Review for Final J

Haau-Sing Li and Xiangyun Chu
CDS, NYU

May 5, 2021

Haau-Sing Li and Xiangyun Chu (CDS, NYU) DS-GA 1003 / CSCI-GA 2567 May 5, 2021 1/28



Contents

Note: For materials in Week 1 - 6, please refer to Review for Midterm slide
@ Brief Concept Review for Week 7 - 13

Probabilistic models

Multi-class classification

Decision Tree, Random Forest and Adaboost

Forward stagewise additive modeling, Gradient Boosting
Neural Networks

k-Means, GMM, Expectiation Maximization

000000

@ Practice Problems

Haau-Sing Li and Xiangyun Chu (CDS, NYU) DS-GA 1003 / CSCI-GA 2567 May 5, 2021 2/28



Brief Recap: Bayesian Methods

@ Prior represents belief about 0 before observing data D.
o Posterior represents the rationally “updated” beliefs after seeing D.

@ All inferences and action-taking are based on the posterior distribution.
@ In the Bayesian approach,

o No issue of “choosing a procedure” or justifying an estimator.
e Only choices are
o family of distributions, indexed by ©, and the
@ prior distribution on ©
For decision making, need a loss function.
Everything after that is computation.
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Brief Recap: Bayesian Methods

@ Define the model:

o Choose a parametric family of densities:
{p(D6)6 €O}

o Choose a distribution p(0) on ©, called the prior distribution.
@ After observing D, compute the posterior distribution p(0 | D).

pO[D) o p(D|6)p(6)
)

p(0)
—~—
likelihood prior

= Lp(0

(s

© Choose action based on p(6 | D).
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Brief Recap: Multi-class classification

@ Problem: Multiclass classification Y ={1, ..., k}

@ Solution 1: One-vs-All
e Train k models: hi(x),..., he(x): X —R.
o Predict with argmax, cy hy (x).
o Gave simple example where this fails for linear classifiers

@ Solution 2: Multiclass loss
e Train one model: h(x,y): X xY —R.
@ h(x,y) gives compatibility score between input x and output y
o Prediction involves solving argmax, ¢y h(x, y).
o

F ={x > argmaxh(x,y) | h € H}
y€eY

o Final prediction functionisa f € F
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Brief Recap: Multi-class classification

@ A structured prediction problem is a multiclass problem in which Y is very large, but has
(or we assume it has) a certain structure.

@ For POS tagging, Y grows exponentially in the length of the sentence.

@ Typical structure assumption: The POS labels form a Markov chain.

o i Ynt1lYn Yn—1.. Yo is the same as ypi1|yn
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Brief Recap: Decision Tree, Random Forest and Adaboost

Decision Trees:

@ Decision Trees Setup

Goal Find a tree that minimize the task loss (squared loss) within a given
complexity.

Problem Finding the optimal binary tree is computationally intractable.

Solution Greedy algorithm.
o Find the best split (according to some criteria) for a non-terminal node

(initially the root)
o Add two children nodes
o Repeat until a stopping criterion is reached (max depth)
@ Properties of Decision Trees

o Non-linear classifier that recursively partitions the input space
o Non-metric: make no use of geometry, i.e. no inner-product or distances
o Non-parametric: make no assumption of the data distribution
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Brief Recap: Decision Tree, Random Forest and Adaboost

Ensemble methods:

Ensemble methods:
@ Combine outputs from multiple models.

e Same learner on different datasets: ensemble + bootstrap = bagging.
o Different learners on one dataset: they may make similar errors.

@ Parallel ensemble: models are built independently, bagging

o Reduce variance of a low bias, high variance estimator by ensembling many estimators
trained in parallel.

@ Sequential ensemble: models are built sequentially, boosting

o Reduce the error rate of a high bias estimator by ensembling many estimators trained in
sequential.

e Try to add new learners that do well where previous learners lack
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Brief Recap: Decision Tree, Random Forest and Adaboost

Random Forest:

Key idea of Random Forest: Use bagged decision trees, but modify the tree-growing
procedure to reduce the dependence between trees.
@ Build a collection of trees independently (in parallel).

