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Question 1: Clustering 1

Consider the set of training data below, and two clustering algorithms: K-Means, and a
Gaussian Mixture Model (GMM) trained using EM. Will these two clustering algorithms produce
the same cluster centers (means) for this data set? In one sentence, explain why or why not
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[Solution] Question 1: Clustering Comparison

Both the approaches will find the clusters
In k-means the center of a cluster is the average of all the elements in the cluster
In GMM, the centers are weighted average of all the elements in the data.
So, in GMM, we can expect the right center to be skewed a bit to the left and left center
to the right
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Question 2: EM basics 2

Consider applying EM to train a GMM to cluster the data into two clusters. Thr ’+’ points
indicate the current means µ0, µ1 of the two components of the mixture after the kth iteration
of EM.

Draw on the figure the directions in which µ0 and µ1 will move during the next M-step
Will the marginal likelihood of the training data, increase or decrease on the next EM
iteration?
Will the estimate of π0 increase or decrease on the next EM step?
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[Solution] Question 2: EM basics

Consider applying EM to train a GMM to cluster the data into two clusters. Thr ’+’ points
indicate the current means µ0, µ1 of the two components of the mixture after the kth iteration
of EM.

µ0 moves to the left, and µ1 moves to the right.
Increase. Each iteration of the EM algorithm increases to likelihood of the data, unless you
happen to be exactly at a local optimum
It will increase
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Question 3: Gaussian Naive Bayes and GMMs 3

Lets consider the relationship between a Gaussian Naive Bayes (GNB) classifier and the above
Gaussian Mixture Model (GMM). It is easy to see that they involve the same probabilistic
model. Our usual GNB classifier assumes p(Y |X ) is of the form:

p(Y |X ) =
P(Y )Πip(Xi |Y )

p(X )

where Y is a Bernoulli random variable (i.e., P(Y = 0) = π0). It also assumes each feature Xi

is governed by a Gaussian distribution conditioned on Y . For simplicity, letâs assume all
features have the same variance, so

P(Xi |Y = k) ∼ N(µk,i ,σ)
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Question 3: Gaussian Naive Bayes and GMMs continued

Notice this GNB generative model is identical to that of our GMM above (plus the simplifying
assumption of identical σs). In other words, both models assume we generate data points by
choosing a Y according to π0, then drawing an X according to a Gaussian conditioned on Y.

The GNB objective is argmaxθΠjP(x
j ,y j |θ). Give the EM objective for GMM.

Suppose we have a set of training data in which we have both labeled and unlabeled
samples. We have known y values for x1, ..,xm but have additional unlabeled examples
xm+1, ..,xm+n without known values for y. Propose a modified EM approach to train in
this setting.
Write down the objective function that your modified EM is maximizing. In your
expression, distinguish between the labeled and unlabeled examples.
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[Solution] Question 3: Gaussian Naive Bayes and GMMs

argmaxθΠj

(∑
y P(x

j ,y |θ)
)

In the E step, for labeled samples use γij = δj ,y(i), where δj ,y(i) = 1(j = y(i))

argmaxθΠ
m
j=1

(∑
y P(x

j ,y |θ)
)
Πm+n
j=m+1

(
P(x j ,y j |θ)

)
,

Haresh Rengaraj Rajamohan (CDS, NYU) DS-GA 1003 / CSCI-GA 2567 April 28, 2021 9 / 23



Question 4: EM computation 4

Suppose that we are fitting a Gaussian mixture model for data items consisting of a single real
value, x, using K = 2 components. We have N = 5 training cases, in which the values of x are
as follows:

5, 15, 25, 30, 40

We use the EM algorithm to find the maximum likeihood estimates for the model parameters,
which are the mixing proportions for the two components, π1 and π1, and the means for the
two components, µ1 and µ2. The standard deviations for the two components are fixed at 10.

4From UToronto
Haresh Rengaraj Rajamohan (CDS, NYU) DS-GA 1003 / CSCI-GA 2567 April 28, 2021 10 / 23



Question 4: EM computation continued

Suppose that at some point in the EM algorithm, the E step found that the responsibilities of
the two components for the five data items were as follows:

ri1 ri2
0.2 0.8
0.2 0.8
0.8 0.2
0.9 0.1
0.9 0.1

What values for the parameters π1, π2, µ1, and µ2 will be found in the next M step of the
algorithm?
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[Solution] Question 4 EM computation

The new estimates will be
π1 = (0.2+0.2+0.8+0.9+0.9)/5= 0.6
π2 = (0.8+0.8+0.2+0.1+0.1)/5= 0.4
µ1 = (0.2×5+0.2×15+0.8×25+0.9×30+0.9×40)/(0.2+0.2+0.8+0.9+0.9) = 29
µ2 = (0.8×5+0.8×15+0.2×25+0.1×30+0.1×40)/(0.8+0.8+0.2+0.1+0.1) = 14
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Question 5 Computation Problem 5

