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Our Setup from Statistical Learning Theory

The Spaces

X: input space Y: outcome space A: action space

Prediction Function (or “decision function”)
A prediction function (or decision function) gets input x 2X and produces an action a 2A :

f : X ! A

x 7! f (x)

Loss Function
A loss function evaluates an action in the context of the outcome y .

` : A⇥Y ! R
(a,y) 7! `(a,y)
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Risk and the Bayes Prediction Function

Definition
The risk of a prediction function f : X!A is

R(f ) = E`(f (x),y).

In words, it’s the expected loss of f on a new exampe (x ,y) drawn randomly from PX⇥Y.

Definition
A Bayes prediction function f

⇤ : X!A is a function that achieves the minimal risk among
all possible functions:

f
⇤ 2 argmin

f
R(f ),

where the minimum is taken over all functions from X to A.

The risk of a Bayes prediction function is called the Bayes risk.
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The Empirical Risk

Let Dn = ((x1,y1), . . . ,(xn,yn)) be drawn i.i.d. from PX⇥Y.

Definition
The empirical risk of f : X!A with respect to Dn is

R̂n(f ) =
1
n

nX

i=1

`(f (xi ),yi ).

But we saw that the unconstrained empirical risk minimizer overfits.
i.e. if we minize R̂n(f ) over all functions, we overfit.
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Constrained Empirical Risk Minimization

Definition
A hypothesis space F is a set of functions mapping X!A.

It is the collection of prediction functions we are choosing from.

Empirical risk minimizer (ERM) in F is

f̂n 2 argmin
f2F

1
n

nX

i=1

`(f (xi ),yi ).

From now on “ERM” always means “constrained ERM”.

So we should always specify the hypothesis space when we’re doing ERM.
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Example: Linear Least Squares Regression

Setup

Input space X= Rd

Output space Y= R

Action space Y= R

Loss: `(ŷ ,y) = (y - ŷ)2

Hypothesis space: F =
�
f : Rd ! R | f (x) = w

T
x , w 2 Rd

 

Given data set Dn = {(x1,y1), . . . ,(xn,yn)},
Let’s find the ERM f̂ 2 F.
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Example: Linear Least Squares Regression

Objective Function: Empirical Risk
The function we want to minimize is the empirical risk:

R̂n(w) =
1
n

nX

i=1

�
w

T
xi - yi

�2
,

where w 2 Rd parameterizes the hypothesis space F.

Now, we have ended up with an optimization problem:

min
w2Rd

R̂n(w).
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Gradient Descent
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Unconstrained Optimization

Setting

Objective function f : Rd ! R is differentiable.
Want to find

x
⇤ = arg min

x2Rd
f (x)

He He (CDS, NYU) DS-GA 1003 February 6, 2021 10 / 16



The Gradient

Let f : Rd ! R be differentiable at x0 2 Rd .

The gradient of f at the point x0, denoted rx f (x0), is the direction to move in for the
fastest increase in f (x), when starting from x0.

Figure A.111 from Newtonian Dynamics, by Richard Fitzpatrick.
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Gradient Descent

Gradient Descent
Initialize x = 0

repeat
x  x - ⌘|{z}

step size

rf (x)

until stopping criterion satisfied

Choosing the step size is the key in gradient descent.
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Gradient Descent Path
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Gradient Descent: Step Size

A fixed step size will work, eventually, as long as it’s small enough (roughly - details to
come)

Too fast, may diverge

In practice, try several fixed step sizes

Intuition on when to take big steps and when to take small steps?
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Convergence Theorem for Fixed Step Size

Theorem
Suppose f : Rd ! R is convex and differentiable, and rf is Lipschitz continuous with
constant L> 0, i.e.

krf (x)-rf (x 0)k6 Lkx - x
0k

for any x ,x 0 2 Rd . Then gradient descent with fixed step size ⌘6 1/L converges. In particular,

f (x(k))- f (x⇤)6 kx
(0)- x

⇤k2

2⌘k
.

This says that gradient descent is guaranteed to converge and that it converges with rate
O(1/k).
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Gradient Descent: When to Stop?

Wait until krf (x)k2 6 ", for some " of your choosing.
(Recall rf (x) = 0 at minimum.)

For learning setting,
evalute performance on validation data as you go

stop when not improving, or getting worse
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