Gradient Descent

He He

Slides based on Lecture 2b from David Rosenberg's course material.

CDS, NYU

Feb 9, 2021

Review: ERM

Our Setup from Statistical Learning Theory

Loss Function

A loss function evaluates an action in the context of the outcome y.

$$\begin{array}{rrrr} \ell \colon & \mathcal{A} \times \mathcal{Y} & \to & \mathsf{R} \\ & (a,y) & \mapsto & \ell(a,y) \end{array}$$

He He (CDS, NYU)

Risk and the Bayes Prediction Function

Definition

The **risk** of a prediction function $f : \mathcal{X} \to \mathcal{A}$ is

```
R(f) = \mathbb{E}\ell(f(x), y).
```

In words, it's the expected loss of f on a new exampe (x, y) drawn randomly from $P_{\mathcal{X} \times \mathcal{Y}}$.

Definition

A Bayes prediction function $f^* : \mathcal{X} \to \mathcal{A}$ is a function that achieves the *minimal risk* among all possible functions:

```
f^* \in \operatorname*{arg\,min}_{f} R(f),
```

where the minimum is taken over all functions from $\mathfrak X$ to $\mathcal A.$

• The risk of a Bayes prediction function is called the Bayes risk.

The Empirical Risk

Let $\mathcal{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$ be drawn i.i.d. from $\mathcal{P}_{\mathfrak{X} \times \mathfrak{Y}}$.

Definition

The **empirical risk** of $f : \mathcal{X} \to \mathcal{A}$ with respect to \mathcal{D}_n is

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

• But we saw that the unconstrained empirical risk minimizer overfits.

• i.e. if we minize $\hat{R}_n(f)$ over all functions, we overfit.

Constrained Empirical Risk Minimization

Definition

A hypothesis space \mathcal{F} is a set of functions mapping $\mathfrak{X} \to \mathcal{A}$.

- It is the collection of prediction functions we are choosing from.
- Empirical risk minimizer (ERM) in \mathcal{F} is

$$\hat{f}_n \in \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

- From now on "ERM" always means "constrained ERM".
- So we should always specify the hypothesis space when we're doing ERM.

Example: Linear Least Squares Regression

Setup

- Input space $\mathcal{X} = \mathsf{R}^d$
- Output space $\mathcal{Y} = \mathsf{R}$
- Action space $\mathcal{Y} = \mathsf{R}$
- Loss: $\ell(\hat{y}, y) = (y \hat{y})^2$
- Hypothesis space: $\mathcal{F} = \{ f : \mathbb{R}^d \to \mathbb{R} \mid f(x) = w^T x, w \in \mathbb{R}^d \}$

Example: Linear Least Squares Regression

Objective Function: Empirical Risk

The function we want to minimize is the empirical risk:

$$\hat{R}_{n}(w) = \frac{1}{n} \sum_{i=1}^{n} (w_{i}^{T} x_{i} - y_{i})^{2},$$

where $w \in \mathsf{R}^d$ parameterizes the hypothesis space \mathfrak{F} .

• Now, we have ended up with an optimization problem:

$$\min_{w\in\mathsf{R}^d}\hat{R}_n(w).$$

Gradient Descent

Unconstrained Optimization

Setting

Objective function $f : \mathbb{R}^d \to \mathbb{R}$ is *differentiable*. Want to find

$$x^* = \arg\min_{x \in \mathsf{R}^d} f(x)$$

The Gradient

• Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable at $x_0 \in \mathbb{R}^d$.

• The gradient of f at the point x_0 , denoted $\nabla_x f(x_0)$, is the direction to move in for the fastest increase in f(x), when starting from x_0 .

Figure A.111 from Newtonian Dynamics, by Richard Fitzpatrick.

Gradient Descent

Gradient Descent

- Initialize x = 0
- repeat

•
$$x \leftarrow x - \underbrace{\eta}_{\text{step size}} \nabla f(x)$$

• until stopping criterion satisfied

Choosing the step size is the key in gradient descent.

Gradient Descent Path

He He (CDS, NYU)

Gradient Descent: Step Size

- A fixed step size will work, eventually, as long as it's small enough (roughly details to come)
 - Too fast, may diverge
 - In practice, try several fixed step sizes
- Intuition on when to take big steps and when to take small steps?

Convergence Theorem for Fixed Step Size

Theorem

Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable, and ∇f is Lipschitz continuous with constant L > 0, i.e.

$$\|\nabla f(x) - \nabla f(x')\| \leq L \|x - x'\|$$

for any $x, x' \in \mathbb{R}^d$. Then gradient descent with fixed step size $\eta \leq 1/L$ converges. In particular,

$$f(x^{(k)}) - f(x^*) \leqslant \frac{\|x^{(0)} - x^*\|^2}{2\eta k}.$$

This says that gradient descent is guaranteed to converge and that it converges with rate O(1/k).

Gradient Descent: When to Stop?

- Wait until $\|\nabla f(x)\|_2 \leq \varepsilon$, for some ε of your choosing.
 - (Recall $\nabla f(x) = 0$ at minimum.)
- For learning setting,
 - evalute performance on validation data as you go
 - stop when not improving, or getting worse