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Multiclass Hypothesis Space: Reframed

frefion

ANM

General [Discrete] Output Space: Y - ?W, . )&E Molkcly
Base Hypothesis Space: H={h: X xY — R}

e h(x,y) gives compatibility score between input x and output y

e Multiclass Hypothesis Space ' ZN“AK&

F=<xwrargmaxh(x,y)|heH
= y€eY

Final prediction function is an f € &F.

For each f € F there is an underlying compatibility score function h € K.
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Part-of-speech (POS) Tagging Sl wred. GredicNon
Seqpanas — NLE DNy
((T(_,LS > SYQ\&Q\A

Given a sentence, give a part of speech tag for each word:

x | [START] He eats | apples
N—— ~~ —

X0 !

y | [START] | Pronoun | Verb | Noun
—— ——

e—/yo——/‘)@—r’_’" y3

T

V = {all English words} U{[START],”."} — Q»eah\sva

P ={START, Pronoun,Verb,Noun,Adjective} — fol

X :@ n=1,2,3,... [Word sequences of any length]

Y= fP//" n=1,2,3,...[Part of speech sequence of any length]
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Structured Prediction

@ A structured prediction problem is a multiclass problem in which Y is very large, but has
(or we assume it has) a certain structure.

@ For POS tagging, Y grows exponentially in the length of the sentence.

%ypical structure assumption: The POS labels form a Markov chain.

o i€ Yor1l|YnYn—1,...,Y0is the same as y, 1 |
—_— =

..

Moskor &q«%qﬁ o\,
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Local Feature Functions: Type 1 — &WX

@ A “type 1" local feature only depends on

o the label at a single position, say y; (label of the ith word) and
e x at any position

e Example: <> KQ Soki& ”BQ((Q&,& <i>!’ﬁk Yo A \(@\&
CHEN =

¢1(i,x,y;)) = 1(x; =runs)1(y; = Verb)
$2(i,x,y;) = 1(x; =runs)1(y; = Noun)
d>3(i,X,yi) = 1(x;—1 =He)1(x; =runs)1(y; = Verb)
J@(Lw S8k, dlgd, elenyd)
vy ST (8, 8, )
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Local Feature Functions: Type 2 — Movkev

o A “type 2" local feature only depends on
e the labels at 2 consecutive positions: y; 1 and y;

e x at any position

o Example:

010/, x,yi—1.yi)
02(i,x,yi—1.yi)

B(2x vy - (0,1)
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1(y;—1 = Pronoun)1(y; = Verb)
= 1(y;_1 = Pronoun)1(y; = Noun)
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Local Feature Vector and Compatibility Score

@ At each position i in sequence, define the Iocgl fe\ature vector: ( clas /IA'\Q &L\Mﬂuﬂ%

Wilyiny) = (D1l dalixyi).... E
010/, x,yi—1.yi),02(i,%x,¥i—1,¥i),...)

—rRZ

@ Local compatibility score for (x,y) at positién iis (g,‘i’;(x,y,-,l,y,-)).

Lo X—R L
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Sequence Compatibility Score
¥

@ The compatibility score for the pair of sequences (x,y) is the sum of the local
compatibility scores: T

Z(quj (X Yi—1, y:)>

! . . -

= <W,ZW@§X1%—1,Y")>

= (w,¥(x,y)) _'Lbf\b

where we define the sequence feature vector by
= Vilx.yi1.yi).

@ So we see this is a special case of linear multiclass prediction.
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Sequence Target Loss

YR '_M(%):@,%(xq»

i}

‘% %&H%Wﬂ&i
@ How do we assess the loss for prediction sequence y’ for example (x,y)?

e Hamming loss is common:

@ Could generalize this as
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What remains to be done?

To compute predictions, we need to find

EE ;lqax (w, ‘1’(X,yj
e

laseent

This is straightforward for [Y| small.

Now [Y| is exponentially large.

Because ¥ breaks down into local functions only depending on 2 adjacent labels,
e we can solve this efficiently using dynamic programming.

o (Similar to Viterbi decoding.) {f"fui»u& bina m\}ﬁ@% %‘m\ L’%hz;\%imj‘:g{

Learning can be done with SGD and a similar dynamic program.

P
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