Consider a two-component Gaussian mixture model for univariate data, in which the probability
density for an observation, x, is,

1
2
N(x |µ,1)+

1
2
N(x |µ,22)

Here, N(x |µ,σ2) denotes the density for x under a univariate normal distribution with mean µ
and variance σ2. Notice that mixing proportions are equal for this mixture model, that the two
components have the same mean, and that the standard deviations of the two components are
fixed at 1 and 2. There is only one model parameter, µ.
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Question 5 Computation Problem continued

Suppose we wish to estimate the µ parameter by maximum likelihood using the EM algorithm.
Answer the following questions regarding how the E step and M step of this algorithm operate,
if we have the three data points below:

4.0,4.6,2.0

Find the responsibilities that will be computed in the E step if the model parameter
estimates from the previous M step are µ= 4, σ1 = 1, and σ2 = 2. Since the
responsibilities for the two components must add to one, it is enough to give
ri1 = P(component1|xi ) for i = 1,2,3.
Using the responsibilities that you computed in part (a), find the estimate for µ that will
be found in the next M step.
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[Solution] Question 5 Computation Problem

(A). Using Bayes Rule,

P(component 1|x) =
1
2N(x |µ,1)

1
2N(x |µ,1)+ 1

2N(x |µ,22)

Lets apply this to the three observations,

r11 =
(1/2)0.4

(1/2)0.4+(1/2)(1/2)0.4
= 2/3

r21 =
(1/2)0.33

(1/2)0.33+(1/2)(1/2)0.38
= 33/52

r31 =
(1/2)0.05

(1/2)0.05+(1/2)(1/2)0.24
= 5/17
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[Solution continued] Question 5 Computation Problem

(B). The expected log likelihood is,

3∑
i=1

[
ri1(−1/2)(xi −µ)2+(1− ri1)(−1/2)(xi −µ)2/4

]
Lets differentiate and equate this to 0,

3∑
i=1

[ri1(xi −µ)+(1− ri1)(xi −µ)/4] = 0

We get,

µ̂=

∑3
i=1(ri1+(1− ri1)/4)xi∑3
i=1(ri1+(1− ri1)/4)

=
(3/4)4.0+(151/208)4.6+(25/68)2.0

(3/4)+(151/208)+(25/68)
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Question 6 EM derivation 6

Lets derive the E-M update rules for a univariate Gaussian mixture model (GMM) with two
mixture components. Unlike the GMMs we covered in the course, the mean µ will be shared
between the two mixture components, but each component will have its own standard deviation
σk . The model is defined as follows:

z ∼ Bernoulli(θ)

x |z = k ∼ N(µ,σk)

Write the density defined by this model (i.e. the probability of x, with z marginalized out)
E-Step: Compute the posterior probability r (i) = P(z(i) = 1|x(i))
Update rule for µ (σk fixed) and σk (µ fixed)
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[Solution]Question 6 EM derivation

(A).
p(x) = θN(x ;µ,σ1)+(1−θ)N(x ;µ,σ0)

(B).

r (i) =
θN(x ;µ,σ1)

θN(x ;µ,σ1)+(1−θ)N(x ;µ,σ0)

(C).

µ←
∑N

i=1 x
(i)(r (i)σ2

0+(1− r (i))σ2
1)∑N

i=1(r
(i)σ2

0+(1− r (i))σ2
1)

σ2
1←

∑N
i=1 r

(i)(x(i)−µ)2∑N
i=1 r

(i)
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Question 7.1 MCQ 7

Assume you have points that are generated by one of two possible Gaussian distributions.
Which of the following are true?

We know how to get a globally optimal solution by deriving the maximum likelihood
estimate analytically
Using the EM algorithm to solve this problem, we assume that we know from which
Gaussian each point originated.
Once the EM algorithm has converged, we know for certain from which Gaussian each
point originated.
The EM algorithm for this problem guarantees that the likelihood of the data never
decreases from one iteration to the next.
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[Solution] Question 7.1 MCQ

Answer: (d). A - EM doesnt give the globally optimal solution. B - We can start out with one
of the Gaussians being more likely for some points, but we dont know for sure. C - After
convergence, we only know the probability values of belonging to a particular Gaussian.
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Question 7.2 MCQ 8

Which of the following are true about the EM algorithm as applied to a Gaussian Mixture
Model?

The choice of initial values of parameters of the Gaussian affects the final estimates.
The algorithm is guaranteed to converge
The algorithm is guaranteed to converge to a global maxima.
The estimate of the parameters obtained at the end is the Maximum Likelihood Estimate.
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[Solution] Question 7.2 MCQ

A and B are true. C - EM doesnt give the globally optimal solution. D - We cannot solve GMM
in closed form to get a clean maximum likelihood expression
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Coding Exercise

GMM tutorial
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