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1 Gradient Descent

• Gradient is the steepest ascent direction.

– Derivative tells us how much the function value f(x) changes if we move x a tiny bit.

– For multivariable functions, we need directional derivatives to know how fast f(x)
changes along u.

– The fastest ascent direction is given by

arg max
‖u‖2=1

∇f(x) · u =
∇f(x)

‖∇f(x)‖2

∗ Show by Cauchy-Schwarz.

∗ (draw) Geometric explanation: a · b = ‖a‖2‖b‖2 cos θ.

• Where does gradient descent converge?

– Stationary/Critical points: x where ∇f(x) = 0.

– (draw) Local/global minimum/maximum, flat region of critical points

– (draw) Are all critical points local minima/maxima? [no, saddle points.]

– In general, GD converges to stationary points. With certain conditions (e.g. f is convex,
gradient cannot change arbitrarily fast, small step size), we can reach global minimum.

• What is the true “step size”?

– η‖∇f(x)‖2. Step is smaller as we move towards the extremum.

• Line search methods

– Exact line search: find the optimize step size along a descent direction

arg min
η≥0

f(x− η∇f(x))

Ususally we cannot minimize it exactly.

– Back-tracking line search: find the step size so that we get the expected amount of
decrease in f(x)
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∗ Start with η = 1, repeat η ← βη until

f(xk − η∇f(xk)) ≤ f(xk)− αη∇T f(xk)∇f(xk) = f(xk)− αη‖∇f(xk)‖22

∗ (draw function of the step size)

∗ Can prevent step sizes that are too large

2 Case study: Least Square Regression

• Closed form solution:
(XTX)w = Xy

– XTX: O(nd2)

– Xy: O(nd)

– Solving d× d linear system: O(d3)

• Gradient descent:

f(w) =
1

2
‖Xw − y‖22 (1)

∇wf(w) = XT (Xw − y) (2)

wt+1 = wt − ηtXT (Xw − y) (3)

– Compute the gradient: O(nd)

– Gradient descent: O(ndt)

• GD can be faster if d is very large.
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