Statistical Learning Theory

He He

Slides based on Lecture 1b, 1c from David Rosenberg's course material.

CDS, NYU

Feb 2, 2021

Contents

1 Decision Theory

2 Statistical Learning Theory

3 Excess Risk Decomposition

Decision Theory

What types of problems are we solving?

- In data science problems, we generally need to:
 - Make a decision
 - Take an action
 - Produce some output
- Have some evaluation criterion

An action is the generic term for what is produced by our system.

Examples of Actions

- Produce a 0/1 classification (classical ML)
- Reject hypothesis that $\theta = 0$ (classical Statistics)
- Generate text (image captioning, speech recognition, machine translation)
- What's an action for predicting where a storm will be in 3 hours?

Inputs

In order to make the decision, we typically have additional context:

- Inputs [ML]
- Covariates [Statistics]
- Examples of Inputs
 - A picture
 - A storm's historical location and other weather data
 - A search query

Inputs are often paired with outputs or labels

Examples of outcomes/outputs/labels

- Whether or not the picture actually contains an animal
- The storm's location one hour after query
- Which, if any, of suggested the URLs were selected

Decision theory is about finding "optimal" actions, under various definitions of optimality.

Examples of Evaluation Criteria

- Is the classification correct?
- Does text transcription exactly match the spoken words?
 - Should we give partial credit? How?
- How far is the storm from the predicted location? (for point prediction)
- How likely is the storm's location under the predicted distribution? (for density prediction)

Typical Sequence of Events

Many problem domains can be formalized as follows:

- Observe input *x*.
- 2 Take action a.
- **Observe** outcome *y*.
- Sevaluate action in relation to the outcome

Three spaces:

- Input space: ${\mathfrak X}$
- Action space: ${\cal A}$
- Outcome space: \mathcal{Y}

Formalization

Prediction Function

A prediction function (or decision function) gets input $x \in \mathcal{X}$ and produces an action $a \in \mathcal{A}$:

Loss Function

A loss function evaluates an action in the context of the outcome y.

$$\mathcal{L}: \mathcal{A} \times \mathcal{Y} \to \mathsf{R} \ (a, y) \mapsto \ell(a, y)$$

Goal: find the optimal prediction function

Intuition: If we can evaluate how good a prediciton function is, we can turn this into an optimization problem.

- Loss function ℓ evaluates a *single* action
- How to evaluate the prediction function as a whole?
- We will use the standard statistical learning theory framework.

Statistical Learning Theory

Setup for Statistical Learning Theory

Define a space where the prediction function is applicable

- Assume there is a data generating distribution $P_{\mathfrak{X} \times \mathfrak{Y}}$.
- All input/output pairs (x, y) are generated i.i.d. from $P_{\mathfrak{X} \times \mathfrak{Y}}$.

Want prediction function f(x) that "does well on average":

 $\ell(f(x), y)$ is usually small, in some sense

How can we formalize this?

Definition

The **risk** of a prediction function $f : \mathcal{X} \to \mathcal{A}$ is

$$R(f) = \mathbb{E}_{(x,y) \sim P_{\mathcal{X} \times \mathcal{Y}}} \left[\ell(f(x), y) \right].$$

In words, it's the expected loss of f over $P_{X \times Y}$.

Risk function cannot be computed

Since we don't know $P_{\mathfrak{X}\times\mathfrak{Y}}$, we cannot compute the expectation. But we can estimate it.

The Bayes Prediction Function

Definition

A Bayes prediction function $f^* : \mathcal{X} \to \mathcal{A}$ is a function that achieves the *minimal risk* among all possible functions:

 $f^* \in \underset{f}{\operatorname{arg\,min}} R(f),$

where the minimum is taken over all functions from ${\mathfrak X}$ to ${\mathcal A}.$

- The risk of a Bayes prediction function is called the **Bayes risk**.
- A Bayes prediction function is often called the "target function", since it's the best prediction function we can possibly produce.

Example: Multiclass Classification

- Spaces: $\mathcal{A} = \mathcal{Y} = \{1, \dots, k\}$
- 0-1 loss:

$$\ell(a, y) = 1(a \neq y) := \begin{cases} 1 & \text{if } a \neq y \\ 0 & \text{otherwise.} \end{cases}$$

Example: Multiclass Classification

• Spaces:
$$\mathcal{A} = \mathcal{Y} = \{1, \dots, k\}$$

• 0-1 loss:

$$\ell(a, y) = 1(a \neq y) := \begin{cases} 1 & \text{if } a \neq y \\ 0 & \text{otherwise.} \end{cases}$$

Risk:

$$\begin{aligned} R(f) &= \mathbb{E}\left[\mathbf{1}(f(x) \neq y)\right] &= \mathbf{0} \cdot \mathbb{P}(f(x) = y) + \mathbf{1} \cdot \mathbb{P}(f(x) \neq y) \\ &= \mathbb{P}(f(x) \neq y), \end{aligned}$$

which is just the misclassification error rate.