@ When constructing each tree node, restrict choice of splitting variable to a randomly
chosen subset of features of size m.

e Avoid dominance by strong features.
@ Typically choose m =~ \/p, where p is the number of features.

@ Can choose m using cross validation.
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Brief Recap: Decision Tree, Random Forest and Adaboost
Adaboost Algorithm:

@ Training set D ={(x1,y1),..., (Xm ¥n)}-
e Start with equal weight on all training points w; =--- =w, = 1.
@ Repeat for m=1,..., M:
o Base learner fits weighted training data and returns G,,(x)
o Increase weight on the points G,,;(x) misclassifies
o Final prediction G(x) = sign Z,A;’:l cmem(x)} (recall Gp(x) €{—1,1})

o What are desirable o¢p,'s?

@ nonnegative
o larger when G, fits its weighted D well
o smaller when G, fits weighted D less well
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Brief Recap: Forward stagewise additive modeling, Gradient Boosting

@ FSAM: a method used in boosting, greedily fit one function at a time without adjusting
previous functions.

e Learning with FSAM: Optimizing one basis function each step and add it to the target
function.

e Optimization: find the best basis function each step, uses gradient-based method.
(details next slide.)

@ Practice GBM with loss functions we discussed.

e Note: using exponential loss, GBM is the same as Adaboost.
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Brief Recap: Forward stagewise additive modeling, Gradient Boosting

GBM in computing basis function: for each step

@ compute the unconstrained gradient considering all training samples, i.e.

g=Vrdf) =0nt(y1.f1),..., 0L (yn n))

@ then, compute the basis function parameter within hypothesis space that has smallest
Euclidean distance to the gradient, i.e.

h = argmin (—gi—h(Xi))2
hed Z

@ The step size can be predefined or learnt using line search. Finally, we have
fn < fm—1+ Vmhm
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Brief Recap: Neural Networks

Intuition: Learning intermediate features.
Optimization: backpropagation, based on chain rule.

o for final: look at partial derivative of affine transformation and activation/transfer functions
o sigmoid, ReLU (subgradient), tanh, softmax

Note: Revising the XOR example could be helpful!

(optional) problem on NN optimization : risk of gradient exploding/vanishing.
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Brief Recap: k-Means, GMM, Expectation Maximization

Differences K-Means v.s. GMM:

o Hard v.s. soft clustering (utilizes the density in Gaussian).
e "circular" v.s. "oval-shaped" clusters

Optimization in GMM: Expectation Maximization
o Idea from Latent Variable Model:

we want to compute p(x)

we start from p(z)p(x|z), where p(x|z) is modeled with parameters 0

we do not know p(z), so we use another distribution g(z) to approximate p(z)
try to get £(q,0) —KL(q(z)||p(z|x;0))+logp(x;0) by yourself!

we will test LVM in the final!

Expectation Maximization:

o E-step: we update g(z) (GMM: the <y, you can think that 7t is defined by the y)
o M-step: we update parameters p(x|z) of, i.e. 6. (GMM: y, X)
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left blank for some possible sketch
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Question 1: Bayesian

Bayesian Bernoulli Model
Suppose we have a coin with unknown probability of heads 8 € (0,1). We flip the coin n times

and get a sequence of coin flips with np heads and n; tails.
Recall the following: A Beta («,f) distribution, for shape parameters «, 3 > 0, is a distribution
supported on the interval (0, 1) with PDF given by

fx;oB) ox x"‘_l(l—x)ﬁ_1

The mean of a Beta («,B) is ;5. The mode is “jfgld assuming o, > 1 and o+ >2. If
o =3 =1, then every value in (0, 1) is a mode.
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Question 1 Continued

@ Give an expression for the likelihood function Lp(0) for this sequence of flips.

