidean projection onto a convex set encourages solutions at corners or
edges.

ŵ in red/green regions are closest to corners in the `1 ball.

Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.6
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Why does `1 gives sparse solution?

Geometric intuition: Euclidean projection onto a convex set encourages solutions at corners or
edges.

`2 ball encourages solution in any direction equally.

Fig from Mairal et al.’s Sparse Modeling for Image and Vision Processing Fig 1.6
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Why does `1 gives sparse solution?

For `2 regularization,

As wi becomes smaller, there is less and less penalty
What is the `2 penalty for wi = 0.0001?

The gradient goes to zero as wi moves towards zero

For `1 regularization,

The function is non-smooth and the gradient stays the same as the weights becomes
smaller

Thus it pushes them to exactly zero even if the weights are already tiny

(More discussion in lecture)

He He Slides based on Lecture 2c from David Rosenberg’s course material. (CDS, NYU)DS-GA 1003 Feb 16, 2021 23 / 24

https://davidrosenberg.github.io/mlcourse/Archive/2019/Lectures/02c.L1L2-regularization.pdf
https://github.com/davidrosenberg/mlcourse


The
(
`q
)q Constraint

Generalize to `q : (‖w‖q)q = |w1|
q+ |w2|

q.

Contours of ‖w‖qq = |w1|
q+ |w2|

q:

Note: ‖w‖q is a norm if q > 1, but not for q ∈ (0,1)

`q constraint when q < 1 is non-convex, so hard to optimize

`0 (‖w‖0) is defined as the number of non-zero weights, i.e. subset selection
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