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Brief Recap: Bayesian Methods

Prior represents belief about θ before observing data D.
Posterior represents the rationally “updated” beliefs after seeing D.
All inferences and action-taking are based on the posterior distribution.
In the Bayesian approach,

No issue of “choosing a procedure” or justifying an estimator.
Only choices are

family of distributions, indexed by Θ, and the
prior distribution on Θ

For decision making, need a loss function.
Everything after that is computation.
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Brief Recap: Bayesian Methods

1 Define the model:
Choose a parametric family of densities:

{p(D | θ) | θ ∈Θ} .

Choose a distribution p(θ) on Θ, called the prior distribution.
2 After observing D, compute the posterior distribution p(θ | D).

p(θ | D) ∝ p(D | θ)p(θ)

= LD(θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

3 Choose action based on p(θ | D).
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Brief Recap: Multi-class classification

Problem: Multiclass classification Y= {1, . . . ,k}

Solution 1: One-vs-All
Train k models: h1(x), . . . ,hk(x) : X→ R.
Predict with argmaxy∈Y hy (x).
Gave simple example where this fails for linear classifiers

Solution 2: Multiclass loss
Train one model: h(x ,y) : X×Y→ R.

h(x ,y) gives compatibility score between input x and output y
Prediction involves solving argmaxy∈Y h(x ,y).

F = {x 7→ argmax
y∈Y

h(x ,y) | h ∈H}

Final prediction function is a f ∈ F
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Brief Recap: Multi-class classification

A structured prediction problem is a multiclass problem in which Y is very large, but has
(or we assume it has) a certain structure.
For POS tagging, Y grows exponentially in the length of the sentence.
Typical structure assumption: The POS labels form a Markov chain.

i.e. yn+1 | yn,yn−1,...,,y0 is the same as yn+1 | yn
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Brief Recap: Decision Tree, Random Forest and Adaboost
Decision Trees:

Decision Trees Setup
Goal Find a tree that minimize the task loss (squared loss) within a given

complexity.
Problem Finding the optimal binary tree is computationally intractable.
Solution Greedy algorithm.

Find the best split (according to some criteria) for a non-terminal node
(initially the root)
Add two children nodes
Repeat until a stopping criterion is reached (max depth)

Properties of Decision Trees
Non-linear classifier that recursively partitions the input space
Non-metric: make no use of geometry, i.e. no inner-product or distances
Non-parametric: make no assumption of the data distribution
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Brief Recap: Decision Tree, Random Forest and Adaboost
Ensemble methods:

Ensemble methods:
Combine outputs from multiple models.

Same learner on different datasets: ensemble + bootstrap = bagging.
Different learners on one dataset: they may make similar errors.

Parallel ensemble: models are built independently, bagging
Reduce variance of a low bias, high variance estimator by ensembling many estimators
trained in parallel.

Sequential ensemble: models are built sequentially, boosting
Reduce the error rate of a high bias estimator by ensembling many estimators trained in
sequential.

Try to add new learners that do well where previous learners lack
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Brief Recap: Decision Tree, Random Forest and Adaboost
Random Forest:

Key idea of Random Forest: Use bagged decision trees, but modify the tree-growing
procedure to reduce the dependence between trees.

Build a collection of trees independently (in parallel).
When constructing each tree node, restrict choice of splitting variable to a randomly
chosen subset of features of size m.

Avoid dominance by strong features.

