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Our Setup from Statistical Learning Theory

The Spaces

e X: input space @ Y: outcome space e A: action space

Prediction Function (or “decision function”)
A prediction function (or decision function) gets input x € X and produces an action a € A :
f: X - A
x = f(x)
Loss Function
A loss function evaluates an action in the context of the outcome y.
: AxY — R

(ay) = {ay)
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Risk and the Bayes Prediction Function

Definition
The risk of a prediction function f: X — A is

R(f) =EL(f(x),y).

In words, it's the expected loss of f on a new exampe (x,y) drawn randomly from Py 1.

Definition
A Bayes prediction function 7*:X — A is a function that achieves the minimal risk among

all possible functions:
f* €argminR(f),
f

where the minimum is taken over all functions from X to A.

@ The risk of a Bayes prediction function is called the Bayes risk.
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The Empirical Risk

Let Dp=((x1,¥1),...,(Xn,¥n)) be drawn i.i.d. from Py y.

Definition
The empirical risk of f: X — A with respect to D, is

Rull) == 3 t(F (). 3i).
i=1

@ But we saw that the unconstrained empirical risk minimizer overfits.

o i.e. if we minize R,(f) over all functions, we overfit.
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Constrained Empirical Risk Minimization

Definition
A hypothesis space J is a set of functions mapping X — A.
@ It is the collection of prediction functions we are choosing from.

e Empirical risk minimizer (ERM) in F is

. 1 ¢
f, € argmin 7Z€(f(x,-),y,-).
feg Ni—]

@ From now on “"ERM" always means “constrained ERM".

@ So we should always specify the hypothesis space when we're doing ERM.
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Example: Linear Least Squares Regression

Setup
o Input space X = R

@ Output space Y =R
@ Action space Y =R

Loss: £(§,y) = (y — )

Hypothesis space: = {f:RY - R|f(x)=w'x,weR}

Given data set D, ={(x1,y1),-.., (Xm ¥n)},
o Let’s find the ERM f € 7.
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Example: Linear Least Squares Regression

Objective Function: Empirical Risk

The function we want to minimize is the empirical risk:

Ralw) ==Y (whxi—y)’,
= N

where w € R parameterizes the hypothesis space 7.

@ Now, we have ended up with an optimization problem:

min R,(w).
wERd
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Unconstrained Optimization

Setting
Objective function f : RY — R is differentiable.
Want to find
x* =arg min f(x)
x€Rd
DS-GA 1003

February 6, 2021 10/16



The Gradient

e Let 7:RY — R be differentiable at xp € RY.

@ The gradient of f at the point xg, denoted Vf(xg), is the direction to move in for the
fastest increase in f(x), when starting from xg.
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Figure A.111 from Newtonian Dynamics, by Richard Fitzpatrick.
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Gradient Descent

Gradient Descent

o Initialize x =0

@ repeat
o x+x— 1 Vf(x)
—~—

step size

@ until stopping criterion satisfied

Choosing the step size is the key in gradient descent.
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Gradient Descent Path

. Gradient Descent
T T e e I T
/ — Fixed step size: 0.20
— Backtracking line search: initial step 0.30

w
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Gradient Descent: Step Size

@ A fixed step size will work, eventually, as long as it's small enough (roughly - details to

come)
o Too fast, may diverge

o In practice, try several fixed step sizes

@ Intuition_on when to take big steps and when to take small steps?
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Convergence Theorem for Fixed Step Size

Theorem

Suppose f: RY — R is convex and differentiable, and Vf is Lipschitz continuous with
constant L >0, i.e.

IVFf(x)=VF(x)| < L||x—x'|

for any x,x’ € RY. Then gradient descent with fixed step sizem < 1/L converges. In particular,

¢ = x|

(k)y _ ) <
Fx) =) < =

~

This says that gradient descent is guaranteed to converge and that it converges with rate

O(1/k).
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Gradient Descent: When to Stop?

e Wait until ||Vf(x)||2 < ¢, for some ¢ of your choosing.
o (Recall Vf(x) =0 at minimum.)

@ For learning setting,
o evalute performance on validation data as you go

e stop when not improving, or getting worse
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