• Bayes prediction function is just the assignment to the most likely class:

$$f^*(x) \in \underset{1 \leqslant c \leqslant k}{\arg \max} \mathbb{P}(y = c \mid x)$$

• Can't compute $R(f) = \mathbb{E}[\ell(f(x), y)]$ because we **don't know** $P_{\mathcal{X} \times \mathcal{Y}}$.

- Can't compute $R(f) = \mathbb{E}[\ell(f(x), y)]$ because we **don't know** $P_{\mathcal{X} \times \mathcal{Y}}$.
- One thing we can do in ML/statistics/data science is

• Can't compute $R(f) = \mathbb{E}[\ell(f(x), y)]$ because we **don't know** $P_{\mathcal{X} \times \mathcal{Y}}$.

• One thing we can do in ML/statistics/data science is

assume we have sample data.

Let $\mathcal{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$ be drawn i.i.d. from $\mathcal{P}_{\mathfrak{X} \times \mathfrak{Y}}$.

• Can't compute $R(f) = \mathbb{E}[\ell(f(x), y)]$ because we **don't know** $P_{\mathcal{X} \times \mathcal{Y}}$.

• One thing we can do in ML/statistics/data science is

assume we have sample data.

Let $\mathcal{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$ be drawn i.i.d. from $\mathcal{P}_{\mathfrak{X} \times \mathfrak{Y}}$.

• Let's draw some inspiration from the Strong Law of Large Numbers: If z_1, \ldots, z_n are i.i.d. with expected value $\mathbb{E}z$, then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n z_i=\mathbb{E}z,$$

with probability 1.

The Empirical Risk

Let $\mathcal{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$ be drawn i.i.d. from $\mathcal{P}_{\mathfrak{X} \times \mathfrak{Y}}$.

Definition

The **empirical risk** of $f : \mathcal{X} \to \mathcal{A}$ with respect to \mathcal{D}_n is

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

By the Strong Law of Large Numbers,

$$\lim_{n\to\infty}\hat{R}_n(f)=R(f),$$

almost surely.

Definition

A function \hat{f} is an empirical risk minimizer if

 $\hat{f} \in \underset{f}{\operatorname{arg\,min}} \hat{R}_n(f),$

where the minimum is taken over all functions.

We want risk minimizer, is empirical risk minimizer close enough?

In practice, we only have a finite sample.

 $P_{\mathcal{X}} = \text{Uniform}[0, 1], Y \equiv 1 \text{ (i.e. } Y \text{ is always } 1\text{)}.$

He He Slides based on Lecture 1b, 1c from David R

 $P_{\mathcal{X}} = \text{Uniform}[0, 1], Y \equiv 1$ (i.e. Y is always 1).

A sample of size 3 from $\mathcal{P}_{\mathfrak{X} \times \mathfrak{Y}}$.

He He Slides based on Lecture 1b, 1c from David R

 $P_{\mathcal{X}} = \text{Uniform}[0, 1], Y \equiv 1 \text{ (i.e. } Y \text{ is always } 1\text{)}.$

A proposed prediction function:

$$\hat{f}(x) = 1(x \in \{0.25, 0.5, 0.75\}) = \begin{cases} 1 & \text{if } x \in \{0.25, .5, .75\} \\ 0 & \text{otherwise} \end{cases}$$

He He Slides based on Lecture 1b, 1c from David F

DS-GA 1003

 $P_{\mathcal{X}} = \text{Uniform}[0, 1], Y \equiv 1$ (i.e. Y is always 1).

Under square loss or 0/1 loss: \hat{f} has Empirical Risk = 0 and Risk = 1.

- ERM led to a function *f* that just memorized the data.
- How to spread information or generalize from training inputs to new inputs?
- Need to smooth things out somehow...
 - A lot of modeling is about spreading and extrapolating information from one part of the input space $\mathcal X$ into unobserved parts of the space.
- One approach: "Constrained ERM"
 - Instead of minimizing empirical risk over all prediction functions,
 - constrain to a particular subset, called a hypothesis space.

Hypothesis Spaces

Definition

A hypothesis space \mathcal{F} is a set of functions mapping $\mathcal{X} \to \mathcal{A}$. It is the collection of prediction functions we are choosing from.

Want Hypothesis Space that

- Includes only those functions that have desired "regularity", e.g. smoothness, simplicity
- Easy to work with

Most applied work is about designing good hypothesis spaces for specific tasks.