@ Suppose we have a Beta («,3) prior on 6, for some «, 3 > 0. Derive the posterior
distribution on 0 and, if it is a Beta distribution, give its parameters.

© If your posterior distribution on 0 is Beta(3, 6), what is your MAP estimate of 67
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Question 1 Solution

Q Lp(B)=0"(1—0)

2]
p(0[D) ox p(0)L(0)

x 0% L(1—0)B~1e™(1—0)™
x Gnh+oc—1(1 _e)nt—l-f)—l

© Based on information box above, the mode of the beta distribution is

So the MAP estimate is %

+B 2foroc[3>1
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Question 2: Boostrap

© What is the probability of not picking one datapoint while creating a bootstrap sample?

@ Suppose the dataset is fairly large. In an expected sense, what fraction of our bootstrap
sample will be unique?
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Question 2 Solution

o (1-7)"
Q@ As n— oo, (1—%)"—) % So 1—% unique samples.
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Question 3: Random Forest and Boosting

Indicate whether each of the statements (about random forests and gradient boosting) is true
or false.

@ True or False: If your gradient boosting model is overfitting, taking additional steps is
likely to help

@ True or False: In gradient boosting, if you reduce your step size, you should expect to need
fewer rounds of boosting (i.e. fewer steps) to achieve the same training set loss.

© True or False: Fitting a random forest model is extremely easy to parallelize.

@ True or False: Fitting a gradient boosting model is extremely easy to parallelize, for any
base regression algorithm.

© True or False: Suppose we apply gradient boosting with absolute loss to a regression
problem. If we use linear ridge regression as our base regression algorithm, the final
prediction function from gradient boosting always will be an affine function of the input.
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Question 3 Solution

False, False, True, False, True
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Question 4: Hypothesis space of GBM and RF

Let Hp represent a base hypothesis class of (small) regression trees. Let

Hgr ={glg = Z,T:1 %f;, f; € Hp} represent the hypothesis space of prediction functions in a
random forest with T trees where each tree is picked from Hp. Let

He ={glg = Z,T:1 vifi, fi € Hpg, n; € R} represent the hypothesis space of prediction functions
in a gradient boosting with T trees.

True or False:

Q If ; € Hp then of; € Hp for all x e R
Q If f; € H¢ then af; € Hg forall x e R
O If ;e Hc then f e Hg
Q If feHp then f; € Hg
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Question 4 Solutions

True, True, True, True
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Question 5: Neural Networks

@ True or False: Consider a hypothesis space 3 of prediction functions f : RY — R given by
a multilayer perceptron (MLP) with 3 hidden layers, each consisting of m nodes, for which
the activation function is o(x) = cx, for some fixed ¢ € R. Then this hypothesis space is
strictly larger than the set of all affine functions mapping R to R.

@ True or False: Let g: [0, 119 5 R be any continuous function on the compact set [0, 1]9.
Then for any ¢ > 0, there exists me€{1,2,3,...},

S oW -
a=(a1,...,am) €R" b= (b1,...,by) €ER™, and W = | : : 5 € R™*4 for which
_ Wr:rl;
the function f:[0,1]¢ — R given by

f(x) = Z a;max(0, W,-TX+ b;)
i=1

satisfies |f(x) —g(x)| < € for all x € [0,1].
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Question 5 Solutions

False, True
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Question 6: Mixture Models

Suppose we have a latent variable z €{1,2,3} and an observed variable x € (0,00) generated as
follows:

z ~ Categorical(7ty, 710, 713)
x|z~ Gamma(2,B;),

where (B1,B2,B3) € (0,00)3, and Gamma(2, B) is supported on (0,00) and has density
p(x) = B%xe PX. Suppose we know that p1=1,B» =2, 3 =4. Give an explicit expression for
p(z=1|x =1) in terms of the unknown parameters 71y, 715, 713.
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Question 6 Solutions

plz =1x=1) me 1+ mbe 2+ m3lbe 4
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