Typically choose m ≈√p, where p is the number of features.
Can choose m using cross validation.
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Brief Recap: Decision Tree, Random Forest and Adaboost
Adaboost Algorithm:

Training set D= {(x1,y1) , . . . ,(xn,yn)}.
Start with equal weight on all training points w1 = · · ·= wn = 1.
Repeat for m = 1, . . . ,M:

Base learner fits weighted training data and returns Gm(x)
Increase weight on the points Gm(x) misclassifies

Final prediction G (x) = sign
[∑M

m=1αmGm(x)
]
. (recall Gm(x) ∈ {−1,1})

What are desirable αm’s?
nonnegative
larger when Gm fits its weighted D well
smaller when Gm fits weighted D less well
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Brief Recap: Forward stagewise additive modeling, Gradient Boosting

FSAM: a method used in boosting, greedily fit one function at a time without adjusting
previous functions.
Learning with FSAM: Optimizing one basis function each step and add it to the target
function.
Optimization: find the best basis function each step, uses gradient-based method.
(details next slide.)
Practice GBM with loss functions we discussed.
Note: using exponential loss, GBM is the same as Adaboost.
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Brief Recap: Forward stagewise additive modeling, Gradient Boosting

GBM in computing basis function: for each step
compute the unconstrained gradient considering all training samples, i.e.

g =∇f J(f) = (∂f1`(y1, f1) , . . . ,∂fn`(yn, fn))

then, compute the basis function parameter within hypothesis space that has smallest
Euclidean distance to the gradient, i.e.

h = argmin
h∈H

n∑
i=1

(−gi −h (xi ))
2

The step size can be predefined or learnt using line search. Finally, we have
fm← fm−1+ vmhm
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Brief Recap: Neural Networks

Intuition: Learning intermediate features.
Optimization: backpropagation, based on chain rule.

for final: look at partial derivative of affine transformation and activation/transfer functions
sigmoid, ReLU (subgradient), tanh, softmax

Note: Revising the XOR example could be helpful!
(optional) problem on NN optimization : risk of gradient exploding/vanishing.
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Brief Recap: k-Means, GMM, Expectation Maximization

Differences K-Means v.s. GMM:
Hard v.s. soft clustering (utilizes the density in Gaussian).
"circular" v.s. "oval-shaped" clusters

Optimization in GMM: Expectation Maximization
Idea from Latent Variable Model:

we want to compute p(x)
we start from p(z)p(x |z), where p(x |z) is modeled with parameters θ
we do not know p(z), so we use another distribution q(z) to approximate p(z)
try to get L(q,θ)−KL(q(z)‖p(z | x ;θ))+ logp(x ;θ) by yourself!
we will test LVM in the final!

Expectation Maximization:
E-step: we update q(z) (GMM: the γ, you can think that π is defined by the γ)
M-step: we update parameters p(x |z) of, i.e. θ. (GMM: µ, Σ)
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left blank for some possible sketch
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Question 1: Bayesian

Bayesian Bernoulli Model
Suppose we have a coin with unknown probability of heads θ ∈ (0,1). We flip the coin n times
and get a sequence of coin flips with nh heads and nt tails.
Recall the following: A Beta (α,β) distribution, for shape parameters α,β > 0, is a distribution
supported on the interval (0, 1) with PDF given by

f (x ;α,β)∝ xα−1(1− x)β−1

The mean of a Beta (α,β) is α
α+β . The mode is α−1

α+β−2 assuming α,β> 1 and α+β > 2. If
α= β= 1, then every value in (0, 1) is a mode.
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Question 1 Continued

1 Give an expression for the likelihood function LD(θ) for this sequence of flips.
2 Suppose we have a Beta (α,β) prior on θ, for some α,β > 0. Derive the posterior

distribution on θ and, if it is a Beta distribution, give its parameters.
3 If your posterior distribution on θ is Beta(3, 6), what is your MAP estimate of θ?
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Question 1 Solution

1 LD(θ) = θ
nh(1−θ)nt

2

p(θ | D)∝ p(θ)L(θ)

∝ θα−1(1−θ)β−1θnh(1−θ)nt

∝ θnh+α−1(1−θ)nt+β−1

3 Based on information box above, the mode of the beta distribution is α−1
α+β−2 for α,β > 1.

So the MAP estimate is 2
7 .
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Question 2: Boostrap

1 What is the probability of not picking one datapoint while creating a bootstrap sample?
2 Suppose the dataset is fairly large. In an expected sense, what fraction of our bootstrap

sample will be unique?
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Question 2 Solution

1
(
1− 1

n

)n
2 As n→∞,

(
1− 1

n

)n→ 1
e . So 1− 1

e unique samples.
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Question 3: Random Forest and Boosting

Indicate whether each of the statements (about random forests and gradient boosting) is true
or false.