Constrained Empirical Risk Minimization

- $\bullet\,$ Hypothesis space ${\mathcal F},$ a set of prediction functions mapping ${\mathfrak X}\to {\mathcal A}$
- Empirical risk minimizer (ERM) in \mathcal{F} is

$$\hat{f}_n \in \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

• Risk minimizer in ${\mathcal F}$ is $f_{{\mathcal F}}^* \in {\mathcal F}$, where

$$f_{\mathcal{F}}^* \in \underset{f \in \mathcal{F}}{\operatorname{arg\,min}} \mathbb{E}\left[\ell(f(x), y)\right].$$

Excess Risk Decomposition

Error Decomposition

$$f^* = \underset{f}{\arg\min} \mathbb{E} \left[\ell(f(x), y) \right]$$
$$f_{\mathcal{F}} = \underset{f \in \mathcal{F}}{\arg\min} \mathbb{E} \left[\ell(f(x), y) \right]$$
$$\hat{f}_n = \underset{f \in \mathcal{F}}{\arg\min} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

- Approximation Error (of \mathcal{F}) = $R(f_{\mathcal{F}}) R(f^*)$
- Estimation error (of \hat{f}_n in \mathcal{F}) = $R(\hat{f}_n) R(f_{\mathcal{F}})$

Excess Risk Decomposition for ERM

Definition

The excess risk compares the risk of f to the Bayes optimal f^* :

Excess $\operatorname{Risk}(f) = R(f) - R(f^*)$

• Can excess risk ever be negative?

The excess risk of the ERM \hat{f}_n can be decomposed:

Excess Risk
$$(\hat{f}_n) = R(\hat{f}_n) - R(f^*)$$

= $\underbrace{R(\hat{f}_n) - R(f_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{R(f_{\mathcal{F}}) - R(f^*)}_{\text{approximation error}}$.

- Approximation error $R(f_{\mathcal{F}}) R(f^*)$ is
 - $\bullet\,$ a property of the class ${\mathfrak F}$
 - the penalty for restricting to \mathcal{F} (rather than considering all possible functions)

Bigger \mathcal{F} mean smaller approximation error.

Concept check: Is approximation error a random or non-random variable?

Estimation Error

Estimation error $R(\hat{f}_n) - R(f_{\mathcal{F}})$

- is the performance hit for choosing f using finite training data
- is the performance hit for minimizing empirical risk rather than true risk

With *smaller* \mathcal{F} we expect *smaller* estimation error.

Under typical conditions: 'With infinite training data, estimation error goes to zero."

Concept check: Is estimation error a random or non-random variable?

- We've been cheating a bit by writing "argmin".
- In practice, we need a method to find $\hat{f}_n \in \mathcal{F}$.
- $\bullet\,$ For nice choices of loss functions and classes $\ensuremath{\mathfrak{F}}$, we can get arbitrarily close to a minimizer
 - But takes time is it worth it?
- For some hypothesis spaces (e.g. neural networks), we don't know how to find $\hat{f}_n \in \mathcal{F}$.

Optimization Error

- In practice, we don't find the ERM $\hat{f}_n \in \mathcal{F}$.
- We find $\tilde{f}_n \in \mathcal{F}$ that we hope is good enough.
- **Optimization error:** If \tilde{f}_n is the function our optimization method returns, and \hat{f}_n is the empirical risk minimizer, then

Optimization Error =
$$R(\tilde{f}_n) - R(\hat{f}_n)$$
.

• Can optimization error be negative? Yes!

But

$$\hat{R}(\tilde{f}_n) - \hat{R}(\hat{f}_n) \ge 0.$$

Error Decomposition in Practice

• Excess risk decomposition for function \tilde{f}_n returned by algorithm:

Excess
$$\operatorname{Risk}(\tilde{f}_n) = R(\tilde{f}_n) - R(f^*)$$

= $\underbrace{R(\tilde{f}_n) - R(\hat{f}_n)}_{\operatorname{optimization error}} + \underbrace{R(\hat{f}_n) - R(f_{\mathcal{F}})}_{\operatorname{estimation error}} + \underbrace{R(f_{\mathcal{F}}) - R(f^*)}_{\operatorname{approximation error}}$

- Concept check: It would be nice to have a concrete example where we find an \tilde{f}_n and look at it's error decomposition. Why is this usually impossible?
- But we could constuct an artificial example, where we know $P_{\mathcal{X} \times \mathcal{Y}}$ and f^* and $f_{\mathcal{F}}$...

ERM Overview

- Given a loss function $\ell : \mathcal{A} \times \mathcal{Y} \to \mathsf{R}$.
- Choose hypothesis space \mathcal{F} .
- Use an optimization method to find ERM $\hat{f}_n \in \mathcal{F}$:

$$\hat{f}_n = \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

- Data scientist's job:
 - $\bullet\,$ choose $\ensuremath{\mathfrak{F}}$ to balance between approximation and estimation error.
 - \bullet as we get more training data, use a bigger ${\mathcal F}$