1 True or False: If your gradient boosting model is overfitting, taking additional steps is
likely to help

2 True or False: In gradient boosting, if you reduce your step size, you should expect to need
fewer rounds of boosting (i.e. fewer steps) to achieve the same training set loss.

3 True or False: Fitting a random forest model is extremely easy to parallelize.
4 True or False: Fitting a gradient boosting model is extremely easy to parallelize, for any

base regression algorithm.
5 True or False: Suppose we apply gradient boosting with absolute loss to a regression

problem. If we use linear ridge regression as our base regression algorithm, the final
prediction function from gradient boosting always will be an affine function of the input.
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Question 3 Solution

False, False, True, False, True
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Question 4: Hypothesis space of GBM and RF

Let HB represent a base hypothesis class of (small) regression trees. Let
HR = {g |g =

∑T
i=1

1
T fi , fi ∈HB } represent the hypothesis space of prediction functions in a

random forest with T trees where each tree is picked from HB . Let
HG = {g |g =

∑T
i=1νi fi , fi ∈HB ,ni ∈ R} represent the hypothesis space of prediction functions

in a gradient boosting with T trees.
True or False:

1 If fi ∈HR then αfi ∈HR for all α ∈ R
2 If fi ∈HG then αfi ∈HG for all α ∈ R
3 If fi ∈HG then fi ∈HR

4 If fi ∈HR then fi ∈HG
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Question 4 Solutions

True, True, True, True
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Question 5: Neural Networks

1 True or False: Consider a hypothesis space H of prediction functions f :Rd →R given by
a multilayer perceptron (MLP) with 3 hidden layers, each consisting of m nodes, for which
the activation function is σ(x) = cx , for some fixed c ∈ R. Then this hypothesis space is
strictly larger than the set of all affine functions mapping Rd to R.

2 True or False: Let g : [0,1]d → R be any continuous function on the compact set [0,1]d .
Then for any ε > 0, there exists m ∈ {1,2,3, . . .},

a = (a1, . . . ,am) ∈ Rm,b = (b1, . . . ,bm) ∈ Rm, and W =

 - wT
1 −

...
...

...
− wT

m −

 ∈ Rm×d for which

the function f : [0,1]d → R given by

f (x) =
m∑
i=1

ai max(0,wT
i x +bi )

satisfies |f (x)−g(x)|< ε for all x ∈ [0,1]d .
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Question 5 Solutions

False, True
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Question 6: Mixture Models

Suppose we have a latent variable z ∈ {1,2,3} and an observed variable x ∈ (0,∞) generated as
follows:

z ∼ Categorical(π1,π2,π3)

x | z ∼ Gamma(2,βz),

where (β1,β2,β3) ∈ (0,∞)3, and Gamma(2,β) is supported on (0,∞) and has density
p(x) = β2xe−βx . Suppose we know that β1 = 1,β2 = 2,β3 = 4. Give an explicit expression for
p(z = 1|x = 1) in terms of the unknown parameters π1,π2,π3.
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Question 6 Solutions

p(z = 1|x = 1)∝ p(x = 1|z = 1)p(z = 1) = π1e
−1

p(z = 2|x = 1)∝ p(x = 1|z = 2)p(z = 2) = π24e−2

p(z = 3|x = 1)∝ p(x = 1|x = 3)p(z = 3) = π316e−4

p(z = 1|x = 1) =
π1e

−1

π1e−1+π24e−2+π316e−4
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